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Abstract

Ri�ed independence is a generalized notion
of probabilistic independence that has been
shown to be naturally applicable to ranked
data. In the ri�ed independence model,
one assigns rankings to two disjoint sets
of items independently, then in a second
stage, interleaves (or ri�es) the two rankings
together to form a full ranking, as if by
shu�ing a deck of cards. Because of this
interleaving stage, it is much more di�cult
to detect ri�ed independence than ordinary
independence. In this paper, we provide the
�rst automated method for discovering sets
of items which are ri�e independent from
a training set of rankings. We show that
our clustering-like algorithms can be used
to discover meaningful latent coalitions from
real preference ranking datasets and to learn
the structure of hierarchically decomposable
models based on ri�ed independence.

1. Introduction

Ranked data appears ubiquitously in various machine
learning application domains. Rankings are useful,
for example, in reasoning about preference lists
in surveys, search results in information retrieval
applications, and ballots in certain elections. The
problem of building statistical models on rankings has
thus been an important research topic in the learning
community. As with many challenging learning
problems, one must contend with an intractably large
state space when dealing with rankings since there
are n! ways to rank n objects. In building a statistical
model over rankings, simple (yet �exible) models are
therefore preferable because they are typically more
computationally tractable, less prone to over�tting,
and often more interpretable.
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A popular and highly successful approach for achiev-
ing such simplicity for distributions involving large
collections of interdependent variables has been to
exploit conditional independence structures (e.g., with
naive Bayes, tree, or Markov models). With ranking
problems, however, independence-based relations are
typically trickier to exploit due to the so-called mutual

exclusivity constraints which constrain any two items
to map to di�erent ranks in any given ranking. In a
recent paper, Huang and Guestrin (2009) proposed an
alternative notion of independence, called ri�ed inde-

pendence, which they have shown to be more natural
for rankings. In addition to being a natural way to
represent distributions in a factored form, the concept
of ri�ed independence leads to a natural way of group-
ing items together; If we �nd two subsets of items, A
and B to be ri�e independent of each other, then it is
often the case that items in A (and items in B) are as-
sociated with each other in some way. Experimentally,
Huang and Guestrin (2009) were able to demonstrate
on a particular election dataset (of the American
Psychological Association, (Diaconis, 1989)), that
the political coalitions formed by candidates in the
election were in fact approximately ri�e independent
of each other. However, it is not always obvious what
kind of groupings ri�ed independence will lead to.
Should fruits really be ri�e independent of vegetables?
Or are green foods ri�e independent of red foods?

In this paper, we address the problem of automatically
discovering optimal ri�e independent groupings of
items from training data. Key among our observations
is the fact that while item ranks cannot be independent
due to mutual exclusivity, relative ranks between sets
of items are not subject to the same constraints. More
than simply being a `clustering' algorithm, however,
our procedure can be thought of as a structure learn-
ing algorithm, like those from the graphical models lit-
erature, which �nd the optimal (ri�ed) independence
decomposition of a distribution. Structure learning
algorithms are useful for e�cient probabilistic repre-
sentations and inference, and in the spirit of graphical
models, we explore a family of probabilistic models for
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rankings based on hierarchies of groupings using ri�ed
independence. We show that our hierarchical models
are simple and interpretable, and present a method for
performing model selection based on our algorithm.
Our main contributions are as follows:

• We propose a method for �nding the partitioning
of an item set such that the subsets of the parti-
tion are as close to ri�e independent as possible.
In particular, we propose a novel objective for
quantifying the degree to which two subsets are
ri�e independent to each other.

• We de�ne a family of simple and interpretable
distributions over rankings, called hierarchical rif-
�e independent models, in which subsets of items
are interleaved into larger subsets in a recursive
stagewise fashion. We apply our partitioning
algorithm to perform model selection from train-
ing data in polynomial time, without having to
exhaustively search over the exponentially large
space of hierarchical structures.

