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Abstract

We describe an algorithm for clustering using
a similarity graph. The algorithm (a) runs
in O(n log3 n+m logn) time on graphs with
n vertices and m edges, and (b) with high
probability, finds all “large enough” clusters
in a random graph generated according to the
planted partition model. We provide lower
bounds that imply that our “large enough”
constraint cannot be improved much, even
using a computationally unbounded algo-
rithm. We describe some experiments run-
ning the algorithm and a few related algo-
rithms on random graphs with partitions gen-
erated using a Chinese Restaurant Processes,
and some results of applying the algorithm to
cluster DBLP titles.

1. Introduction

This work is aimed at using theoretical analysis to
guide the design of large-scale clustering algorithms.
We are especially interested in problems in which the
purpose of clustering is to identify near-duplicates, for
example to eliminate them from the index of a search
engine.

For problems like these, it is possible to use a tech-
nique such as minhashing (Cohen, 1997; Broder, 1997)
to build a graph in which most pairs of items that
should be clustered together are represented by edges,
and there are not too many spurious edges. There
can be billions, or more, of vertices. There are many
clusters, and many vertices are not clustered. The
largest clusters are the most important, since they do
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the most harm. Because the input is large, and such
duplicate-detection must be done often, efficient algo-
rithms are important. Even if massive parallelism is
available to speed up algorithms, an algorithm that
expends limited resources overall is still valuable as
a means to reduce costs and make limited computing
resources available for other purposes.

We analyze algorithms using the planted partition
model (Condon & Karp, 2001; McSherry, 2001) in
which an adversary partitions the vertices of a graph
into clusters C1, ..., Ct, and then edges are included
between members of the same cluster independently
with one probability p, and edges are included be-
tween members of different clusters with another,
smaller, probability q. We show that, if p ≥ 1/2, a
O(n log3 n + m logn) time algorithm can, with prob-
ability 1 − 1/poly(n), output a partition U1, U2, ...Us
that, for each input cell Ci of size Ω(max{qn, logn}),
contains a cell Uj such that Uj = Ci. We also provide
lower bounds that imply that this bound on the size
of Ci cannot be improved much, even with unlimited
computation.

Condon and Karp (2001) analyzed a nearly linear-time
algorithm for recovering a planted partition in the case
that the cells of the partition have the same size, and
this size, and the number of cells, is known to the al-
gorithm a priori. Their algorithm applies local pertur-
bation to partition the vertices into two groups, and
then applies the algorithm recursively to each of the
two groups. They used the knowledge of the size of the
cells to determine whether to make another recursive
call or not.

Recent research has provided approximation guaran-
tees for polynomial-time clustering algorithms using
weaker assumptions than the planted partition model
that we study here (Bansal et al., 2004; Kannan et al.,
2004; Balcan et al., 2008), but using algorithms that
require substantially more than linear time.
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McSherry (2001) analyzed a spectral clustering algo-
rithm using a model much like the embedded partition
model studied here. The aim of this work was to obtain
similar guarantees with a faster algorithm. A num-
ber of authors have proposed to approximate the spec-
trum of similarity matrices for applications like this by
different sampling schemes (Williams & Seeger, 2000;
Frieze et al., 2004; Drineas & Mahoney, 2005; Kumar
et al., 2009). Achlioptas and McSherry (2007) pro-
vided a theoretical analysis of the approximation ca-
pabilities of one such scheme. However the approxima-
tion is performed, however, when there are k clusters,
the resulting spectral clustering algorithms appear to
take Ω(k2) time. In contrast, the Subsquare algorithm
takes time nearly linear in the number of edges, no
matter how many clusters there are, which appears
to make it more suitable for applications like near-
duplicate detection. This is supported by some exper-
iments – we tried out an algorithm obtained by using
a sampling scheme like the one analyzed by Achlioptas
and McSherry in concert with the spectral clustering
algorithm proposed by Ng, Jordan and Weiss (2001).

