
Restricted Boltzmann Machines are Hard to
Approximately Evaluate or Simulate

Philip M. Long plong@google.com

Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

Rocco A. Servedio rocco@cs.columbia.edu

Computer Science Department, Columbia University, New York, NY 10027

Abstract

Restricted Boltzmann Machines (RBMs) are
a type of probability model over the Boolean
cube {−1, 1}n that have recently received
much attention. We establish the intractabil-
ity of two basic computational tasks involving
RBMs, even if only a coarse approximation to
the correct output is required.

We first show that assuming P 6= NP, for any
fixed positive constant K (which may be ar-
bitrarily large) there is no polynomial-time
algorithm for the following problem: given an
n-bit input string x and the parameters of a
RBM M , output an estimate of the proba-
bility assigned to x by M that is accurate to
within a multiplicative factor of eKn. This
hardness result holds even if the parameters
of M are constrained to be at most ψ(n) for
any function ψ(n) that grows faster than lin-
early, and if the number of hidden nodes of
M is at most n.

We then show that assuming RP 6= NP, there
is no polynomial-time randomized algorithm
for the following problem: given the param-
eters of an RBM M , generate a random ex-
ample from a probability distribution whose
total variation distance from the distribution
defined by M is at most 1/12.

1. Introduction

A Restricted Boltzmann Machine (Smolensky, 1987;
Freund & Haussler, 1991; Hinton, 2002; Bengio, 2009)
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(henceforth simply denoted “RBM”) with m hidden
nodes is defined by an m by n real matrix A and
two vectors a ∈ Rm, b ∈ Rn. These parameters
θ = (A, a, b) define a probability distribution RBMθ

over x ∈ {−1, 1}n in the following way:

RBMθ(x)
def
=

∑
h∈{−1,1}m eh

T a+hTAx+bTx

Zθ
, (1)

where Zθ is a normalizing factor (sometimes referred
to as the “partition function”) so that RBMθ is a prob-
ability distribution, i.e.

Zθ
def
=

∑

h∈{−1,1}m,z∈{−1,1}n

eh
Ta+hTAz+bT z .

While RBMs were first introduced more than two
decades ago (Smolensky, 1987; Freund & Haussler,
1991), they have recently been used as constituents of
“deep belief network” learning systems (Hinton et al.,
2006; Bengio, 2009). An approach to training deep
networks that has been growing in popularity involves
unsupervised training of RBMs as a subroutine. The
success of this approach (see (Hinton et al., 2006;
Larochelle et al., 2007; Erhan et al.)) motivates the
subject of this paper, which is to study the complexity
of basic computational tasks related to learning with
RBMs.

Since RBMs are a way of modeling probability distri-
butions over {−1, 1}n, the two most natural compu-
tational tasks regarding RBMs would seem to be the
following:

1. Evaluating an RBM: Given a parameter vector
θ and an input vector x ∈ {−1, 1}n, the task is to
output the probability value p = RBMθ(x) that
the distribution assigns to x.

A potentially easier task is to approximately eval-
uate an RBM to within some multiplicative factor:
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given a parameter vector θ, a vector x ∈ {−1, 1}n,
and an approximation parameter c > 1, the task
is to output a value p̂ such that

1

c
· p ≤ p̂ ≤ c · p.

2. Simulating an RBM distribution: Given a
parameter vector θ and an approximation param-
eter 0 < η < 1, the task is to output an efficiently
evaluatable representation1 of a probability distri-
bution P over {−1, 1}n such that the total vari-
ation distance between P and RBMθ is at most
η.

This paper shows that each of these tasks is computa-
tionally hard in the worst case, even if only a coarse
approximation to the correct output is required.

As our first main result, we show that if P 6= NP then
the approximate evaluation task cannot be solved in
polynomial time even with approximation parameter
c = eKn, where K > 0 may be any fixed constant.
(A precise statement of our hardness result, which is
somewhat technical, is given as Theorem 8 in Sec-
tion 4.) As our second main result, we show that if
RP 6= NP then there is no polynomial-time algorithm
for the simulation task with approximation parameter
η = 1/12. (See Theorem 13 in Section 5 for a precise
statement.)

