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Abstract

Inference in graphical models has emerged
as a promising technique for planning. A
recent approach to decision-theoretic plan-
ning in relational domains uses forward infer-
ence in dynamic Bayesian networks compiled
from learned probabilistic relational rules.
Inspired by work in non-relational domains
with small state spaces, we derive a back-
propagation method for such nets in rela-
tional domains starting from a goal state mix-
ture distribution. We combine this with for-
ward reasoning in a bidirectional two-filter
approach. We perform experiments in a
complex 3D simulated desktop environment
with an articulated manipulator and realis-
tic physics. Empirical results show that bidi-
rectional probabilistic reasoning can lead to
more efficient and accurate planning in com-
parison to pure forward reasoning.

1. Introduction

Intelligent agents have to accomplish two tasks to act
autonomously in complex worlds: First, they need to
learn how their environment works. Second, they have
to use the acquired knowledge efficiently to decide
which actions to take to achieve the goals and max-
imize the expected rewards. Research on the first task
has led to probabilistic relational knowledge represen-
tations: these can deal with stochastic actions, cope
with noise and generalize over objects and situations.
In spite of considerable progress over recent years, de-
signing efficient algorithms for reward maximization in
such learned world models is still a major concern.

Action decision-making (Boutilier et al., 1999) in
stochastic relational domains is often cast in a re-
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lational reinforcement learning framework (Dzeroski
et al., 2001) which investigates the use of compact
relational representations for state and action spaces.
We are interested in model-based approaches enabling
agents with changing goals to plan for the goal at hand
by internal simulation. Regarding the learning of such
world models, Pasula et al. (2007) have proposed noisy
indeterministic deictic (NID) rules. These rules extend
probabilistic STRIPS operators (Kushmerick et al.,
1995) by two special constructs essential for learning:
a noise outcome to avoid modeling of rare and overly
complex outcomes and deictic references which refer
to objects other than the action arguments and allow
for more compact rule-sets. Actions are modeled by
different rules whose preconditions do not have to be
mutually exclusive; in a specific situation, we require
a unique rule with satisfied preconditions and unique
deictic references to avoid contradicting predictions.

To plan with these learnt rules, one can formalize
the problem as a relational Markov decision process
(MDP). The field of Symbolic Dynamic Programming
(Boutilier et al., 2001) investigates methods to com-
pute policies over complete state and action spaces
working in the lifted abstract representation without
grounding or referring to particular object instances
(Kersting et al., 2004; Sanner & Boutilier, 2009). As
an alternative, several methods exist for reasoning in
the grounded domain, which makes it straightforward
to account for the noise outcome and the uniqueness
requirement of NID rules. The forward planners SST
(Kearns et al., 2002) and UCT (Kocsis & Szepesvari,
2006) sample outcomes to cope with the stochastic-
ity of grounded actions. PRADA (Lang & Toussaint,
2009) converts NID rules into a grounded Dynamic
Bayesian net (DBN) representation and propagates ac-
tion effects forward by means of a factored frontier
filter (Murphy & Weiss, 2001). Backward planning in
grounded domains, in contrast, has largely focussed on
non-probabilistic domains where action outcomes are
not probabilistically determined. Classical approaches
use regression techniques to map action operators and
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state variables to formulas describing the conditions
under which a variable becomes true (Rintanen, 2008).

Our idea in this paper is to derive a backpropagation
method to enable bidirectional reasoning in probabilis-
tic relational domains. This may drastically prune the
search space of action sequences: instead of search
spaces which are exponential in the length d of the
complete plans, we only have to consider search spaces
which are exponential in d

2 . Furthermore, backward
reasoning is particularly useful in problems where the
number of possible actions close to goal states is small
in comparison to the start state. Consider for instance
the goal to build a tower from objects which are ini-
tially scattered over a table. Unfortunately, previous
approaches such as the forward-backward algorithm
in Hidden Markov models (HMMs) (Rabiner, 1989)
and the planning by inference paradigm (Toussaint &
Storkey, 2006) in non-relational MDPs work in limited
small state spaces and are not applicable in DBNs for
grounded relational domains, where exact inference is
infeasible. The factored frontier inference of PRADA
cannot be used directly for backpropagation, either.
A core challenge is how to condition the state distri-
bution at the last time-step on receiving a high re-
ward when using approximate inference. This prob-
lem arises in particular for complex abstract reward
dependencies such as partial goal descriptions.