2. Ri�ed independence for rankings

In this paper we will be concerned with distributions
over rankings. A ranking σ = (σ(1), . . . , σ(n)) is a
one-to-one association between n items and ranks,
where σ(j) = i means that the jth item is assigned
rank i under σ. We will also refer to a ranking σ by its
inverse, Jσ−1(1), . . . , σ−1(n)K (called an ordering and
denoted with double brackets instead of parentheses),
where σ−1(i) = j also means that the jth item is
assigned rank i under σ. As a running example
in this paper, we will consider ranking a small list
of 6 items consisting of fruits and vegetables: (C)
Corn, (P) Peas, (L) Lemons, (O) Oranges, (F) Figs,
and (G) Grapes. The ordering σ = JP,F,C, . . .K, for
example, ranks Peas �rst, Figs second, Corn third
and so on. A distribution h(σ), de�ned over the
set of rankings, Sn, can be viewed as a joint distri-
bution over the n variables (σ(1), . . . , σ(n)) (where
σ(j) ∈ {1, . . . , n}), subject to mutual exclusivity

constraints which stipulate that two objects cannot
simultaneously map to the same rank, or alternatively,
that two ranks cannot simultaneously be occupied by
the same object (h(σ(i) = σ(j)) = 0 whenever i 6= j).

Since there are n! rankings for n items, representing
arbitrary distributions h is not viable for large n, and
it is typical to restrict oneself to simpli�ed classes
of distributions. It might be tempting to think
that probabilistic independence assertions would
be a useful simpli�cation for ranking problems (as
naive Bayes models have been useful in other areas
of machine learning). However, mutual exclusivity

makes probabilistic independence a tricky notion for
rankings, since each pair of items is constrained to
map to di�erent ranks. Another way to see this is to
imagine constructing a graphical model representing
h in which each node corresponds to the rank of
an item. For each pair of nodes, mutual exclusivity
induces an edge between those two nodes, leading to
a fully connected graph (Huang et al., 2009).

Ri�ed independence, introduced recently in (Huang &
Guestrin, 2009), turns out to be a more natural notion
of independence in the ranking setting. Consider
our example of jointly ranking a set containing both
vegetables (denoted by set A) and fruits (denoted by
set B) in order of preference. The idea of ri�ed in-
dependence is to �rst draw two independent rankings
(one for vegetables, one for fruits), then to interleave
the two sets to form a full ranking for the entire collec-
tion. The word ri�e comes from the popular shu�ing
technique called the ri�e shu�e in which one cuts a
deck of cards and interleaves the piles. For a formal
de�nition, we establish the following notation about
relative rankings and interleavings. Given a ranking
σ ∈ Sn, and a subset A ⊂ {1, . . . , n}, let φA(σ) denote
the ranks of items in A relative to the set A. For
example, in the ranking σ = JP,L,F,G,C,OK, the
relative ranks of the vegetables is φA(σ) = JP,CK =
JPeas, CornK. Thus, while corn is ranked �fth in
σ, it is ranked second in φA(σ). Similarly, the
relative ranks of the fruits is φB(σ) = JL,F,G,OK =
JLemons, F igs,Grapes,OrangesK. Likewise, let
τA,B(σ) denote the way in which the sets A and B
are interleaved by σ. For example, using the same
σ as above, the interleaving of vegetables and fruits
is τA,B(σ) = JV eg, Fruit, Fruit, Fruit, V eg, FruitK.
We will use ΩA,B to denote the collection of all
distinct ways of interleaving the sets A and B. Note
that if |A| = k, then |ΩA,B | =

(
n
k

)
.

De�nition 1 (Huang and Guestrin (2009)). Let
h be a distribution over Sn and consider a subset
A ⊂ {1, . . . , n} (with |A| = k)and its complement B.
The sets A and B are said to be ri�e independent if
h factors as:

h(σ) = m(τA,B(σ)) · fA(φA(σ)) · gB(φB(σ)), (2.1)

where m, fA, gB are distributions over ΩA,B , Sk,
and Sn−k, respectively. We will refer to m as the
interleaving distribution, and to fA and gB as the
relative ranking distributions of A and B. We will
also notate the relation as A ⊥m B.