These results show strong worst-case limitations on
evaluating and simulating general RBMs, but in many
cases one may only be dealing with RBMs that
have moderate-sized weights and relatively few hid-
den nodes. Thus it is of special interest to under-
stand the complexity of approximately evaluating and
simulating RBMs of this sort. We consider the ap-
proximate evaluation and simulation tasks when the
RBM is restricted to have at most n hidden nodes and
each real parameter Ai,j , ai, bj has magnitude at most
ψ(n). Our hardness results stated above hold for any
bound ψ(n) that grows faster than linearly, i.e. such

that limn→∞
ψ(n)
n = ∞.

1.1. Related work.

Our results have the same high-level flavor as the
work of several previous researchers who have stud-

1We formalize the notion of an “efficiently evaluatable
representation of a distribution over {−1, 1}n” in the fol-
lowing standard way: Such a representation consists of a
Boolean circuit of poly(n) size with k = poly(n) input bits
and n output bits. A draw from the distribution is obtained
by setting the input bits to an uniform random k-bit string
and reading the output string.

ied the computational complexity of various computa-
tional tasks for different types of probability distribu-
tion models. In an early work of this sort, Abe and
Warmuth (1992) showed that it is NP-hard to approx-
imate the maximum likelihood model for probabilistic
automata with a fixed number of states but a variable-
sized alphabet. Kearns et al. (1994) showed that it is
#P -hard to exactly evaluate probability models over
{0, 1}n in which each observed bit is a disjunction of
three unknown hidden variables, each of which is as-
signed an unknown independent uniform random bit.
Roth (1996) showed that it is NP-hard to approxi-
mate the probability that a given node in a multiple-
connected Bayesian belief network is true. Bogdanov,
Mossel and Vadhan (2008) studied the complexity of
various computational tasks related to Markov Ran-
dom Fields. Yasuda and Tanaka (2008) claim that
training RBMs is NP-hard, but such a claim does
not seem to address the approximate generation and
approximate simulation computational tasks that we
consider.

To the best of our knowledge, ours is the first work
establishing hardness of either evaluation or simulation
(exact or approximate) for RBMs.

1.2. Our approach.

An important ingredient in our hardness results for
both evaluation and simulation is a more technical re-
sult (Theorem 1 in Section 3) which shows that it is
NP-hard to even coarsely approximate the value of the
partition function Zθ. We prove this by combining a
binary search technique (Lemma 6) with a recent hard-
ness result for approximating the pseudo-cut-norm of
a matrix due to Alon and Naor (2004).

Our hardness result for approximate evaluation, The-
orem 8, follows rather straightforwardly from Theo-
rem 1. For our simulation hardness result, we combine
Theorem 1 with ideas from Jerrum, Valiant and Vazi-
rani’s proof (1986) that approximate uniform sampling
from a set S and approximate counting of the elements
of S are polynomial-time equivalent.

2. Background and Preliminaries

We drop the subscript θ from Zθ when there is no
possibility of confusion. We sometimes concentrate on
models whose parameters θ = (A, a, b) have a = ~0 and
b = ~0. In this case, we sometimes replace θ with A,
for example writing RBMA and ZA.

For A a matrix with real entries, we write ||A||∞ to
denote maxi,j |Aij |. Similarly we write ‖a‖∞ to denote
maxi |ai| for a vector a.
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For probability distributions P and Q over a finite

set S, the total variation distance is dTV (P,Q)
def
=

maxE⊆S |P (E) − Q(E)|. Note that this is equiva-

lent to dTV (P,Q)
def
= maxE⊆S P (E) − Q(E) since

P (S − E) −Q(S − E) = Q(E) − P (E).