We make three contributions to overcome these prob-
lems: (i) We show how to use NID rules to learn a
probabilistic backward model. (ii) We model arbi-
trary (partial) goal descriptions with a mixture state
distribution and derive a probabilistic backward rea-
soning procedure. (iii) We introduce a two-filter (Solo,
1982) inference method to use bidirectional reasoning
for planning in stochastic relational domains. The re-
mainder of this paper is organized as follows: First, we
review the theoretical background, namely NID rules
and the PRADA planning algorithm. In Section 3, we
present our two-filter using backward reasoning with
NID rules. In Section 4, we introduce the bidirectional
planning approach. Then, we show our empirical re-
sults before we conclude.

2. Background

2.1. State and Action Representation

A relational domain is represented by a relational logic
language L: the set of logical predicates P and the set
of logical functions F contain the relationships and
properties that can hold for domain objects. We dis-
tinguish between primitive and derived concepts. The
latter are defined in terms of formulas over primitive
or other derived concepts. The set of logical predicates
A comprises the possible actions in the domain.

A concrete instantiation of a relational domain is made
up of a finite set of objects O. If the arguments of a
predicate or function are all concrete, i.e. taken from
O, we call it grounded. A concrete world state s is fully
described by all grounded predicates and functions.
Concrete actions a are described by positive grounded
predicates from A. The arguments of predicates and
functions can also be abstract logical variables which
can represent any object. If a predicate or function
has only abstract arguments, we call it abstract. We
will speak of grounding an abstract formula ψ if we
apply a substitution σ that maps all of the variables
appearing in ψ to objects in O.

2.2. Noisy Indeterministic Deictic Rules

Noisy Indeterministic Deictic (NID) (Pasula et al.,
2007) rules are a model of the transition dynamics in
relational domains. Table 1 shows an exemplary NID
rule for a desktop environment. A NID rule r is given
as follows

ar(X ) : Φr(X ) →


pr,1 : Ωr,1(X )

...
pr,mr : Ωr,mr (X )
pr,0 : Ωr,0

, (1)

where X is a set of logic variables in the rule (which
represent a (sub-)set of abstract objects). The rule r
consists of preconditions, namely that action ar is ap-
plied on X and that the state context Φr is fulfilled,
and mr +1 different outcomes with associated proba-
bilities pr,i > 0,

∑
i=0 pr,i = 1. Each outcome Ωr,i(X )

describes which predicates and functions change when
the rule is applied. The context Φr(X ) and outcomes
Ωr,i(X ) are conjunctions of literals constructed from
the predicates in P as well as equality statements com-
paring functions from F to constant values. In con-
trast to the outcomes, the context may contain de-
rived predicates and functions, enabling complex and
abstract situation descriptions. The so-called noise
outcome Ωr,0 subsumes all possible action outcomes
which are not explicitly specified by one of the other

Table 1. Example NID rule for a desktop world, which
models dropping an object X over an object Y in a sit-
uation where Y is below an object Z (deictic referencing).
With high probability, X will land on Z, but might also
fall on the table. With a small probability something un-
predictable happens.

dropabove(X, Y ) : inhand(X), on(Z, Y ), table(T )

→

(
0.6 : on(X, Z), ¬inhand(X)
0.3 : on(X, T ), ¬inhand(X)
0.1 : noise



Probabilistic Backward and Forward Reasoning in Stochastic Relational Worlds

(a) Forward DBN

(b) Backward DBN

Figure 1. PRADA converts NID rules into a forward DBN
(a) to predict the effects of action sequences. For backward
reasoning, we use a second DBN (b) with the same state,
action and reward variables, but different rule variables
(ΦB

i , ΓB and OB) according to the backward rules.