Bansal, et al (2004), in Section 6 of their paper, de-
scribed an algorithm based on neighborhood overlap,
together with a sketch of an analysis in the case in
which edges between members of the same cluster are
included with probability 1. Gibson, et al (2005) de-
scribed a somewhat complicated algorithm that starts
by applying minhashing to vertex neighborhoods in
an effort to quickly find vertices with similar neigh-
borhoods.

The Subsquare algorithm proposed in this paper can
be viewed as an approximation to more computational
intensive spectral algorithms. Roughly, the spectral
algorithms like to cluster together a pair (v, w) of ver-
tices if a random walk from v is likely to land at w (von
Luxburg, 2007). We show that, to obtain guarantees
for the embedded partition model, it is sufficient to
examine walks of length 2, or, in other words, to con-
sider the extent to which neighborhoods of pairs of
vertices overlap. However, simply squaring the adja-
cency matrix, even in combination with random spar-
sification as in (Achlioptas & McSherry, 2007), ap-
pears not to work – if we sparsify sufficiently to achieve
nearly linear time, then the neighborhoods of vertices
in large clusters will not overlap enough to be detected.
When deciding whether to cluster together two ver-
tices, instead of considering the overlap between ran-
dom subsamples of both of their neighborhoods, Sub-
square checks how many members of a subsample of
one vertex’s neighbors are in the list of all of the other
vertex’s neighbors.

2. The Problem and Results

2.1. Planted partition model

We will analyze algorithms using a slight variant of the
planted partition model (Jerrum & Sorkin, 1998) (see
also (Condon & Karp, 2001; Bui et al., 1987; McSh-
erry, 2001)).

Let G = G(V,E) be a random graph with the set of
vertices V = {v1, . . . , vn} and set of edges E that is
built as follows: (1) Choose an integer t and arbitrary
disjoint subsets C1, . . . , Ct ⊂ V where C1 ∪ C2 ∪ · · · ∪
Ct = V ; (2) For every i ≥ 1 and every v, w ∈ Ci add
the edge (v, w) to E with probability p; (3) For every
1 ≤ i < j ≤ t, v ∈ Ci and w ∈ Cj add the edge (v, w)
to E with probability q.

The choices of whether to add the edges are mutually
independent. We call a random graph generated this
way a (p, q)-clustered graph. The sets C1, . . . , Ct are
called clusters. We can think of clusters of size 1 as
unclustered vertices.

For any vertex v, let C(v) be the cluster containing v,
let N(G, v) be the neighbors of v in G. We also will
assume that p ≥ 1/2 (roughly, that a majority of good
edges are present). Let m be the number of edges in
the input graph, and n be the number of vertices.

2.2. The Algorithm

The algorithm Subsquare makes its clustering deci-
sions based on sampling estimates of some edges of
the square of the adjacency matrix of G. The algo-
rithm has three parameters, c0, c1 and δ, which will
be determined in the analysis. Details are as follows:

2.3. Main results

Theorem 1 There are constants c, δ0, m0 and n0

such that, for all p ∈ [1/2, 1], q ∈ [0, 1], m ≥ m0,
n ≥ n0, and 0 < δ ≤ δ0, if G is a (p, q) clustered graph
with clusters C1, ..., Ct, then, with probability 1 − δ,
Algorithm Subsquare, when run with c0 = c/2 and
c1 = c/25, outputs a partition U1, ..., Us of the vertices
of G such that, for all cluster indices i such that

|Ci| ≥ cmax {qn, log(n/δ)} (1)

there is a output cluster index j such that Ci = Uj.

We will show that a constraint like (1) is necessary.

Note that if all Ci satisfy (1), then Subsquare is guar-
anteed to output the correct clustering with high prob-
ability.
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• Choose a random bijection π : V → {1, ..., n}
to order the vertices.