A function ψ is ω(n) if it grows faster than linearly,

i.e., if limn→∞
ψ(n)
n = ∞.

3. Approximating the partition

function is hard

The main result of this section is the following the-
orem, which says that it is hard to approximate the
partition function Zθ:

Theorem 1 There is a universal constant ε > 0 such
that if P 6= NP , then there is no polynomial-time al-
gorithm with the following property: Given as input
an n×n matrix A satisfying ‖A‖∞ ≤ ψ(n) (where the
function ψ satisfies ψ(n) = ω(n)), the algorithm ap-
proximates the partition function ZA to within a mul-
tiplicative factor of eǫψ(n).

Our proof uses a reduction from the problem of ap-
proximating a norm defined by Alon and Naor (2004).
We refer to this norm, which is denoted by ‖A‖∞7→1

in (Alon & Naor, 2004), as the pseudo-cut-norm of A
and denote it simply by ‖A‖.

Definition 2 The pseudo-cut-norm of an m× n real
matrix A is defined by

||A||
def
= max

h∈{−1,1}m,x∈{−1,1}n

hTAx.

Theorem 3 ((Alon & Naor, 2004)) There is a
universal constant ε > 0 such that, if P 6= NP, then
there is no polynomial-time algorithm that approxi-
mates the pseudo-cut-norm to within a factor of 1+ ε.

The reduction in the proof of Theorem 3 in (Alon
& Naor, 2004) uses non-square matrices, but an easy
corollary extends this hardness result to square matri-
ces (we give the simple proof in Appendix A):

Corollary 4 Theorem 3 holds even if the matrix is
constrained to be square.

We will need the following upper and lower bounds on
the pseudo-cut-norm of A:

Lemma 5 For an m× n matrix A, we have ||A||∞ ≤
||A|| ≤ mn||A||∞.

Proof: Alon and Naor (2004) note that the pseudo-
cut-norm satisfies

||A|| ≥ max
u,v∈{0,1}n

∣∣uTAv
∣∣

(the RHS above is the actual “cut-norm” of A). Since
Aij equals eTi Aej (where ei has a 1 in the ith coordi-
nate and 0’s elsewhere), we get

||A|| ≥ max
i,j

|Aij | = ‖A‖∞.

It remains only to observe that for any h ∈
{−1, 1}m, x ∈ {−1, 1}n, we have

hTAx =
∑

ij

hixjAij ≤ mn||Aij ||∞. �

3.1. Proof of Theorem 1

Throughout this section ψ denotes a function ψ(n) =
ω(n) as in Theorem 1.

We first show that it is hard to distinguish between ma-
trices with “large” versus “slightly less large” pseudo-
cut-norm:

Lemma 6 There is a universal constant α > 0 such
that if P 6= NP , then there is no polynomial-time al-
gorithm to solve the following promise problem:

Input: An n-by-n matrix A such that
||A||∞ ≤ ψ(n) and either (i) ||A|| > ψ(n);
or (ii) ||A|| ≤ (1 − α)ψ(n).

Output: Answer whether (i) or (ii) holds.

Proof: The proof is by contradiction; so suppose that
for every α > 0, ALGα is a polynomial-time algorithm
that solves the promise problem with parameter α.
We will show that there is a polynomial-time algo-
rithm ALG′

α (which performs a rough binary search
using ALGα as a subroutine) that can approximate
the pseudo-cut-norm ‖B‖ of any n×n input matrix B

to within a multiplicative factor
(

1
1−α

)2

. This yields

a contradiction with Corollary 4.