Ωr,i. The arguments of the action a(Xa) may be a
true subset Xa ⊂ X of the variables X of the rule.
The remaining variables are called deictic references
D = X \ Xa and denote objects relative to the agent
or action being performed.

Let σ denote a substitution that maps variables to con-
stant objects, σ : X → O. Applying σ to an abstract
rule r(X ) yields a grounded rule r(σ(X )). We say a
grounded rule r covers a state s and a grounded action
a if s |= Φr and a = ar. If r is the unique covering
rule for a in s, it defines P (s′|a, s), the probability of
a successor state s′ if action a is performed in state s,
according to r’s outcomes and their probabilities. If
there is no unique covering rule, the effects of a are
explained as noise by a default rule. NID rules can be
learned from experience triples (s, a, s′) using a batch
algorithm that trades off the likelihood of these triples
with the complexity of the learned rule-set.

2.3. Planning using Probabilistic Inference

The PRADA algorithm (Lang & Toussaint, 2009)
plans forward in stochastic relational domains using
a set of NID rules that predict state transitions. It
copes efficiently with stochastic action outcomes by
means of probabilistic inference. It converts NID rules
into a structured DBN representation (Fig. 1(a)). To
clarify notation, we denote random variables by upper
case letters (e.g. S), their values by the corresponding
lower case letters (e.g. s ∈ dom(S)), variable tuples by
bold upper case letters (e.g. S = (S1, S2, S3)) and value
tuples by bold lower case letters (e.g. s = (s1, s2, s3)).
We also use column notation (e.g. s3:5 = (s3, s4, s5)).

PRADA represents each grounded predicate or func-
tion at time t as a random variable St

i with value st
i.

Random variables A for actions, Γ for rules, Φ for pre-
conditions and O for outcomes model the transitions
between states St and St+1 at subsequent timesteps.
PRADA uses a factored frontier (Murphy & Weiss,
2001) approximating the posterior P (st |a0:t−1) to ef-
ficiently propagate the effects of action sequences for-
ward. The reward gained in a state is represented
by a binary variable R which can be used to express
arbitrary reward expectations. For planning, i.e., to
find an action sequence a with large P (R |a), PRADA
samples action-sequences in an informed way, taking
predicted state distributions into account: action a is
sampled at time-step t with a probability proportional
to the probability that a has a unique covering rule –
in which case one can make meaningful predictions.

3. Two-Filter Smoothing using
Backward NID Rules

We propose to adapt PRADA for backward reasoning
using NID rules. Then, we can exploit the knowledge
about the goal for planning.

3.1. Backward Messages for a Two-Filter

Existing approaches for combining probabilistic back-
ward and forward reasoning calculate smoothed state
posteriors conditioned on a sequence of observed vari-
ables, e.g. the forward-backward algorithm in HMMs
(Rabiner, 1989) or Expectation-Maximization used for
planning by inference in small state spaces (Toussaint
& Storkey, 2006). Here, we want to calculate poste-
riors P (st, RT |a0:T−1) where T is the last time-step
which we can use to evaluate an action-sequence by

P (RT |a0:T−1) =
∑
st

P (st, RT |a0:T−1) . (2)

These posteriors can be calculated by means of for-
ward messages αa0:t−1(st) := P (st |a0:t−1) and back-
ward messages βat:T−1(st) := P (RT | st,at:T−1) such
that P (RT , st |a0:T−1) = αa0:t−1(st) · βat:T−1(st).

It is intractable to calculate these messages exactly in
relational domains due to the immense state spaces.
PRADA calculates the forward messages α approx-
imately using a factored frontier filter. Unfortu-
nately, PRADA’s specific factored frontier equations
only work for forward reasoning and cannot be ap-
plied for calculating the likelihood backward messages
β. We might use rejection sampling in PRADA’s
forward DBN, but this is highly inefficient. It is in
general unclear how to calculate the β even approx-
imately in a tractable way in all but the smallest
state spaces. Therefore, as an alternative we propose
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a filtering approach for backward reasoning. We use
PRADA in reversed order, providing us with messages
β̂at:T−1(st) := P (st |at:T−1, RT ). This requires a set of
backward NID rules from which we can build a back-
ward DBN (Fig. 1(b)) and apply PRADA’s factored
frontier inference (see next section).