• Make two passes over V in the order given
by π, performing the following steps for each
vertex v:

1. If v has fewer than c0 log(n/δ) neighbors,
assign v to its own cluster and go to the
next v.

2. Let Rtemp consist of the neighbors of v
that have already been assigned to clus-
ters.

3. Form R by independently including
each element of Rtemp with probability

min
{

c0 log(n/δ)
|Rtemp|

, 1
}

.

4. Choose S by independently including
each member of N(G, v) with probabil-

ity c0 log(n/δ)
|N(G,v)| .

5. Initialize the set D of candidate clusters
for v to ∅.

6. For each w ∈ R, if

(a) |S ∩N(G,w)| ≥ c1 log(n/δ),

(b) |N(G,w)| ≥ c0 log(n/δ), and Sw ob-
tained by sampling each u ∈ N(G,w)

with probability c0 log(n/δ)
|N(G,w)| satisfies

|Sw ∩N(G, v)| ≥ c1 log(n/δ),

add Ĉ(w) (i.e., w’s cluster) to D.

7. If D is not empty, set Ĉ(v) to
Ĉ(argminw′∈∪C∈D

π(w′)) and otherwise,
start a new cluster consisting only of v.

Figure 1. Algorithm Subsquare.

Theorem 2 The expected running time of Subsquare
is O(n(log2(n/δ))(logn) +m logn).

3. The analysis

Our proof of Theorem 1 is broken up into a series of
lemmas.

Throughout this analysis, we will follow the convention
of using “w.h.p.” as a shorthand for “with probability
1 − δ/poly(n)”. As we will see, polynomially many
events will be bounded with this probability, so that,
with probability at least 1 − δ, all of them hold. We
will show that, for any polynomial in this confidence
bound, some values of the constants in our analysis
will work.

Definition 3 Refer to the comparisons performed for
a particular value of w in Step 6 of Subsquare as an
edge test. Say that the test succeeds if C(v) = C(w)
and v is put into D, or if C(v) 6= C(w) and v is not
put into D.

Note that, to put Ĉ(w) into D, Subsquare requires
both that |S ∩N(G,w)| ≥ c1 log(n/δ) and that |Sw ∩
N(G, v)| ≥ c1 log(n/δ).

Lemma 4 W.h.p., for any vertex v whose cluster
C(v) satisfies (1), at least half of v’s neighbors are
in C(v).

Proof: Since edges between vertices from distinct
clusters are included with probability q, we have
E(|N(G, v) − C(v)|) ≤ qn ≤ |C(v)|/16, by (1), as
long as c ≥ 16. But, since |C(v)| ≥ c log(n/δ),
the standard Chernoff bound (see Theorem 4.3 of
(Motwani & Raghavan, 1995)) implies that, w.h.p.,
|N(G, v)−C(v)| ≤ |C(v)|/8. On the other hand, since
p ≥ 1/2, we have E(|N(G, v)∩C(v)|) ≥ (|C(v)|−1)/2,
and, since |C(v)| ≥ c logn, this implies that, w.h.p.,
|N(G, v) ∩ C(v)| ≥ (|C(v)| − 1)/4 ≥ |C(v)|/8.

Lemma 5 For a pair {v, w} of vertices, if C(v) =
C(w), and the cluster satisfies (1), and an edge test
is conducted for v and w, then, w.h.p., this edge test
succeeds.

Proof: First, we have that, w.h.p.,

|S ∩ C(v)| ≥ (c0/4) log(n/δ) (2)

since Lemma 4 implies that w.h.p., |N(G, v)∩C(v)| ≥
|N(G, v)|/2, which in turn implies E(|S ∩ C(v)|) ≥

( c0 log(n/δ)
|N(G,v)| )(|N(G, v)|/2), from which (2) follows by a

Chernoff bound.

Now, conditioned on a fixed value of S, which depends
only on the random neighbors of v and the random-
ization of the algorithm, the events that the members
of S∩C(v) are neighbors of w are independent. Given
(2), we have

E(|S ∩N(G,w)|) ≥ E(|S ∩ C(v) ∩N(G,w)|)
≥ |S ∩ C(v)|/2

since p ≥ 1/2. Thus, a Chernoff bound implies that,
w.h.p. |S ∩N(G,w)| ≥ c1 log(n/δ).