So let B be any n × n input matrix. Since ||λB|| =
λ||B||, we may rescale B as a preprocessing step, so we
assume without loss of generality that B has ||B||∞ =
1. Now fix any c > 1 and consider an execution of
ALGα on the matrix A = (ψ(n)/c)B. If ALGα returns
“(i)” then (ii) does not hold, so ||A|| > (1 − α)ψ(n),
which implies that ‖B‖ > (1−α)c. Similarly, if ALGα

returns “(ii)” then B must have ‖B‖ ≤ c.
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The algorithm ALG′
α maintains an interval [ℓ, u] of

possible values for log ||B|| which it successively prunes
using ALGα to do a rough binary search. Using
‖B‖∞ = 1 and Lemma 5, initially we may take
[ℓ, u] = [0, 2 lnn] to be an interval of length r0 = 2 lnn.
After the tth stage of binary search using ALGα, the
new length rt of the interval is related to the old length
rt−1 by rt ≤ rt−1/2 + log(1/(1 − α)). As long as rt−1

is at least 4 log(1/(1 − α)), this implies rt ≤ 3rt−1/4.

So after O(log logn) iterations of binary search, ALG′
α

narrows the initial interval [0, 2 lnn] to an interval [ℓ, u]
of width at most 4 log(1/(1 − α)). (We note that each
execution of ALGα in the binary search indeed uses
a value c which is at least 1 as required.) Algorithm
ALG′

α outputs e(u+ℓ)/2 as its estimate of ‖B‖.

Since u − ℓ ≤ 4 log(1/(1 − α)) implies that eu−ℓ ≤(
1

1−α

)4

, the estimate e(u+ℓ)/2 is accurate for ‖B‖

to within a multiplicative approximation factor of(
1

1−α

)2

. As noted at the start of the proof, since α

could be any constant greater than 0, this contradicts
hardness of approximating ‖B‖ (Theorem 3). 2

An easy consequence of Lemma 6 is that it is hard to
distinguish between RBMs whose partition functions
are “large” versus “much less large”:

Lemma 7 There is a universal constant α > 0 such
that if P 6= NP , then there is no polynomial-time al-
gorithm to solve the following promise problem:

Input: An n-by-n matrix A such that
||A||∞ ≤ ψ(n) and either (i) ZA >
exp(ψ(n)); or (ii) ZA ≤ 4n exp((1 −
α)ψ(n)).

Output: Answer whether (i) or (ii) holds.

Proof: By Lemma 6, if an n-by-n matrix A satisfies
||A||∞ ≤ ψ(n) and either (a) maxh,x h

TAx > ψ(n)
holds or (b) maxh,x h

TAx ≤ (1 − α)ψ(n) holds, it is
hard to determine whether (a) or (b) holds.

It is clear that (a) implies (i) and that (b) implies
(ii). Since ψ(n) = ω(n), for all but finitely many n we
have that the two alternatives (i) and (ii) are mutually
exclusive. So for all sufficiently large n, an algorithm
to determine whether (i) or (ii) holds could directly be
used to determine whether (a) or (b) holds. 2

Proof of Theorem 1: Let α > 0 be the constant from
Lemma 7. Let U = exp(ψ(n)) and L = 4n exp((1 −

α)ψ(n)). An algorithm that can approximate Z to
within a multiplicative factor of

√
U/L can distinguish

Z ≥ U from Z < L. We have

√
U

L
= exp

(
αψ(n) − n ln 4

2

)
,

so an approximation factor better than this would con-
tradict Lemma 7, and thus any ǫ < α/2 suffices in
Theorem 1. �

4. Approximate Evaluation is Hard

In this section we show that it is hard to approximately
evaluate a given RBM A on a given input string x:

Theorem 8 There is a universal constant ε > 0 such
that if P 6= NP , then there is no polynomial-time al-
gorithm with the following property: Given as input
an n × n matrix A satisfying ‖A‖∞ ≤ ψ(n) (where
the function ψ satisfies ψ(n) = ω(n)) and an input
string x ∈ {−1, 1}n, the algorithm approximates the
probability RBMA(x) to within a multiplicative factor
of eǫψ(n).

Note that since ψ(n) = ω(n), the above result implies
that approximating RBMA(x) to the smaller multi-
plicative factor eKn is also hard, where K may be any
positive constant.