Ri�ed independence can be seen as a generalization
of full independence (when the interleaving distri-
bution is deterministic). In addition to exploring
theoretical properties, Huang and Guestrin showed



Learning Hierarchical Ri�e Independent Groupings from Rankings

{C,P,L,O,F,G}

{C,P}
Vegetables

{L,O,F,G}
Fruits

{L,O}
Citrus

{F,G}
Medi-

terranean

(a) Example of hierarchi-
cal ri�ed independence
structure on S6
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(b) Another example, not
equivalent to (a)
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{A} {B}

{C}

{D}

(c) Hierarchical decompo-
sition into singleton sub-
sets (each leaf set consists
of a single item)

Figure 1. Examples of distinct hierarchical ri�e independent structures

that the ri�ed independence relation in fact holds
(approximately) in certain datasets. In particular,
they showed on a particular election dataset, that the
political coalitions in the candidate set were nearly
ri�e independent of each other. In other nonpolitical
ranking datasets, however, it is not always obvious
how one should partition the item set so that the ri�e
independent approximation is as close as possible
to the true joint distribution. Is there any way to
discover latent coalitions of items arising from ri�ed
independence from ranked data? Before presenting
our solution to this question, we discuss a more
complicated but realistic scenario in which coalitions
are further partitioned into smaller subgroups.

3. Hierarchical decompositions

For a �xed subset A (and its complement B), there are
O

(
k! + (n− k)! +

(
n
k

))
model parameters (specifying

fA, gB , and m). Despite the fact that ri�e inde-
pendent models are much more compact compared
to full models over rankings, it is still intractable to
represent arbitrary ri�e independent models for large
n, and one must make further simpli�cations. For
example, Huang and Guestrin discuss methods for
representing useful parametric families of interleaving
distributions, with just a handful of parameters.

We will explore the other natural model simpli�cation
which comes from the simple observation that the
relative ranking distributions fA and gB are again
distributions over rankings and so the sets A and B
can further be decomposed into two ri�e independent
subsets. We call such models hierarchical ri�e inde-

pendent decompositions. Continuing with our running
example, one can imagine that the fruits are further
partitioned into two sets, a set consisting of citrus
fruits ((L) Lemons and (O) Oranges) and a set consist-
ing of mediterranean fruits ((F) Figs and (G) Grapes).
To generate a full ranking, one �rst draws rankings
of the citrus and mediterranean fruits independently
(JL,OK and JG,FK, for example). Secondly, the two

sets are interleaved to form a ranking of all fruits
(JG,L,O,FK). Finally, a ranking of the vegetables is
drawn (JP,CK) and interleaved with the fruit rank-
ings to form a full joint ranking: JP,G,L,O,F,CK.
Notationally, we can express the hierarchical decom-
position as {P,C} ⊥m ({L,O} ⊥m {F,G}). We can
also visualize hierarchies using trees (see Figure 1(a)
for our example). The subsets of items which appear
as leaves in the tree will be referred to as leaf sets.

A natural question to ask is: if we used a di�erent
hierarchy with the same leaf sets, would we capture
the same distributions? For example, does a distribu-
tion which decomposes according to the tree in Fig-
ure 1(b) also decompose according to the tree in Fig-
ure 1(a)? The answer, in general, is no, due to the
fact that distinct hierarchies impose di�erent sets of
independence assumptions, and as a result, di�erent
structures can be well or badly suited for modeling a
given dataset. Consequently, it is important to use the
�correct� structure if possible. We remark that while
the two structures 1(a),1(b), capture distinct families
of distributions, it is possible to identify a set of inde-
pendence assumptions common to both structures.

4. Objective functions

Since di�erent hierarchies impose di�erent indepen-
dence assumptions, we would like to �nd the structure
that is best suited for modeling a given ranking
dataset. The base problem that we now address is
how to �nd the best structure if there is only one level
of partitioning and two leaf sets, A, B. Alternatively,
we want to �nd the topmost partitioning of the
tree. In Section 5, we use this base case as part of a
top-down approach for learning a full hierarchy.