Arguing analogously, we get that, w.h.p. |Sw ∩
N(G, v)| ≥ c1 log(n/δ), and therefore the lemma holds.

Lemma 6 For any pair {v, w} of vertices, if C(v) sat-
isfies (1), and an edge test is conducted between v and
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w, and C(v) 6= C(w), then w.h.p. the edge test is suc-
cessful.

Proof: Because the edge test is symmetrical, we may
assume without loss of generality that it takes place
during v’s turn. Thus, it suffices to show that, w.h.p.,
S ∩N(G,w) < c1 log(n/δ).

For each u, let Xu be the random variable that indi-
cates whether u ∈ N(G, v) ∩ N(G,w). Suppose that
{Yu : u ∈ V } are {0, 1}-valued random variables such

that Pr(Yu = 1) = min
{

c0 log(n/δ)
|N(G,v)| , 1

}

for all u, and

that are mutually independent. We can think of the
variables Yu as an extension of all of V of the random
variables that were used to decide whether to include
each member of N(G, v) in S.

We claim that w.h.p.,

∑

u∈N(G,v)

Yu ≥ (c0/2) log(n/δ). (3)

If |N(G, v)| ≤ c0 log(n/δ), this is because in this
case Pr(Yu = 1) = 1 for all u, and therefore
∑

u∈N(G,v) Yu = |N(G, v)|. Otherwise, it follows from
a Chernoff bound, together with the fact that

E





∑

u∈N(G,v)

Yu



 ≥ c0 log(n/δ).

Since S is a subset of the vertices for which Yu = 1,
we have that |S ∩N(G,w)| ≤

∑

u∈V−{v,w}XuYu.

Note that, though {XuYu : u ∈ V − {v, w}} might
not be independent, after we condition the values of
{Xu : u ∈ V − {v, w}}, then they are. We will first
obtain a high probability bound on

∑

uXu, and then
use it to get a bound on

∑

uXuYu that holds with high
probability.

For each u ∈ V − {v, w}, either u 6∈ C(v) or u 6∈
C(w), so Pr(u ∈ N(G, v) ∩ N(G,w)) ≤ pq. Thus
E(

∑

uXu) ≤ pqn ≤ qn ≤ |C(v)|/29 by (1), so long
as c ≥ 29. Note that each Xu is determined solely by
the random generation of the graph, thus the various
Xu variables are mutually independent. Applying a
Chernoff bound, w.h.p.,

∑

uXu ≤ |C(v)|/28. Since
p ≤ 1/2, w.h.p., |N(G, v)| ≥ |C(v)|/4, so

∑

u

Xu ≤ |N(G, v)|/26. (4)

Since for each u, Pr(Yu = 1) ≤ c0 log(n/δ)
|N(G,v)| , we

have that, conditioned on the event that (4) holds,
E(

∑

uXuYu) ≤ (c0/2
5) log(n/δ) ≤ (c1/2) log(n/δ).

Applying another Chernoff bound together with the
fact that the Yu’s are independent completes the proof.

Lemma 7 For any C that satisfies (1) for all v ∈ C
and all vertices w, with high probability, if Ĉ(v) =
Ĉ(w) then C(v) = C(w).

Proof: This follows from induction using Lemma 6.

Definition 8 The first member of a cluster C encoun-
tered by Subsquare is called the head of C.

Lemma 9 During the first pass through the vertices,
for any C that satisfies (1), for any vertex v with an
edge to the head vC of C, w.h.p., Ĉ(v) = Ĉ(vC).

Proof: The proof is by induction on π(v).

If |Rtemp| ≤ c0 log(n/δ), then vC ∈ R and the lemma
follows from Lemma 5.