We will use the fact that the numerator of the ex-
pression (1) for RBMA(x) can be computed efficiently,
which is known and not difficult to show. (See
e.g. (5.12) of (Bengio, 2009) for an explicit proof.)

Lemma 9 There is a poly(n)-time algorithm that,
given A and x, computes

∑
h∈{−1,1}n exp(hTAx).

Now we are ready for the proof that evaluation is hard.

Proof of Theorem 8: We actually show something
stronger: if P 6= NP then there is no polynomial-
time algorithm which, given an RBM A as described,

can output any pair (x, R̃BMA(x)), where R̃BMA(x)
is a multiplicative eεψ(n)-approximation to RBMA(x).
(In other words, not only is it hard to approximate
RBMA(x) for a worst-case pair (A, x), but for a worst-
case A it is hard to approximate RBMA(x) for any x.)

To see this, note that since Lemma 9 implies that we
can efficiently exactly evaluate the numerator of the
expression (1) for RBMA(x), approximating RBMA(x)
to within a given multiplicative factor is equivalent to
approximating 1/ZA to within the same factor.

But since f(u) = 1/u is monotone in u, for an estimate

Z̃ of Z and a desired approximation factor c, we of
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course have that

1

c
×

1

Z
≤

1

Ẑ
≤ c×

1

Z

if and only if

cZ ≥ Ẑ ≥ Z/c,

so we are done by Theorem 1. �.

5. Approximate Simulation is Hard

In this section we establish the hardness of construct-
ing an efficiently evaluatable representation of any dis-
tribution P that is close to RBMθ, where θ = (A, a, b)
is a given set of RBM parameters. Our proof is in-
spired by Jerrum, Valiant and Vazirani’s proof that
approximate counting reduces to approximate uniform
sampling (Jerrum et al., 1986). To aid in explaining
our proof, in the following paragraph we briefly recall
the idea of the (Jerrum et al., 1986) reduction from ap-
proximate counting to approximate uniform sampling,
and then explain the connection to our scenario.

Let S ⊆ {0, 1}n be a set whose elements we would like
to approximately count, i.e. our goal is to approximate
|S|. Suppose that ALG is an algorithm that can ap-
proximately sample a uniform element from S, i.e. each
element of S is returned by ALG with some probability
in the range [ 1

1+τ ·
1
|S| , (1+ τ) · 1

|S| ]. The reduction pro-

ceeds for n stages. In the first stage, by drawing sam-
ples from S using ALG, it is possible to approximately
estimate |S0| and |S1| where Sb is {x ∈ S : x1 = b}, so
that the larger one is estimated to within a multiplica-
tive factor of (1 + 2τ). Let b1 ∈ {0, 1} be the bit such
that |Ŝb1 | ≥ |S|/2, where |Ŝb1 | is the estimated size of
|Sb1 |, and let p̂1,b1 ≥ 1/2 denote |Ŝb1 |/|S|. In the sec-
ond stage we repeat this process, using ALG on Sb1 ,
to obtain values b2, |Ŝb1,b2 | and p̂2,b2 , where |Ŝb1,b2 | is
the estimated size of Sb1,b2 = {x ∈ S : x1 = b1 and
x2 = b2}. By continuing in this way for n stages, we
reach a set Sb1,...,bn

of size 1. The final estimate of |S|
is 1/

∏n
i=1 p̂i,bi

, and it can be shown that this is an ac-
curate approximator of |S| to within a multiplicative
factor of (1 + 2τ)n.

In our setting the ability to approximately simulate a
given RBMθ distribution plays the role of the ability to
approximately sample from sets like Sb1,...,bi

. Approx-
imate counting of |S| corresponds to approximately
computing RBMθ(x) for a particular string x (which
corresponds to the bitstring b1 . . . bn). Since Theo-
rem 1 implies that approximating RBMθ(x) is hard,
it must be the case that approximately simulating a
given RBM distribution is also hard.