A two-filter (Solo, 1982; Briers et al., 2009) uses the re-
sulting messages β̂ to approximate the likelihood mes-
sages β,

βat:T−1(st) = P (RT | st,at:T−1) (3)

=
P (st |RT ,at:T−1)P (RT |at:T−1)

P (st |at:T−1)

=
P (st |RT ,at:T−1)P (RT |at:T−1)

P (st)

≈ P (st |RT ,at:T−1)P (RT )
P (s)

∝ P (st |RT ,at:T−1) = β̂at:T−1(st) .

The approximations of this two-filter are due to the
intractable state distributions P (st) at specific time-
steps t, also required to account for the dependencies
of RT on at:T−1. Since in planning we are interested
in ranking different action sequences a, we can drop
the likewise intractable reward marginal P (RT ), as we
can drop P (s) assuming a uniform state prior.

3.2. Backward Rules

To use PRADA for backward filtering, we require a
set of backward NID rules to define a distribution
P (s | s′, a) over precessor state s if an action a was
applied before the current state s′. These rules take
exactly the same form as in the forward case, only the
semantics are changed. Given a forward model, one
might try to invert the according rules. How to ac-
count for the special characteristics of NID rules such
as uniqueness and noise outcomes in this case is un-
clear, however. As our forward models are learned and
thus in any event approximations of the true underly-
ing dynamics, we propose to learn the backward rules
directly from data as well. This has the advantage that
we can use the same algorithm which we already use
for learning the forward rules. We only have to provide
the experience triples in reversed order (s′, a, s).

Depending on the domain, state transitions may be
easier to model in one direction than the other. This
may affect the deictic references in NID rules which
may be unique only in one direction. Consider for in-
stance the unary predicate pickup(X) used by Pasula
et al. (Fig. 2). A forward rule could use a deictic ref-
erence Y to describe where X was taken from which is
required to conclude ¬on(X,Y ) for the successor state.
When reasoning backward, looking only at the succes-

B

A
C

B

A

Ctakefrom(A,B)

pickup(A)

Figure 2. Using a unary action predicate pickup(A), it is
impossible to deduce from the successor state (via a deictic
reference) whether A was taken from B or C. This informa-
tion is captured explicitely in the binary action predicate
takefrom(A, B). Due to its action sampling strategy, ex-
tending the arity of actions does not influence PRADA’s
planning efficiency.

sor state s′, it is impossible to determine Y . This can
be solved by increasing the arity of the action predicate
so that less deictic references need to be resolved. For
this reason, in our experiments we will use binary ac-
tion predicates takefrom(X,Y ) and dropabove(X,Y )
instead of grab(X) and puton(Y ) – while still allowing
for deictic referencing to third or fourth objects.

At first glance, one might suspect that extending the
action predicate arity increases the planning complex-
ity due to the increased action space. This is resolved,
however, when using a policy that only considers ac-
tions with unique rules. As we regularize our rule
learning procedure, the learned rules model typical
state transitions. Thus, a planner using these rules
takes actions only in frequently observed contexts into
account, effectively pruning large parts of the action
space in a given situation. Furthermore, determining
all unique covering rules has the same computational
cost, independently of whether Y is used as a second
action argument or as a deictic reference.

4. Backward-Forward Planning

We use a two-filter to plan in stochastic relational do-
mains. Given a backward model B ≡ P (s | s′, a) in
form of NID rules for a state s, an action a and succes-
sor state s′, we apply PRADA first to reason backward
to estimate a distribution of states backward-reachable
from goal states. Then, we use a second set of NID
rules specifying a forward model A ≡ P (s′ | s, a) to
reason forward from the initial state to find action se-
quences leading to states close to a goal state.