Suppose |Rtemp| > c0 log(n/δ). Since p ≥ 1/2,
w.h.p., |Rtemp ∩N(G, vC)| > |Rtemp|/4. Thus, E(|R∩
N(G, vC)|) ≥ (c0/4) log(n/δ), and, therefore, w.h.p.
|R ∩ N(G, vC)| 6= ∅, and the lemma follows from
Lemma 5 together with the inductive hypothesis, to-
gether with the fact that Subsquare assigns v to the
cluster in D with the least head node.

Lemma 10 During the second pass through the ver-
tices, for any C that satisfies (1), for any v ∈ C,
Ĉ(v) = Ĉ(vC).

Proof: Since p ≥ 1/2, E(|N(G, v) ∩ N(G, vC)|) ≥
|N(G, v)|/2. During the second pass, Rtemp =
N(G, v), thus, w.h.p., |R ∩ N(G, vC)| 6= ∅. By
Lemma 9, though, for any w ∈ N(G, vC), after the
first pass, w.h.p., Ĉ(w) = Ĉ(vC). So, w.h.p., some w
with Ĉ(w) = Ĉ(vC) will be in R. The lemma then
follows from Lemma 5.

Now that we have finished the proof of Theorem 1, we
now turn to Theorem 2, the analysis of the running
time.

Proof of Theorem 2: In O(m logn) time, Subsquare
can create a data structure that will enable it to test
membership in N(G, v) for any vertex v in O(log n)
time. This can be done by creating a balanced binary
tree for each vertex v with the neighbors of v on the
leaves. These “neighbor trees” can be found if there is
a higher-level balanced binary tree that has a pointer
to a neighbor tree for each vertex v at each leaf.

We can then see that, for each vertex, at most
O(log(n/δ)) candidate clusters are examined, and each



Arrested Spectral Clustering

candidate requires neighbor lookups for O(log(n/δ))
neighbors, each requiring O(log n) time.

4. Lower bounds

Theorem 11 For any function ψ such that ψ(n) =
o(log(n)), there is no algorithm A with the following
property:

There are constants c, m0 and n0 such that,
for all p ∈ [1/2, 1], q ∈ [0, 1], m ≥ m0, and
n ≥ n0, if G is a (p, q) clustered graph with
clusters C1, ..., Ct, then, with probability 1/8,
Algorithm A, outputs a partition U1, ..., Us of
the vertices of G such that, for all cluster in-
dices i such that |Ci| ≥ cmax {qn, ψ(n)} there
is a output cluster index j such that Ci = Uj.

Proof Sketch: Suppose p = 1/2 and q = 0. Let
t = n/(cψ(n)).

We will show that, for a randomly chosen partition
C1, ..., Ct, Algorithm A fails with probability at least
1/8, which will imply the existence of a partition
C1, ..., Ct with this property. Suppose that the ran-
dom partition over the vertices v1, ..., vn is chosen by
assigning vi to Ci for i ≤ t, and, for i > t, assigning
each vertex independently to a random cluster. Let C
be this clustering.

Suppose further that, if any vertex v 6∈ {v1, ..., vt}
(i.e., whose cluster assignment was chosen randomly)
is not incident on any edges, then Algorithm A is given
the cluster assignments of all vertices other than v.
A lower bound given this assumption implies a lower
bound for the original clustering problem, since A has
the option to ignore the additional information.

If C′ = (C′
1, ..., C

′
t) consists of the cluster assignments

to vertices other than v, we have Pr(C(v) = j|G) =
Pr(C(v) = j|N(G, v), C′).

Further, applying Bayes’ rule, it is possible to show

that Pr(C(v) = j|N(G, v) = ∅, C′) = 2
−|C′

j
|

tPr(N(G,v)=∅|C′) .

Thus, given that N(G, v) = ∅, together with the
knowledge of the cluster assignments other than v,
a Bayes optimal algorithm chooses arbitrarily from
among the clusters of smallest size, and, if ni = |C′

i|,
then the probability that the Bayes optimal algorithm

makes an error on v is 1 − maxj 2−nj
∑

t

j=1
2−nj

.