Problem statement. Given a training set of rank-
ings, σ(1), . . . , σ(m) ∼ h, in which a subset of items,
A ⊂ {1, . . . , n}, is ri�e independent of its complement,
we would like to automatically determine the sets A
and B ⊂ {1, . . . , n}. If h does not exactly factor ri�e
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independently, then we would like to �nd the ri�e in-
dependent approximation which is closest to h in some
sense. Formally, we would like to solve the problem:

arg min
A

min
m,f,g

DKL(ĥ(σ) ||m(τA,B(σ))f(φA(σ))g(φB(σ))),

(4.1)

where ĥ is the empirical distribution of training
examples and DKL is the Kullback-Leibler divergence
measure. Equation 4.1 is a seemingly reasonable ob-
jective since it can also be interpreted as maximizing
the likelihood of the training data. If A and B are
truly ri�e independent, then 4.1 can be shown via
the Gibbs inequality to attain its minimum, zero, at
(and only at) the subsets A and B.

For small problems, one can actually solve Problem 4.1
using a single computer by evaluating the approxima-
tion quality of each subset A and taking the minimum,
which was the approach taken in (Huang & Guestrin,
2009). However, for larger problems, one runs into
time and sample complexity problems since optimizing
the globally de�ned objective function (4.1) requires
relearning all model parameters (m, fA, and gB) for
each of the exponentially many subsets of {1, . . . , n}.
In the remainder, we propose a more locally de�ned
objective function, reminiscent of clustering, which
we will use instead of Equation 4.1. As we show, our
new objective will be more tractable to compute and
have lower sample complexity for estimation.

Proposed objective function. The approach we
take is to minimize a di�erent measure that exploits
the observation that absolute ranks of items in A
are fully independent of relative ranks of items in B,

and vice versa. With our vegetables and fruits, for
example, knowing that Figs is ranked �rst among all
six items (the absolute rank of a fruit) should give
no information about whether Corn is preferred to
Peas (the relative rank of vegetables). More formally,
given a subset A = {a1, . . . , a`}, let σ(A) denote the
vector of (absolute) ranks assigned to items in A by σ
(thus, σ(A) = (σ(a1), σ(a2), . . . , σ(a`))). We propose
to minimize an alternative objective function:

F(A) ≡ I(σ(A) ; φB(σ)) + I(σ(B) ; φA(σ)), (4.2)

where I denotes the mutual information (de�ned
between two variables X1 and X2 by I(X1;X2) ≡
DKL(P (X1, X2)||P (X1)P (X2)). We can show that F
is guaranteed to detect ri�ed independence:

Proposition 2. F(A) = 0 is a necessary and su�-

cient criterion for a subset A ⊂ {1, . . . , n} to be ri�e

independent of its complement, B.

As with Equation 4.1, optimizing F is still intractable
for large n. However, it motivates a natural proxy,

A
B

Internal Triplet

Cross Triplet

Figure 2. Graphical depiction of the problem of �nding rif-
�e independent subsets. Note the similarities to clustering.
Double bars represent the direct nature of the triangles.

in which we replace the mutual informations de�ned
over all n variables by a sum of mutual informa-
tions de�ned over just three variables at a time.
Given any triplet of distinct items, (i, j, k), let
Ii;j,k ≡ I(σ(i) ; σ(j) < σ(k)). We de�ne ΩcrossA,B to be
the set of triplets which �cross� from set A to set B:

ΩcrossA,B ≡ {(i; j, k) : i ∈ A, j, k ∈ B}.

ΩcrossB,A is similarly de�ned. We also de�ne ΩintA to be
the set of triplets that are internal to A

ΩintA ≡ {(i; j, k) : i, j, k ∈ A},

and again, ΩintB is similarly de�ned. Our proxy objec-
tive function can be written as the sum of the mutual
information evaluated over all of the crossing edges:

F̃(A) ≡
X

(i,j,k)∈Ωcross
A,B

Ii;j,k +
X

(i,j,k)∈Ωcross
B,A

Ii;j,k. (4.3)