4.1. Goal State Distributions

For probabilistic backward reasoning, we require a
state distribution at the last time-step T . We are in-
terested in states achieving a high reward, namely

β̂T (s) := P (s |RT ) . (4)

In contrast to previous work on planning by inference,
we cannot calculate β̂T (s) exactly in relational do-
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mains due to the large state spaces. Thus, we approx-
imate it with a factored frontier β̂T (s) ≈

∏
i β̂

T (si).

If the goal fully specifies the final state, setting
the marginals β̂T (si) to their deterministic values is
straightforward. If the goal is defined in terms of a
partial state description in form of a conjunction ς
of primitive predicates and functions, only some state
attributes sς ⊂ s have deterministic values. The situ-
ation becomes more difficult to deal with if the goal is
specified in terms of a derived predicate, corresponding
to formulas over primitive predicates, such as existen-
tially quantified goals. Consider for instance the goal
to stack the cubes {a, b, c} in any order. In this case,
the clearly dissimilar states s1 = {on(a, b), on(b, c)}
and s2 = {on(c, b), on(b, a)} yield the same reward.
If we approximate the final state belief by marginals,
we lose the crucial correlations among the variables.
This is a general problem in backward planning and
arises likewise in non-probabilistic and propositional
domains. A common strategy there is to pick arbi-
trary grounded forms of the goal, e.g. choosing s1 in
the example above. This has the pitfall that some
goal groundings may not be reachable or more costly
to reach from the given state. To avoid these prob-
lems and achieve a closer approximation of the goal
state distribution β̂T , we approximate it by means of
a mixture model with individual components β̂T

c ,

β̂T (sT ) ≈ 1
C

C∑
c=1

β̂T
c (sT ). (5)

The components c are built from conjunctions ςc over
grounded primitive predicates and functions which
partially describe world states achieving high reward.
For instance, ςc might define the tower in s2 above.
We choose these formulas ςc without taking the initial
state s0 or knowledge about actions in terms of rules
into account – to separate this clearly from planning.
Concerning unspecified properties of the final state, we
use a prior PF (s) and define the component β̂T

c as

β̂T
c (s) ∝ δs,ςc

PF (s), δs,ςc
=
{

1 if s  ςc
0 otherwise . (6)

We choose PF (s) such that states close to the initial
state s0 are highly probable. This is inspired by tra-
ditional A.I. backward planning: there, state variables
not in ςc are left unspecified until either they need to
be set as required by the preconditions of a rule during
backward search or until the initial state is achieved in
which case all unspecified variables in the final state
implicitely get set to their values in the initial state.
This assumption is also advantageous for the factored
frontier as the repeated multiplication of small prob-
abilities (such as uninformed 0.5 for binary variables)

may lead to very small rule context probabilities, de-
creasing the probabilities of unique rules.

4.2. Backward Messages

For each component β̂T
c of the mixture model approx-

imation of β̂T given in Eq. (5), we sample N back-
ward action sequences bci = (bT−1

ci , . . . , bT−D←
ci ) of

horizon D← using PRADA and the backward model
B, where we set β̂T

c as the initial state distribu-
tion. One such sample bci results in the distribution
β̂t
bci

(st) = P (st |bci, ςc, R
T ). We do not want to eval-

uate a forward action sequence a with each backward
action sequence bci individually. Hence, we approxi-
mate state posteriors β̂t(st) = P (st |RT ) generalizing
over concrete action sequences as

β̂t(st) ≈ 1
C

C∑
c=1

1
N

N∑
i=1

β̂t
bci

(st) . (7)

The resulting β̂ define the probability of states accord-
ing to backward reasoning from the goal state mixture
distribution β̂T using PRADA’s action sampling strat-
egy. They quantify which states are actually backward
reachable from goal states.

