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Abstract

This paper proposes a new method for com-
paring clusterings both partitionally and geo-
metrically. Our approach is motivated by the
following observation: the vast majority of
previous techniques for comparing clusterings
are entirely partitional, i.e., they examine as-
signments of points in set theoretic terms af-
ter they have been partitioned. In doing so,
these methods ignore the spatial layout of the
data, disregarding the fact that this informa-
tion is responsible for generating the cluster-
ings to begin with. We demonstrate that this
leads to a variety of failure modes. Previous
comparison techniques often fail to differenti-
ate between significant changes made in data
being clustered.

We formulate a new measure for comparing
clusterings that combines spatial and parti-
tional information into a single measure us-
ing optimization theory. Doing so elimi-
nates pathological conditions in previous ap-
proaches. It also simultaneously removes
common limitations, such as that each clus-
tering must have the same number of clusters
or they are over identical datasets. This ap-
proach is stable, easily implemented, and has
strong intuitive appeal.

1. Introduction

This paper proposes a new method for comparing clus-
terings both partitionally and geometrically. We call
our new comparison function clustering distance or
CDistance. We believe this is the first principled ap-
proach for comparing clusterings according to their
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spatial properties as well as their cluster membership
assignments.

We view a clustering as a partition of a set of points
located in a space with an associated distance func-
tion. This view is natural, since popular clustering
algorithms, e.g., k-means, spectral clustering, affinity
propagation, etc., take as input not only a collection of
points to be clustered but also a distance function on
the space in which the points lie. This distance func-
tion may be specified implicitly and it may be trans-
formed by a kernel, but it must be defined one way or
another and its properties are crucial to a clustering
algorithm’s output.

In contrast, almost all existing clustering comparison
techniques ignore the distances between points, treat-
ing clusterings as partitions of disembodied atoms.
While this approach has merit under some circum-
stances, it seems surprising to ignore the distance func-
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Figure 1. This figure displays three clusterings. Each one
contains two clusters, whose members are indicated by
green circles and red triangles. In the two changed cluster-
ings, the circled points have been reassigned from the red
to the green cluster. We might expect that the Reference
Clustering is more similar to Change 1 than Change 2, be-
cause the modified points are closer to it. However, all of
(Rand, 1971; Hubert & Arabie, 1985; van Dongen, 2000;
Fowlkes & Mallows, 1983; Meilǎ, 2005; Zhou et al., 2005)
are incapable of distinguishing between the two changes.
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tion that was used to construct the clusterings. Doing
so seems to discard what is in some sense the most ba-
sic information we have about them. Indeed, in Sec-
tion 3, we exhibit a number of clusterings that have
substantially different spatial properties but are indis-
tinguishable by almost all previous clustering compar-
ison techniques. One such example is presented in Fig-
ure 1. Only one of the existing clustering comparison
techniques we have found can distinguish between the
leftmost reference clustering and its two modifications
to the right; we examine weaknesses in the one excep-
tion in Section 3.

The main contribution of this paper is a new tech-
nique for comparing clusterings that takes into account
their spatial properties. In particular, our technique
answers the question: how well do two clusterings of
points “overlap” in a given space? Thus our technique
does not only evaluate the assignments of points to
partitions; it also takes into account the locations of
the points in each cluster, the shapes of the clusters,
and the spatial relations among the clusters.1

By incorporating spatial information, our approach
provides several additional benefits. First, we are able
to compare clusterings that cannot be considered by
many other techniques; specifically, we can compare
clusterings: (1) over different sets of points; (2) over
different numbers of points; and (3) over different num-
ber of clusters. We know of no other clustering com-
parison technique that allows comparison under all
such conditions simultaneously, particularly conditions
(1) and (2), which are largely unaddressed in the liter-
ature. Finally, in contrast to some other approaches,
our work also extends in a straightforward way to soft
(non-partitional) clustering.