We claim that, for large enough n, with probability
1/2, the cluster assignments to vertices other than v
leave at least two clusters with one member each. Let
each B1, ..., Bt be an indicator variable for whether the

corresponding cluster in C1, ..., Ct has more than one
member. B1, ..., Bt are negatively associated in the
sense of (Joag-Dev & Proschan, 1983) (see (Dubhashi
& Ranjan, 1998)). For each i, E(Bi) = (1−1/t)n−t−1.
Since negatively associated random variables obey
Chernoff bounds (see (Dubhashi & Ranjan, 1998)), we
have

Pr(
∑

i

Bi ≤ 2) ≤ exp(−(t/8)(1 − 1/t)n−t−1)

= exp

(

−n
(1 − 1/t)n−t−1

cψ(n)

)

= exp(−n exp(−Θ(ψ(n)))) = exp(−n1−o(1)).

Thus, for large enough n, with probability at least
1/2, we have that, for distinct i and j, ni = nj = 1,
and thus the conditional probability that A makes
a mistake, given that N(G, v) = ∅, is at least 1 −

1

2+
∑

t

i=3
2−ni

≥ 1/2.

Now let us compute a lower bound on the probabil-
ity that any vertex is disconnected. At least t/2 of
the clusters have at most 2n/t elements. Let us call
these clusters light. Let us lower bound the probability
of an isolated vertex by the probability of an isolated
vertex in a light cluster. For some such cluster, let ℓ
be the number of elements in the cluster. Any individ-
ual vertex in the cluster is disconnected from the rest
with probability 2−ℓ, so the probability that the clus-
ter is not connected is at least this large. Since the
edges in different clusters are chosen independently,
the probability that any light cluster is disconnected
is therefore at least 1−(1−2−2n/t)t/2 which is at least
1 − exp(−(t/2)2−2n/t). Now,

lim
n→∞

t

2
2−2n/t = lim

n→∞

n

2ψ(n)
2−2cψ(n)

= lim
n→∞

exp(lnn− o(lnn)) = ∞.

Thus, for large enough n, the probability that some
cluster is disconnected is at least 1/2, so that the prob-
ability of error is at least 1/8.

Theorem 12 For any function ψ such that ψ(n) =
o (n), there is no algorithm A with the following prop-
erty:

There are constants c, m0 and n0 such that,
for all p ∈ [1/2, 1], q ∈ [0, 1], m ≥ m0, and
n ≥ n0, if G is a (p, q) clustered graph with
clusters C1, ..., Ct, then, with probability 3/4,
Algorithm A, outputs a partition U1, ..., Us of
the vertices of G such that, for all cluster in-
dices i such that |Ci| ≥ cmax {qψ(n), log n}
there is a output cluster index j such that
Ci = Uj.
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Proof: Let t = ⌊ n
ψ(n)⌋ and p = q = 1/2. Note that,

since ψ(n) = o(n), if n is large enough, t ≥ 2.

Suppose C = (C1, C2, ..., Ct) is obtained by picking an
arbitrary vertex v, randomly partitioning the remain-
ing vertices into equal-sized clusters, and then ran-
domly assigning v to one of those clusters.

Since the edge probabilities are unaffected by the clus-
ter assignments, and algorithm A that makes random
cluster assignments is Bayes optimal, and therefore its
probability of error is at least 1−1/t ≥ 1/2. Since this
is true on average for a randomly chosen clustering C,
there exists a clustering C such that A has probability
1/2 of making an error for C.

5. Experiments

5.1. Modifications to Subsquare

We performed our experiments with a slightly modified
version of Subsquare.

First, instead of independently randomly putting each

vertex in R with probability c0 log(n/δ)
|Rtemp|

, the modified

algorithm sets R to be a random subset of size at most
c0 log(N/δ), and it chooses S similarly.