5.1. Preliminaries

As the above proof sketch suggests, we will need to
build RBM models for various distributions obtained
by conditioning on fixed values of some of the observed
variables.

Definition 10 Let P be a probability distribution over
{−1, 1}n, i1, . . . , ik be a list of distinct variable indices
from [n], and xi1 , . . . , xik be values for those variables.
We write cond(P ;Xi1 = xi1 , ..., Xik = xik) to denote
the distribution obtained by drawing a random variable
(X1, ..., Xn) distributed according to P and condition-
ing on the event that Xi1 = xi1 , ..., Xik = xik .

It will be helpful to have notation for the numerator in
the formula for the probability assigned by an RBM.

Definition 11 For an RBM θ = (A, a, b) and a string
x ∈ {−1, 1}n, define the energy of x w.r.t. θ, denoted
by fθ(x), to be

∑
h∈{−1,1}n exp(hTa+ hTAx+ bTx).

5.2. Building RBM Models for Conditional
Distributions

In the following lemmas, for parameters θ = (A, a, b)
we write ‖θ‖∞ to denote max{‖A‖∞, ‖a‖∞, ‖b‖∞}.

Lemma 12 There is a poly(n,1/η, ‖θ‖∞)-time algo-
rithm with the following properties: The algorithm
is given any η > 0, any parameters θ = (A, a, b)
where A is an n × n matrix (and all the param-
eters of A, a, b have poly(n) bits of precision), and
any values u1, . . . , uk ∈ {−1, 1} for observed vari-
ables X1, . . . , Xk. The algorithm outputs a param-
eterization θ′ = (A′, a′, b′) of an RBM such that
dTV (RBMθ′ , cond(RBMθ;X1 = u1, ..., Xi = uk)) ≤ η.
Moreover, the matrix A is (n + k) × n, the parame-
terization θ′ satisfies ‖θ′‖∞ ≤ poly(‖θ‖∞, n, log 1/η),
and all the parameters A′, a′, b′ have poly(n) +
O(log log(1/η)) bits of precision.

Proof: We will start by describing how the algorithm
handles the case in which u1 = ... = uk = 1, and then
describe how to handle the general case at the end of
the proof.

The RBM parameterized by θ′ is obtained from θ by

• adding k extra hidden nodes;

• adding k rows to A, and making An+j,j a large
positive value M (we will show that an integer
value that is not too large will suffice), and the
other components of the n+ jth row are all 0;

• adding k components to a that are the same large
value M . The vector b′ equals b.
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Roughly, the idea is as follows. Each hidden node
clamps the value of one variable. The role of an+j is
to clamp the value of the jth extra hidden variable to
1. The role of An+j,j is to force Xj to be equal to the
value of the jth extra hidden variable, and therefore
equal to 1.

Let A′, a′ and b′ be these parameters. Breaking up the
vector of hidden variables into its new components and
old components, and applying the definitions of A′ and
h′, we have

fθ′(x1, ..., xn)

=
∑

h∈{−1,1}n+k

exp(hTa′+hTA′x+(b′)Tx)

=
∑

h∈{−1,1}n

∑

g∈{−1,1}k

exp(hT a+hTAx+bTx

+

k∑

j=1

Mxjgj +Mgj)

which immediately gives

fθ′(x1, ..., xn)

=




∑

g∈{−1,1}k

exp(

k∑

j=1

Mxjgj +Mgj)





×
∑

h∈{−1,1}n

exp(hTa+hTAx+bTx)

=




∑

g∈{−1,1}k

exp(

k∑

j=1

Mxjgj +Mgj)




×fθ(x1, ..., xn).

Let F be the event that X1 = 1, ..., Xk = 1 and let

ψ(x) =




∑

g∈{−1,1}k

exp(
k∑

j=1

Mxjgj +Mgj)



 .