We briefly review some applications in which cluster-
ing distance is useful. (1) Because clustering is an
unsupervised learning technique, comparing the out-
put of clustering algorithms is difficult. In some cases,
there may be a gold standard with which we would like
our algorithm to agree. Measuring the distance be-
tween the gold standard clustering and an algorithm’s
output provides important insight into whether the al-
gorithm is suitable for a given domain. (2) We can ex-
plore the stability of a clustering algorithm’s results on
a dataset by repeatedly subsampling the dataset and
comparing the algorithm’s results against each other.
(3) If the outputs of two clustering algorithms tend
to agree on certain kinds of data, we may prefer to
use the algorithm with lower computational complex-

1Code implementing our approach and all data used in
this paper are freely available at http://biocomp.wisc.
edu/data.

ity; comparing the algorithms’ outputs helps us make
this determination. (4) Finally, in ensemble clustering,
we may employ a variety of clustering algorithms that
exploit different mathematical properties of the data.
Asking if their outputs are both partitionally and ge-
ometrically compatible adds an extra dimension for
comparison.

2. Approach

In this section, we describe our new clustering com-
parison technique together with an algorithm for com-
puting its value on a pair of clusterings. We begin
by making precise the concept of a clustering and by
describing some prerequisites that are needed to for-
mulate our approach.

2.1. Clustering

A (hard) clustering A is a partition of a dataset D into
sets A1, A2, . . . , AK called clusters such that

Ai ∩Aj = ∅ for all i 6= j, and

K⋃
k=1

Ak = D.

We assume D, and therefore A1, . . . , AK , are finite
subsets of a metric space (Ω, dΩ).

2.2. Optimal Transportation Distance

The optimal transportation problem (Hillier & Lieber-
man, 1995; Rachev & Ruschendorf, 1998) asks what is
the cheapest way to move a set of masses from sources
to sinks, who are some distance away? Here cost is
defined as the total mass × distance moved. For ex-
ample, one can think of the sources as factories and the
sinks as warehouses to make the problem concrete. We
assume that the sources are shipping exactly as much
mass as the sinks are expecting.

Formally, in the optimal transportation problem, we
are given weighted point sets (A, p) and (B, q), where
A = {a1, . . . , a|A|} is a finite subset of the metric space
(Ω, dΩ), p = (p1, . . . , p|A|) is a vector of associated
nonnegative weights summing to one, and similar def-
initions hold for B and q.

The optimal transportation distance between (A, p)
and (B, q) is defined as

dOT(A,B; p, q, dΩ) =

|A|∑
i=1

|B|∑
j=1

f∗ij dΩ(ai, bj),

where the optimal flow F ∗ = (f∗ij) between (A, p) and

http://biocomp.wisc.edu/data
http://biocomp.wisc.edu/data
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(B, q) is the solution of the linear program

minimize

|A|∑
i=1

|B|∑
j=1

fij dΩ(ai, bj) over F = (fij) subj. to

fij ≥ 0, 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|∑|B|
j=1 fij = pi, 1 ≤ i ≤ |A|∑|A|
i=1 fij = qj , 1 ≤ j ≤ |B|∑|A|

i=1

∑|B|
j=1 fij = 1.

It is useful to view the optimal flow as a representation
of the maximally cooperative way to transport masses
between sources and sinks. Here, cooperative means
that the sources “agree” to transport their masses with
a globally minimal cost.

2.3. Naive Transportation Distance

In contrast with the optimal algorithm proposed
above, we define here a naive solution to the trans-
portation problem. Here, the sources are all responsi-
ble for individually distributing their masses propor-
tionally to the sinks. In this case, none of the sources
cooperate, leading to inefficiency in shipping the over-
all mass to the sinks.

Formally, in the naive transportation problem, we are
given weighted point sets (A, p) and (B, q) as above.
We define the naive transportation distance between
(A, p) and (B, q) as

dNT(A,B; p, q, dΩ) =

|A|∑
i=1

|B|∑
j=1

pi qj dΩ(ai, bj).

2.4. Similarity Distance

Our next definition concerns the relationship between
the optimal transportation distance and the naive
transportation distance. Here we are interested in the
degree to which cooperation reduces the cost of moving
the source A onto the sink B.

Formally, we are given weighted point sets (A, p) and
(B, q) as above. We define the similarity distance be-
tween (A, p) and (B, q) as the ratio

dS(A,B; p, q, dΩ) =
dOT(A,B; p, q, dΩ)

dNT(A,B; p, q, dΩ)
.