F̃ can be viewed as a low order version of F , involving
mutual information computations over triplets of
variables at a time instead of n-tuples. The mutual
information Ia;b,b′ , for example, re�ects how much the
rank of a vegetable tells us about how two fruits com-
pare. If A and B are ri�e independent, then we know
that Ia;b,b′ = 0 and Ib;a,a′ = 0 for any items a, a′ ∈ A
and b, b′ ∈ B. The objective F̃ is somewhat remi-
niscent of typical graphcut and clustering objectives.
Instead of partitioning a set of nodes based on sums
of pairwise similarities, we partition based on sums of
tripletwise a�nities. We show a graphical depiction
of the problem in Figure 2, where cross triplets (in
ΩcrossA,B , ΩcrossB,A ) have low weight and internal triplets
(in ΩintA , ΩintB ) have high weight. The objective is to
�nd a partition such that the sum over cross triplets is
low. In fact, the problem of optimizing F̃ can be seen
as an instance of the weighted, directed hypergraph
cut problem (Gallo et al., 1993). Note that the word
directed is signi�cant for us, because, unlike typical
clustering problems, our triplets are not symmetric
(for example, Ii;jk 6= Ij;ik), resulting in a nonstandard
and poorly understood optimization problem.

Third-order detectability assumptions. When
does F̃ detect ri�ed independence? It is not di�cult
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to see, for example, that F̃ = 0 is a necessary con-
dition for ri�ed independence, since A ⊥m B implies
Ia;b,b′ = 0. We have:
Proposition 3. If A and B are ri�e independent

sets, then F̃(A) = 0.

However, the converse of Prop. 3 is not true in full
generality without accounting for dependencies that
involve larger subsets of variables. Just as the pairwise
independence assumptions (that are commonly used
for randomized algorithms (Motwani & Raghavan,
1996))1 do not imply full independence between two
sets of variables, there exist distributions which �look�
ri�e independent from tripletwise marginals but
do not factor upon examining higher-order terms.
Nonetheless, in most practical scenarios, we expect
F̃ = 0 to imply ri�ed independence.

Estimating F̃ from samples. We have so far
argued that F̃ is a reasonable function for �nding ri�e
independent subsets. However, since we only have
access to samples rather than the true distribution h
itself, it will only be possible to compute an approx-
imation to the objective F̃ . In particular, for every
triplet of items, (i, j, k), we must compute an estimate
of the mutual information Ii;j,k from i.i.d. samples
drawn from h, and the main question is: how many
samples will we need in order for the approximate
version of F̃ to remain a reasonable objective function?

In the following, we denote the estimated value of
Ii;j,k by Îi;j,k. For each triplet, we use a regularized
procedure due to (Hö�gen, 1993) to estimate mutual
information. We adapt his sample complexity bound
to our problem below.

Lemma 4. For any �xed triplet (i, j, k), the mutual

information Ii;j,k can be estimated to within an

accuracy of ∆ with probability at least 1 − γ using

S(∆, γ) ≡ O
(
n2

∆2 log2 n
∆ log n4

γ

)
i.i.d. samples and

the same amount of time.

The approximate objective function is therefore:

F̂(A) ≡
X

(i,j,k)∈Ωcross
A,B

Îi;j,k +
X

(i,j,k)∈Ωcross
B,A

Îi;j,k.

What we want to now show is that, if there exists
a unique way to partition {1, . . . , n} into ri�e inde-
pendent sets, then given enough training examples,
our approximation F̂ uniquely singles out the correct
partition as its minimum with high probability. A
class of ri�e independent distributions for which the

1 A pairwise independent family of random variables is
one in which any two members are marginally independent.
Subsets with larger than two members may not necessarily
factor independently, however.

uniqueness requirement is satis�ed consists of the
distributions for which A and B are strongly connected

according to the following de�nition.

De�nition 5. A subset A ⊂ {1, . . . , n} is called
ε-third-order strongly connected if, for every triplet
i, j, k ∈ A with i, j, k distinct, we have Ii;j,k > ε.

If a set A is ri�e independent of B and both sets
are third order strongly connected, then we can
ensure that ri�ed independence is detectable from
third-order terms and that the partition is unique.
We have the following probabilistic guarantee.

Theorem 6. Let A and B be ε-third order strongly

connected ri�e independent sets, and suppose |A| = k.