Note that ψ(x) is maximized using any x ∈ F . Let
ψ(F ) be this value. Note that ψ(F ) ≥ e2kM , and
ψ(x) ≤ 2ke(2k−2)M otherwise, so that

∀x 6∈ F, ψ(x) ≤ 2ke−2Mψ(F ). (2)

Now fix any event E, and let X denote {−1, 1}n. We
have

RBMθ′(E) ≤ RBMθ′(E|F ) + RBMθ′(¬F ). (3)

First,

RBMθ′(E|F ) =

∑
x∈E∩F ψ(F )fθ(x)∑
x∈F ψ(F )fθ(x)

= RBMθ(E|F ).

(4)

For any x 6∈ F , let the “correction” of x, called c(x),
be the member of F obtained by setting the first k
components of x to 1. We have

RBMθ′(¬F )

=

∑
x 6∈F ψ(x)fθ(x)∑
x∈X ψ(x)fθ(x)

≤

∑
x 6∈F ψ(x)fθ(x)∑
x∈F ψ(x)fθ(x)

=
(2k − 1)

∑
x 6∈F ψ(x)fθ(x)∑

x∈F (2k − 1)ψ(x)fθ(x)

=
(2k − 1)

∑
x 6∈F ψ(x)fθ(x)∑

x 6∈F ψ(c(x))fθ(c(x))

(since, ∀x ∈ F, |c−1({x})| = 2k − 1)

=
(2k − 1)

∑
x 6∈F ψ(x)fθ(x)∑

x 6∈F ψ(F )fθ(c(x))
(since c(x) ∈ F )

≤
4ke−2M

∑
x 6∈F fθ(x)∑

x 6∈F fθ(c(x))
(5)

by (2).

Finally, since c(x) differs from x in k components, we
have that for all x 6∈ F ,

fθ(x) ≤ e2k(n+1)||θ||∞fθ(c(x)). (6)

Thus (5) implies that

RBMθ′(¬F ) ≤ 4ke2k(n+1)||θ||∞e−2M

and this, together with (3) and (4), implies

RBMθ′(E) ≤ cond(RBMθ;F )(E)+4ke2k(n+1)||θ||∞e−2M .

This implies that RBMθ′(E) ≤ cond(RBMθ;F )(E) +
η provided that M ≥ (1/2) ln(1/η) + k ln 2 + k(n +
1)||θ||∞. Since the event E was arbitrary, recalling the
definition of total variation distance, this completes
the proof in the case u1 = ... = uk = 1.

The general case can be treated with a nearly identical
analysis, after setting An+j,j to be ujM for each j =
1, . . . , k. 2

5.3. Approximate Simulation is Hard

Theorem 13 If RP 6= NP , then there is no
polynomial-time algorithm with the following property:
Given as input θ = (A, a, b) such that A is an n × n
matrix and ‖θ‖∞ ≤ ψ(n) (where ψ(n) = ω(n)), the
algorithm outputs an efficiently evaluatable represen-
tation of a distribution whose total variation distance
from RBMθ is at most η = 1/12.
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Proof: The proof is by contradiction; here is a high-
level outline. We will suppose that OUTPUT-DIST is
a polynomial-time algorithm that, on input θ, con-
structs an η-close distribution to RBMθ. We will
show that there is a randomized algorithm which, us-
ing OUTPUT-DIST, with high probability (at least
9/10) can efficiently find a particular x ∈ {−1, 1}n

for which the value of RBMθ(x) can be estimated to
within a multiplicative factor of 2n. Since RBMθ(x) =
fθ(x)/Zθ, and we can efficiently exactly compute fθ(x)
(see Lemma 9), this will imply that we can approxi-
mate Zθ to within a factor 2n. Since 2n is less than
eεψ(n), where ε is the constant from Theorem 1, this
contradicts Theorem 1 unless RP = NP.