When A and B perfectly overlap, there is no cost to
moving A onto B, so both the optimal transportation
distance and the similarity distance between A and
B are 0. On the other hand, when A and B are very
distant from each other, each point in A is much closer
to all other points in A than to any points in B, and
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Figure 2. The plot on the right shows similarity distance
as a function of separation distance between the two point
sets displayed on the left. Similarity distance is zero when
the point sets perfectly overlap and approaches one as the
distance increases.

vice-versa. Thus, in this case, cooperation does not
yield any significant benefit, so dOT is nearly as large as
dNT, and dS is close to 1. (This behavior is illustrated
in Figure 2.)

In this sense, the similarity distance between two point
sets measures the degree to which they spatially over-
lap, or are “similar”, to each other. (Note, the rela-
tionship is actually inverse; similarity distance is the
degree of spatial overlap subtracted from one.) An-
other illustration of this behavior is given in Figure 3.
Each panel in this figure shows two overlapping point
sets to which we assign uniform weight distributions.
The degree of spatial overlap of the two point sets in
Example A is much higher than the degree of spatial
overlap of the point sets in Example B, even though in
absolute terms the amount of work required to opti-
mally move one point set onto the other is much higher
in Example A than in Example B.

2.5. Clustering Distance

We next define our new measure of clustering distance.
Our goal is to construct a distance measure between
clusterings that captures both spatial and partitional
information about the clusterings.

Conceptually, our approach is as follows. Given a pair
of clusterings A and B, we first construct a new met-
ric space—distinct from the metric space in which the
original data lie—which contains one distinct element
for each cluster in A and B. We define the distance
between any two elements of this new space to be
the optimal transportation distance between the cor-
responding clusters. The clusterings A and B can now
be thought of as weighted point sets in this new space,
and the degree of similarity between A and B can be
thought of as the degree of spatial overlap between the
corresponding weighted point sets in this new space.



Comparing Clusterings in Space

Formally, we are given clusterings A and B of datasets
D and E in the metric space (Ω, dΩ). We define the
clustering distance (CDistance) between A and B as
the quantity

d(A,B) = dS(A,B;π, ρ, d′OT),

where the weights π = (|A|/|D| : A ∈ A) and ρ =
(|B|/|E| : B ∈ B) are proportional to the number
of points in the clusters, and where the distance d′OT

between clusters A ∈ A and B ∈ B is the optimal
transportation distance

d′OT(A,B) = dOT(A,B; p, q, dΩ)

with uniform weights p = (1/|A|) and q = (1/|B|).

An efficient algorithm to compute clustering distance
is easily derived from the definition. Let A,B, π, ρ, p,
and q be as above.

Step 1. For every pair of clusters (A,B) ∈ A×B, com-
pute the optimal transportation distance d′OT(A,B) =
dOT(A,B; p, q, dΩ) between A and B, based on the dis-
tances according to dΩ between points in A and B.

Step 2. Compute the similarity distance
dS(A,B;π, ρ, d′OT) between the clusterings A and
B, based on the optimal transportation distances d′OT

between clusters in A and B that were computed in
Step 1. Call this quantity the clustering distance
d(A,B) between the clusterings A and B.

The reader will notice that we use optimal transporta-
tion distance to measure the distance between individ-
ual clusters (Step 1), while we use similarity distance
to measure the distance between the clusterings as a
whole (Step 2). The reason for this difference is as fol-
lows. In Step 1, we are interested in the absolute dis-
tances between clusters: we want to know how much
work is needed to move all the points in one cluster
onto the other cluster. We will use this as a measure
of how “far” one cluster is from another. In contrast,
in Step 2, we want to know the degree to which the
clusters in one clustering spatially overlap with those
in another clustering using the distances derived in
Step 1.

Our choice to use uniform weights in Step 1 but pro-
portional weights in Step 2 has a similar motivation. In
a (hard) clustering, each point in a given cluster con-
tributes as much to that cluster as any other point in
the cluster contributes, so we weight points uniformly
when comparing individual clusters. In contrast, Step
2 proportionally distributes the influence of each clus-
ter in the overall computation of CDistance according
to its relative weight, as determined by the number of
data points it contains.
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Figure 3. Similarity distance measures the degree of spatial
overlap. We consider the two point sets in Example A to
be far more similar to one another than those in Example
B. This is the case even though they occupy far more area
in absolute terms and would be deemed further apart by
many distance metrics. Here, dS(Example A) = 0.15 and
dS(Example B) = 0.78.