Second, in Step 6 of Figure 1, instead of requiring that
w has c0 log(N/δ) neighbors, the revised algorithm es-
timates the probability that a random neighbor of w is
also a neighbor of v dividing the number of neighbors
of w found in v’s adjacency list by one more than the
number of neighbors tried.

Third, when computing the above statistics, the counts
for neighbors w of v that have been assigned to the
same cluster C(w) are consolidated, so that the al-
gorithm computes an overall estimate p̂(C, v) of the
probability that a random neighbor of v is in an adja-
cency list of a random vertex that has been assigned
to cluster C. Vertex v is then assigned to the cluster,
from among those for which p̂(C, v) ≥ θ, which con-
tained the most of the neighbors w that were examined
during v’s turn.

5.2. Other Algorithms

The first, inspired by the analysis of Achlioptas and
McSherry (2007), randomly samples edges with prob-
ability p, and then applies the spectral clustering al-
gorithm of Ng, Jordan and Weiss (2001). The NJW
algorithm requires the user to specify the number k of
clusters. We computed the top eigenvectors using the
iterative block power method (Strang, 1986) which has
the number of iterations as an adjustable parameter.
The NJW algorithm also calls for the application of

k-means, which also has a variable number of itera-
tions. We experimented with various settings of these
parameters, as described below.

The second is an algorithm that performs minhashing
(Cohen, 1997; Broder, 1997), and forms a cluster from
each bucket. This can be equivalently described as an
algorithm that processes the vertices in random order,
and, if a vertex v has not been assigned a cluster when
it was encountered, a new cluster is formed with v and
its unclustered neighbors.

The third is version 9.308 of MCL (van Dongen, 2000;
Enright et al., 2002). The key parameter for MCL,
which trades between precision and recall, is called
“expansion”. We found that, on this data, the default
value of 2 optimized excessively for precision, so we
tried 1.5, 2, and 3 which roughly covered the range of
values suggested on the MCL website. To save space,
we report only on the best result, for 1.5, below (the
other results are significantly worse). While Subsquare
and the minhash algorithm were coded in python in
the most straightforward way, the MCL implementa-
tion is optimized C code.

5.3. Chinese Restaurant Process Data

To get large-scale data with known cluster assign-
ments and some variety in cluster sizes, we gener-
ated data by first partitioning the vertices using a
Chinese restaurant process (Pitman, 1995; Teh, 2010)
with α = 1 and θ = −20/n. This tends to gener-
ate clusters of sizes roughly on the order of 20 ver-
tices, which is similar to the most challenging applica-
tions targeted in this work. We generated graphs with
n = 10000, 20000, 50000, 100000 vertices. We included
edges between vertices in the same cell with probabil-
ity 1/2, and then added random edges until the num-
ber of such “noisy” edges was equal to the number of
“clean” edges. For each such dataset we ran Subsquare
and the minhash algorithm 10 times, and averaged the
precision and recall obtained. (When computing pre-
cision and recall, we interpret a clustering as a series
of predictions of whether each pair of vertices are in
the same cluster.) We also recorded the time taken by
each algorithm. We stopped the MCL algorithm after
it ran for 1000 minutes on the two larger datasets.

We ran Subsquare with δ and c1 chosen so that
c1 log(n/δ) = 100, and with the threshold θ described
in Section 5.1 chosen to be 0.05.

Results are as follows (time is in minutes):
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n Minhash Subsquare MCL
time F time F time F

10000 1 0.24 3 0.97 47 0.96
20000 1 0.24 6 0.98 175 0.97
50000 1 0.24 13 0.99 >1000
100000 3 0.24 28 0.99 >1000

The time required by Subsquare is seen to scale lin-
early with the number of vertices. Subsquare achieves
better accuracy than MCL while requiring an order
of magnitude less time. The time required by MCL
appears to be scaling superlinearly.