The randomized algorithm creates x = (x1, ..., xn) as
follows. Fix δ = 1/10. Set θ1 = θ, and, for each i ∈ [n]
in turn,

• Run OUTPUT-DIST to obtain an efficiently eval-
uatable representation of a distribution Pi such
that dTV (Pi,RBMθi

) ≤ η;

• Sample (4/η2) log(n/δ) times from Pi (note that
this can be done efficiently);

• Set xi to be the bit that appears most often for
the ith component Xi in the sampled strings;

• Use Lemma 12 to construct a set
of RBM parameters θi+1 such that
dTV (RBMθi+1

, cond(RBMθ;X1 = x1, ..., Xi =
xi)) ≤ η.

For each i ∈ [n] let p̂i denote the fraction of times
that Xi = xi over the samples drawn during the ith
stage. The Chernoff-Hoeffding bound implies that,
with probability 1 − δ, for all i ∈ [n] we have

|p̂i − Pi[Xi = xi]| ≤ η

(where the notation D[E] denotes the probabil-
ity of event E under distribution D). Since
dTV (Pi,RBMθi

) ≤ η, this implies that

|p̂i − RBMθi
[Xi = xi]| ≤ 2η,

and the fact that dTV (RBMθi
, cond(RBMθ;X1 =

x1, ..., Xi−1 = xi−1)) ≤ η implies that

|p̂i−RBMθ[Xi = xi | X1 = x1, ..., Xi−1 = xi−1]| ≤ 3η.

Since η = 1/12 and p̂i ≥ 1/2, this implies that

RBMθ[Xi = xi | X1 = x1, ..., Xi−1 = xi−1] ≥ 1/4

and therefore that

1

2
≤

p̂i
RBMθ[Xi = xi | X1 = x1, ..., Xi−1 = xi−1]|

≤ 2.

(7)

Let us compute an estimate p̂ of RBMθ(x) by setting
p̂ =

∏
i p̂i. We can use the probability chain rule to

evaluate the accuracy of this estimate as follows:

p̂

RBMθ(x)
=

∏
i p̂i∏

i RBMθ(xi|x1...xi−1)
∈

[
1

2n
, 2n

]
.

As mentioned above, since RBMθ(x) = fθ(x)/Zθ and
we can exactly compute fθ(x) in polynomial time, this
implies that we can estimate 1/Zθ to within a 2n fac-
tor, and, as noted in the proof of Theorem 8, this
implies that we can estimate Zθ to within a 2n factor.
This contradicts Theorem 1 and completes the proof.
2

6. Discussion

We have established strong worst-case computational
hardness results for the basic tasks of evaluating and
simulating RBMs. We view these hardness results
as providing additional motivation to obtain a com-
prehensive theoretical understanding of why and how
RBMs perform well in practice. One possibility is that
the parameters of real-world RBMs tend to be even
smaller than the bounds satisfied by the constructions
used to establish our results; the recent analysis of
(Bengio & Delalleau, 2009) seems to conform with this
possibility. Further study of the theoretical benefits of
different properties of RBM models, and of algorithms
that promote those properties, may lead to improve-
ments in the practical state of the art of learning using
these models.
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A. Proof of Corollary 4

Let A be a non-squarem×nmatrix; we supposem > n
(the other case is entirely similar). We may pad A with
m−n all-zero columns on the right, to form an m×m
matrix B which is at most quadratically larger than A.
We claim that the pseudo-cut-norm of B is the same

as the pseudo-cut-norm of A: for any h, u ∈ {−1, 1}m,
if we form x out of the first n components of u, then,
since the last m−n columns of B are all zeroes, hTBu
does not depend on the last m − n components of u,
so hTBu = hTAx. Since any h and x may be formed
this way, we have

||A|| = max
h,x

hTAx = max
h,u

hTBu = ||B||.

Thus, a polynomial-time algorithm for approximat-
ing the pseudo-cut-norm for square matrices (like B)
to within an arbitrary constant factor would yield a
corresponding polynomial-time algorithm for approx-
imating the pseudo-cut-norm of matrices (like A) for
which m > n.
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