2.5.1. Computational Complexity

The complexity of the algorithm presented above for
computing CDistance is dominated by the complexity
of computing optimal transportation distance. Opti-
mal transportation distance between two point sets of
cardinality at most n can be computed in worst case
O(n3 log n) time (Shirdhonkar & Jacobs, 2008). Re-
cently a number of linear or sublinear time approx-
imation algorithms have been developed for several
variants of the optimal transportation problem, e.g.,
(Shirdhonkar & Jacobs, 2008; Ba et al., 2009).

To verify that our method is efficient in practice,
we tested our implementation for computing optimal
transportation distance, which uses the transportation
simplex algorithm, on several hundred thousand pairs
of large point sets sampled from a variety of Gaus-
sian distributions. The average running times fit the
expression (1.38× 10−7)n2.6 − 2.5 seconds with an R2

value of 1, where n is the cardinality of the larger of the
two point sets being compared. For enormous point
sets, one can employ standard binning techniques to
further reduce the runtime (Levina & Bickel, 2001).

In contrast, the only other spatially aware clustering
comparison method that we know of requires explicitly
enumerating the exponential space of all possible per-
mutations of matches between clusters in A to clusters
in B (Bae et al., 2006).

3. Comparisons to Related Work

In Table 1, we present simple examples that demon-
strate the insensitivity of popular comparison tech-
niques to spatial differences between clusterings. Our
approach is straightforward: for each technique, we
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Table 1. Distances to Modified Clusterings. Each row in Table 1(a) depicts a dataset with points colored according to
a reference clustering R (left column) and two different modifications of this clustering (center and right columns). For
each example, Table 1(b) presents the distance between the reference clustering and each modification for the indicated
clustering comparison techniques. The column labeled “?” indicates whether the technique provides sensible output.

In Examples 1–3, we only modify cluster assignments; the points are stationary. Since the pairwise relationships among
the points change in the same way in each modification, only ADCO and CDistance detect that the modifications are not
identical with respect to the reference.

In Example 4, the reference clustering is modified by moving three points of the bottom right cluster by small amounts.
However, in Modification 1, the points do not move across a bin boundary, whereas in Modification 2, the points do move
across a bin boundary. As a result, ADCO detects no change between Modification 1 and the reference clustering but
detects a large change between Modification 2 and the reference clustering, even though the two modifications differ by only
a small amount. CDistance correctly reports a similar change between Modification 1 and the reference and Modification
2 and the reference. (Since the points actually move, other clustering comparison techniques are not applicable to this
example.)

Table 1(a)
Reference Clustering (R) Modification 1 Modification 2

Example 1

Example 2

Example 3

1

2

1

2

1

2

Example 4

Table 1(b)
Technique Example 1 Example 2 Example 3 Example 4

Name d(R,1) d(R,2) ? d(R,1) d(R,2) ? d(R,1) d(R,2) ? d(R,1) d(R,2) ?

Hubert 0.38 0.38 7 0.04 0.04 7 0.25 0.25 7 N/A N/A 7
1− Rand 0.00 0.00 7 0.05 0.05 7 0.00 0.00 7 N/A N/A 7
van Dongen 0.18 0.18 7 0.05 0.05 7 0.13 0.13 7 N/A N/A 7
VI 5.22 5.22 7 11.31 11.31 7 5.89 5.89 7 N/A N/A 7
Zhou 8.24 8.24 7 0.90 0.90 7 10.0 10.0 7 N/A N/A 7
ADCO 0.11 0.17 3 0.02 0.04 3 0.07 0.09 3 0.00 0.07 7

CDistance 0.61 0.73 3 0.06 0.18 3 0.41 0.56 3 0.08 0.09 3
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present a baseline reference clustering. We then com-
pare it to two other clusterings that it cannot distin-
guish, i.e., the comparison method assigns the same
distance from the baseline to each of these cluster-
ings. However, in each case, the clusterings compared
to the baseline are significantly different from one an-
other, both from a spatial, intuitive perspective and
according to our measure, CDistance.