4.3. Evaluating Forward Sequences

Having calculated the backward messages β̂t(st), we
sample forward action sequences a0:t−1 using the
forward model A and PRADA yielding messages
αa0:t−1(st) = P (st |a0:t−1). For each a we are inter-
ested in its suitability to achieve a goal state at time
T with t ≤ T . We use the two-filter of Sec. 3.1 with
the backward state distribution of Sec. 4.2 to calculate

P (RT |a0:t−1) =
∑
st

P (st |a0:t−1)P (RT | st) (8)

∝
∼

∑
st

αa0:t−1(st)β̂T−t(st) . (9)

Representing the messages by means of factored fron-
tiers α(s) =

∏
i α(si) and β̂(s) =

∏
i β̂(si) (dropping

indices for clarity), where i ranges over the individual
state attributes, we calculate this sum over messages
products as∑

s

α(s)β̂(s) =
∑
s

∏
i

α(si)β̂(si) (10)

=
∏

i

∑
si

α(si)β̂(si) (11)

=
∏

i

∑
si

α(si)
1
C

C∑
c=1

β̂c(si) (12)

=
∏

i

1
C

∑
si

α(si)
C∑

c=1

β̂c(si) . (13)
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Figure 3. In our experiments, a robot has to master differ-
ent tasks in a 3D simulated complex desktop environment
involving cubes, balls and boxes of different sizes.

4.4. Action Selection

For a set A = {a1, . . . ,aM} of forward action sequence
samples of length D→, we determine the best action
sequence a∗ defined as

a∗ = argmax
a∈A

P (R |a) (14)

= argmax
a∈A

max
0<t≤D→

∑
T

P (T )P (RT |a0:t−1), (15)

≈ argmax
a∈A

max
0<t≤D→

∑
T

γT
∑
st

αa0:t−1(st)β̂T−t(st) ,

(16)

where we take different horizons T to achieve a goal
state into account, discounting them with P (T ) = γT

with 0 < γ < 1 to favour smaller horizons.

5. Evaluation

We compare our backward-forward planning approach
PRADA� to the purely forward approaches Upper
Confidence Bounds on Trees (UCT) (Kocsis & Szepes-
vari, 2006), PRADA→ and A-PRADA→ (Lang &
Toussaint, 2009). To estimate action values, UCT
grows lookahead trees based on sampling successor
states using an adaptive policy to cut suboptimal parts
of the tree early. If rules contain probabilistically dom-
inant outcomes, UCT can be viewed as almost de-
terminizing the corresponding state transitions. A-
PRADA→ examines the best plan found by PRADA→
and decides by simulation whether omitting some ac-
tions will increase its utility.

Our test domain is a simulated complex desktop envi-
ronment where a robot manipulates cubes, balls and
boxes scattered on a table (Fig. 3). We use a 3D rigid-
body dynamics simulator (ODE) that enables a real-
istic behavior of the objects. For instance, piles of
objects may topple over or objects may even fall off
the table (in which case they become out of reach for
the robot). Depending on their type, objects show

different characteristics. For example, it is almost
impossible to successfully put an object on top of a
ball, and building piles with small objects is more dif-
ficult. The robot can grab objects, try to put them
on top of other objects, in a box or on the table.
Boxes have a lid; special actions may open or close
the lid; taking an object out of a box or putting it
into it is possible only when the box is opened. The
actions of the robot are affected by noise so that re-
sulting object piles are not straight-aligned. We as-
sume full observability of triples (s, a, s′) that specify
how the world changed when an action was executed
in a certain state. We represent the data with pred-
icates cube(X), ball(X), box(X), table(X), on(X,Y ),
contains(X,Y ), out(X), inhand(X), upright(X),
closed(X), clear(X) ≡ ∀Y.¬on(Y,X), inhandNil() ≡
¬∃X.inhand(X) and function size(X) for state de-
scriptions and dropabove(X,Y ), takefrom(X,Y ),
openBox(X), closeBox(X) and doNothing() for ac-
tions. All compared methods consider only actions
with unique rules, so that for the reasons discussed
in Sec. 3.2 also the purely forward methods are not
affected by extending the action predicate arities. If
there are o objects and f different object sizes and
colors, the state space is huge with f2o22o2+7o dif-
ferent states (not excluding states one would classify
as impossible given some intuition about real world
physics). This shows the potential of backward reason-
ing to prune large parts of the search space, leading to
faster, more accurate planning. Existing planning by
inference approaches on non-factored representations,
however, are clearly not applicable in such spaces.