For the sampling spectral algorithm, we tried (a) sam-
pling each edge with various probabilities p: 0.05, 0.1,
0.2; (b) setting the number of clusters to various val-
ues s: 100, 200, 500 (since the expected size of each
cluster is 20 the true number is approximately 500);
(c) running the block power method for various num-
bers of iterations Ipow: 10, 25, and 100; (d) running
k-means for various numbers of iterations Ik: 2, 5,
and 10. We tried all 81 combinations of these param-
eters on the n = 10000 dataset. After eliminating the
combinations that required more than 1000 minutes
to run, the five combinations of parameters with the
best values of the F -score are shown, along with the
Subsquare result.

p s Ipow Ik time F-score
0.2 200 25 10 503 0.59
0.2 200 10 10 231 0.55
0.2 200 10 5 212 0.53
0.2 200 25 5 466 0.52
0.2 100 100 10 920 0.40

Subsquare 3 0.97

5.4. Bi-holdout experiments

To evaluate algorithms on the DBLP data, we used a
single training-test split variant of bi-cross-validation
(Gabriel, 2002; Owen & Perry, 2009), which might
be called a bi-holdout experiment. For graph-based
clustering, the most natural application of bi-cross-
validation appears to be to repeatedly apply the fol-
lowing steps: (a) Randomly split the vertices into
training vertices U and test vertices W; (b) Run each
algorithm on the subgraph induced by U , called the
“training graph”; (c) For each test vertex w ∈ W ,
determine the cluster assignment of w by using the
assignment made to a random neighbor of w in U .
(The edges of the graph consisting only of edges with
one vertex in W and one vertex in U , which might
be called the “bridge graph”, are used for this.); (d)
For each pair of vertices in W , predict that there is an
edge between them if and only if they are assigned to

the same cluster in the preceding step; (e) Compare
the predictions with the actual presence of absence of
edges between vertices in W (these edges constitute
the “test graph”). We only used a single training-test
split because our graphs are large. A fraction 1/10 of
the vertices were placed in the test graph.

We first used the bi-holdout estimate to compare the
algorithms on the synthetic data described above. We
applied both Subsquare and the minhash algorithm to
the graph in the n=100000 case, and compared the
results using this protocol. The Subsquare algorithm
achieved an F-score of 0.136, where the minhash al-
gorithm obtained 0.046. While Subsquare still per-
forms better, the edge-prediction accuracy obtained is
much smaller than the cluster-membership accuracy
that was measured earlier. This is not surprising, in
light of the fact that there are three chances for a cor-
rect determination that two vertices u and v in the test
graph should be clustered together to fail to be recog-
nized by this protocol: (1) the edge between u and v
may be missing from the graph, (2) a spurious edge
from u to the training graph may be chosen, and (3)
a spurious edge from v to the training graph may be
chosen. Nevertheless, since these should be expected
to effect all algorithms equally, the statistics obtained
through this protocol should still give an idea of the
relative merit of clustering algorithms.

Next, we applied performed a similar experiment using
the titles in the DBLP database. We used a variant
of minhashing (Cohen, 1997; Cohen et al., 2001; Li
et al., 2008) to compute the similarity graph. Each
title was summarized using a bag of its length-4 sub-
strings (called “k-mers”, with k = 4). Next, we re-
moved all k-mers that appeared in at least 1000 titles
from all bags. We then fixed a random permutation
of the k-mers, and further summarized each title by
a list of the first 25 k-mers, in sorted order accord-
ing to this permutation, appearing in its bags. Titles
whose resulting “sketches” shared at least 5 k-mers
were deemed similar and given an edge in the graph.
The resulting graph had roughly 1.5 million edges, and
was clustered by Subsquare on a four-year-old desktop
workstation in less than 25 minutes. The bi-holdout
F-score for Subsquare (here with δ and c1 chosen so
that c1 log(n/δ) = 100 and θ = 0.9)) was 0.504, where
the minhash algorithm obtained 0.471.
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