Our intent in Table 1 is to demonstrate that compet-
ing methods are unable to detect changes even when it
appears clear that a non-trivial change has occurred.
These examples are intended to be didactic, and as
such, are composed of only enough points to be illus-
trative. Because of limitations in most of these ap-
proaches, all but one of the examples in Table 1 shows
clusterings over identical sets of points. More complex
datasets and additional discussion of other techniques
for comparing clusterings are examined in Section 4.

We briefly review the techniques shown in Table 1.
Among the earliest known methods for comparing
clusterings is the Jaccard index (Ben-Hur et al., 2002).
It measures the fraction of assignments on which dif-
ferent partitionings agree. The Rand index (Rand,
1971), among the best known of these techniques, is
based on changes in point assignments. It is calculated
by the fraction of points—taken pairwise—whose as-
signments are consistent between two clusterings. This
approach has been built upon by many others. For ex-
ample, (Hubert & Arabie, 1985) addresses the Rand
index’s well-known problem of overestimating similar-
ity on randomly clustered datasets. These three mea-
sures are part of a general class of clustering compar-
ison techniques based on tuple-counting or set-based
membership. Other measures in this category include
the Mirkin, van Dongen, Fowlkes-Mallows, and Wal-
lace indices, a discussion of which can be found in
(Ben-Hur et al., 2002; Meilǎ, 2005).

The Variation of Information approach was introduced
by (Meilǎ, 2005), who defined an information theoretic
metric between clusterings. It measures the informa-
tion lost and gained in moving from one clustering to
another, over the same set of points.

The work presented in (Zhou et al., 2005) shares our
motivation of incorporating some notion of distance
into comparing clusterings. However, the distance is
computed over a space of indicator vectors for each
cluster, representing whether each data point is a
member of it. Thus, similarity over clusters is mea-
sured only in terms of their shared points’ identities
and does not take into account the spatial locations of
these points.

Finally, we examine ADCO (Bae et al., 2006), which
presents the only other method that directly employs
spatial information. This approach bins all points and
then determines the density of each cluster over the
bins. The distance between two clusterings is defined
as the minimal sum of pairwise cluster-density dot
products (derived from the binning), taken over all
possible permutations matching the clusters. This is
in general not a feasible computation, as the number
of bins grows exponentially with the dimensionality of
the space, and more intractably, examining all match-
ings between clusters requires O(n!) time, where n is
the number of clusters.

4. Further Evaluation

In this section, we examine CDistance on a wider range
of datasets. Our goal is to understand its dynamic
behavior and how it may be used in ensemble methods
and for evaluating stability.

4.1. Example Comparisons

Figure 4 illustrates some sample outputs of CDistance.
In each subfigure, we are comparing two clusterings,
one of which has been translated for visualization pur-
poses. For example, in Figure 4(a), the two clusterings
spatially overlap perfectly so their clustering distance
is zero. Matching clusters are connected by lines to il-
lustrate their correspondence. (These lines are drawn
solely for visualization purposes.) The most interest-
ing panel is Figure 4(d), which demonstrates that sym-
metries in a shape produce unstable clusterings with
the algorithm used. Repeated applications of spec-
tral clustering to this data produce very different re-
sults. Multiply clustering a dataset allows us to gauge
whether an algorithm/dataset combination are mutu-
ally compatible.

4.2. Continuity and Stability of CDistance

Figure 5 illustrates the smoothness of CDistance as
clusterings change in small increments. Figure 5(d)
is a graph of the CDistance between a reference clus-
tering, plotted in Figure 5(a), and rotations of the
clustering by 0, . . . , 2π radians.