We employ the rule learning algorithm of Pasula et
al. with the same parameter settings to learn forward
and backward action models in form of fully abstract
NID rules from training sets of 500 experience triples
each. Training data to learn rules are generated in a
world of two boxes, six cubes and four balls of two dif-
ferent sizes by performing random actions with a slight
bias to build high piles. Learning a backward model
is more difficult as deictic references can often not be
uniquely resolved (cf. Sec. 3.2). We suspect this to be
a domain-specific characteristic rather than a general
directional bias (see Massey (1999) for a discussion of
the metaphysics of directionality in planning). The
resulting backward models are compact and cover the
standard situations that arise in the tasks (such as
lifting a clear object). We learn one backward model
(9 abstract rules) and three different forward models
(12-14 abstract rules) from independent training data.

We perform three experiments. In each experiment,
we investigate different worlds with varying numbers
of objects. Thus, we transfer the knowledge gained
in the training world to different, but similar worlds
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Table 2. Clearance problem. Obj. denotes the object num-
ber (cubes/balls and table) and Reward the discounted to-
tal reward, which is 0 for performing no actions. PRADA�
is the proposed bidirectional planning approach.

Obj. Planner Reward Trial time (s)
6+1 UCT 32.13±0.41 31.85±1.47
6+1 PRADA→ 53.76±0.45 7.64±1.34
6+1 A-PRADA→ 53.11±0.35 17.11±1.34
6+1 PRADA� 54.10±0.48 14.48±1.41
8+1 UCT 15.05±0.70 166.05±6.36
8+1 PRADA→ 31.33±0.94 65.90±1.00
8+1 A-PRADA→ 32.23±0.97 76.97±1.47
8+1 PRADA� 33.12±1.09 65.91±2.01
10+1 UCT 32.15±0.97 1148.81±29.83
10+1 PRADA→ 97.25±1.96 426.84±16.41
10+1 A-PRADA→ 88.40±1.75 444.46±11.10
10+1 PRADA� 111.34±1.96 399.04±6.04

by using abstract NID rules. For each object num-
ber we create five start situations with different ob-
jects. Per rule-set combination and start situation, we
perform three independent runs with different random
seeds. For evaluation, we compute the mean planning
times and performances over the fixed (but randomly
generated) set of 45 test scenarios (3 learned forward
rule-sets, 1 learned backward rule-set, 5 situations, 3
random seeds). In all experiments, we use deliberately
overestimated planning horizons D as these can’t be
known apriori. For PRADA�, we set D← and D→
each equal to 1

2D.

Clearance The goal in our first experiment is to clear
up the objects which are scattered over the desktop.
An object is defined to be cleared if it is piled with
all objects of the same color. In our experiments, 2-4
objects have the same color with at most 1 ball (to
enable successful piling). The starting situations con-
tain piles, but only with objects of different colors. We
let the robot perform 20 actions in worlds of 6 objects
(in addition to the table), 30 for 8 and 40 for 10 ob-
jects. We emphasize that we did not use any world
knowledge to set the goal state mixture distribution
for PRADA�. In particular, the mixtures also con-
tain clearly impossible situations (as could be deduced
from the rules), for examples piles where balls are the
lowest objects. Table 2 shows our results. UCT per-
forms worst even when admitted very long planning
times. We controlled the other approaches to have
about the same planning time. In this rather easy
planning problem not requiring long horizons, the ad-
ditional computational overhead of combing forward
and backward reasoning starts to pay off in worlds of
10 objects. Then, the planning problem has achieved
a certain level of complexity (a very large state space)
and PRADA� performs significantly better than the
pure forward approaches.

Reverse Tower The goal is to reverse a tower of
c cubes. This is a difficult planning task requiring a
long planning horizon. (Depending on the available

Table 3. Reverse tower problem. Suc. is the success rate
and Actions the number of used actions in case of suc-
cess. PRADA� is the proposed bidirectional planning ap-
proach.