Consider the clustering in Figure 6(a), which contains
the same dataset as Example 4 from Table 1(a). Sup-
pose we incrementally increase the y-coordinates of
the cluster consisting of blue triangles. At each step,
we compute both ADCO and CDistance between the
modified dataset and the reference clustering in Fig-
ure 6(a). The result is plotted in Figure 6(b). We see
that ADCO suffers from swings and discontinuities due
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Figure 4. (a) Identical clusterings and identical datasets
(see text for explanation of visualization). CDistance is
0. (b) Similar clusterings, but over slightly perturbed
datasets. CDistance is 0.09. (c) Two different algorithms
were used to cluster the same dataset. CDistance is 0.4,
indicating a moderate mismatch of clusterings. (d) Two
very different clusterings generated by spectral clustering
over almost-identical datasets. CDistance is 0.90, suggest-
ing instability in the clustering algorithm’s output paired
with this dataset.

to the abrupt transition of data moving between dis-
crete bins. As a result of this behavior, ADCO’s values
are difficult to interpret intuitively.

4.3. Subsampling and Stability

In this subsection, we illustrate how CDistance can be
used to compare clusterings from subsampled datasets.
Ben-Hur et al. (2002) proposed that the stability of a
clustering could be determined by repeatedly cluster-
ing subsamples of its dataset. Finding consistent high
similarity across clusterings indicates consistency in lo-
cating similar substructures in the dataset. This can
increase confidence in the applicability of an algorithm
to a particular distribution of data. In other words, by
comparing the resultant clusterings, one can obtain a
goodness-of-fit between a dataset and a clustering al-
gorithm. The clustering comparisons in Ben-Hur et
al. (2002) were all via partitional methods.

We can instead use CDistance to perform this compar-
ison. In addition, CDistance enables us to formulate
a new type of ensemble clustering using this method-
ology. This is depicted in Figure 7, where we repeat-
edly cluster subsamples of a dataset with both Self-
Tuning Spectral Clustering (Zelnik-Manor & Perona,
2004) and Affinity Propagation (Dueck & Frey, 2007).
Although these algorithms rely on mathematically dis-
tinct properties, we see their resultant clusterings on
subsampled data agree to a surprising extent according
to CDistance.
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Figure 5. (a) Reference clustering. This dataset is a subset
of the unit circle with geodesic distance function. (b) An
intermediate clustering. (c) The completely rotated clus-
tering; CDistance between this clustering and the reference
clustering is 0. (d) The graph of variation of CDistance
with angle of rotation is linear, as it should be.

Because CDistance is able to compare clusterings of
different cardinality, we can use it with algorithms that
self-determine how many clusters to generate. Thus,
we can use a wider assortment of clustering algorithms
in ensemble methods and for stability testing. The
intuition behind CDistance is reflected in the spatial
overlap between connected clusters (across clusterings)
in the figures.

5. Discussion

This paper has presented a new method for comparing
clusterings that incorporates both spatial and categor-
ical information into a single distance function that
we call CDistance. Our method is unique in enabling
comparisons between clusterings that differ in their
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Figure 6. Examining the smoothness of CDistance com-
pared to ADCO. (a) Our reference clustering; (b) plotting
the changes in CDistance and ADCO as a function of mov-
ing the “blue triangle” cluster upwards.
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CDistance: 0.16
 7 vs 9 clusters

CDistance: 0.21
 7 vs 9 clusters

CDistance: 0.09
 7 vs 7 clusters

CDistance: 0.21
 6 vs 10 clusters

CDistance: 0.14
 7 vs 9 clusters

CDistance: 0.13
 7 vs 8 clusters

CDistance: 0.24
 6 vs 7 clusters

CDistance: 0.13
 7 vs 9 clusters

CDistance: 0.12
 7 vs 8 clusters

Figure 7. Comparing outputs of different clustering algo-
rithms over randomly sampled subsets of a dataset. The
low values of CDistance indicate relative similarity and sta-
bility between the clusterings. The numbers of clusters in-
volved in each comparison are displayed below CDistance
value.

datasets, number of points, and number of clusters.
This significantly broadens the range of applications
of our measure in comparison with other approaches
to comparing clusterings. Our approach is extensi-
ble to comparing soft clusterings (such as those gen-
erated by Expectation-Maximization techniques and
other probabilistic methods) by replacing the uniform
weight distributions in Step 1 with distributions de-
scribing fractional cluster memberships.

One component of our approach, similarity distance,
has also proved useful in a variety of clustering prob-
lems, e.g., in learning the vowel structure of an un-
known language (Coen, 2006). It comes as little sur-
prise that exploiting spatial overlap is as useful while
clustering as it is in comparing clusterings.
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