Obj. Planner Suc. Trial time (s) Actions
5+1 UCT 0.0 > 1h –
5+1 PRADA→ 0.91 16.38±1.74 11.85±1.21
5+1 A-PRADA→ 0.89 18.12±1.88 12.43±1.27
5+1 PRADA� 0.93 10.69±0.47 10.12±0.47
6+1 PRADA→ 0.80 24.27±1.27 12.06±0.67
6+1 A-PRADA→ 0.89 27.59±2.28 12.62±0.93
6+1 PRADA� 0.83 18.20±0.80 12.26±0.47
7+1 PRADA→ 0.62 129.83±8.44 14.75±0.80
7+1 A-PRADA→ 0.60 123.20±5.70 13.70±0.60
7+1 PRADA� 0.58 99.91±5.23 14.77±0.87

rule-sets, the minimum horizon may be less than 2c
as the robot may predict that a cube on top of the
grabbed cube may land on the table.) We set a limit
of 50 actions on each trial. Table 3 presents our re-
sults. UCT cannot be used for this task requiring over
an hour for a trial. To achieve about the same perfor-
mance as PRADA�, the forward PRADA approaches
need 25-70% more planning time. Backward reasoning
prunes the search-space and hence speeds up planning.

Box Tower The goal is to build a specific tower of
cubes and balls on one of three available boxes, no mat-
ter which one. All boxes are closed in the beginning.
One of them contains the object which shall be on top
of the goal tower. All the other objects are scattered
on the table. This is a difficult planning problem as
the robot may erroneously start building the desired
tower just on the filled box before taking out the re-
quired object. As above, no specific world knowledge is
used to construct the goal state mixture of PRADA�
which may also contain components where the desired
tower is built on the filled box, increasing planning
difficulty. The minimum number of required actions is
1 + 2 · o where o is the number of objects (besides the
box) in the target tower. We set a limit of 50 actions
on each trial. Table 4 presents our results. As above,
UCT is not competitive. PRADA� always has the
highest success rate – while at the same time requir-
ing the smallest planning times. Backward reasoning
is particularly useful in this scenario as the number of
possible actions is comparatively small in goal states
in comparison to start states. This is also reflected in
the smaller number of executed actions to achieve a
goal state in worlds with many objects.

6. Conclusions

We have introduced an approach for bidirectional plan-
ning in stochastic relational domains based on prob-
abilistic two-filter inference which combines forward
and backward reasoning. Our empirical results show
that by exploiting the knowledge about goal states,
we can significantly increase both planning accuracy
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Table 4. Box tower problem. Obj. denotes the number of
objects (cubes/balls, boxes and table), Suc. the success
rate and Actions the number of used actions in case of
success. PRADA� is the proposed bidirectional planning
approach.

Obj. Planner Suc. Trial time (s) Actions
3+3+1 UCT 0.29 331.94±2.13 7.62±0.27
3+3+1 PRADA→ 0.84 12.64±0.20 11.53±1.14
3+3+1 A-PRADA→ 0.82 11.89±0.17 10.51±0.94
3+3+1 PRADA� 0.91 10.09±0.22 14.66±2.14
4+3+1 UCT 0.0 > 1h –
4+3+1 PRADA→ 0.67 29.33±0.51 17.50±1.94
4+3+1 A-PRADA→ 0.67 31.52±0.39 14.90±1.21
4+3+1 PRADA� 0.73 22.98±0.46 12.36±1.68
5+3+1 PRADA→ 0.40 72.09±1.39 25.22±2.35
5+3+1 A-PRADA→ 0.38 64.58±1.68 21.88±2.75
5+3+1 PRADA� 0.51 61.03±1.06 17.35±1.55

and efficiency. We plan in the fully grounded domain
and thus in case of many objects, we have to combine
it with methods reducing state and space complex-
ity in relational domains, see e.g. Gardiol & Kaelbling
(2007). Finding appropriate mixture models to ap-
proximate goal state beliefs to account for partial goal
descriptions is a major topic of future research. Also,
in a more traditional planning sense one might inves-
tigate using the backward messages as proposal dis-
tribution for biasing the forward messages for search.
Furthermore, we want to investigate the relationships
to lifted backward reasoning as is done in Symbolic
Dynamic Programming (Boutilier et al., 2001).
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