Given S(∆, ε) ≡ O
(
n4

ε2 log2 n2

ε log n4

γ

)
i.i.d. samples,

the minimum of F̂ is achieved at exactly the subsets

A and B with probability at least 1− γ.

If k is small compared to n, then one can actually de-

rive a better bound: S(∆, ε) ≡ O
(
n2

ε2 log2 n2

ε log n4

γ

)
.

Finding balanced partitions. We conclude this
section with a practical extension of the basic ob-
jective function F̃ . In practice, like the minimum
cut objective for graphs, the tripletwise objective
of Equation 4.3 has a tendency to �prefer� small
partitions (either |A| or |B| very small) to more bal-
anced partitions (|A|, |B| ≈ n/2) due to the fact that
unbalanced partitions have fewer triplets that cross
between A and B. The simplest way to avoid this
bias is to optimize the objective function over subsets
of a �xed size k. As we discuss in the next section,
optimizing with a �xed k can be useful for building
�thin� hierarchical ri�e independent models. Alterna-
tively, one can use a modi�ed objective function that
encourages more balanced partitions. For example,
we use a variation of our objective function (inspired
by the normalized cut criterion (Shi & Malik, 2000))
which has proven to be useful for detecting ri�ed
independence when the size k is unknown.

5. Structure discovery algorithms.

Having now designed a function that is tractable to
estimate from both perspectives of computational and
sample complexity, we turn to the problem of learn-
ing the hierarchical ri�e independence structure from
training examples. In this paper, we take a simple
top-down approach in which the item sets are recur-
sively partitioned by optimizing F̂ until some stopping
criterion is met. The question is: can F̂ be optimized
e�ciently? We begin by discussing a restricted class of
�thin� models for which we can tractably optimize F̂ .
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Learning �thin� chain models. By a k-thin chain
model, we refer to a hierarchical structure in which
the size of the smaller set at each split in the hierarchy
is �xed to be a constant k ∼ O(1) and can therefore
be expressed as:

(A1 ⊥m (A2 ⊥m (A3 ⊥m . . . ))), |Ai| = k, for all i.

We view thin chains as being somewhat analogous
to thin junction tree models (Chechetka & Guestrin,
2007), in which cliques are never allowed to have
more than k variables. To draw rankings from a
thin chain model, one sequentially inserts items
independently, one group of size k at a time, into
the full ranking. The structure learning problem is
therefore to discover how the items are partitioned
into groups, which group is inserted �rst, which group
is inserted second, and so on.

When the size k is known, the optimal partitioning of
an item set can be found by exhaustively evaluating F̂
over all k-subsets. Finding the global optimum of F̂
is therefore guaranteed at each stage of the recursion.
The time complexity for �nding the optimal partition
fromm samples is O(knk+2+mn3), accounting for pre-
computing the necessary mutual informations as well
as optimization time, and is tractable if k is small.

Handling arbitrary partitions using anchors.

When k is large, or even unknown, F̂ cannot be opti-
mized using exhaustive methods. Instead, we propose
a simple algorithm for �nding A and B based on the
following observation. If an oracle could identify any
two elements of the set A, say, a1, a2, in advance,
then the quantity Ix;a1,a2 = I(x; a1 < a2) indicates
whether the item x belongs to A or B since Ix;a1,a2 is
nonzero in the �rst case, and zero in the second case.

For �nite training sets, when I is only known approx-
imately, one can sort the set {Ix;a1,a2 ; x 6= a1, a2}
and if k is known, take the k items closest to zero
to be the set B. Since we compare all items against
a1, a2, we refer to these two �xed items as �anchors�.
Of course a1, a2 are not known in advance, but the
above method can be repeated for every pair of items
as anchors to produce a collection of O(n2) candidate
partitions. Each partition can then be scored using
the approximate objective F̂ , and a �nal optimal
partition can be selected as the minimum over the
candidates. See Algorithm 1. In cases when k is not
known a priori, we evaluate partitions for all possible
settings of k using F̂ .

Since the anchors method does not require searching
over subsets, it can be signi�cantly faster (with
O(n3m) time complexity) than an exhaustive opti-
mization of F̂ . Moreover, by assuming ε-third order

Algorithm 1 The Anchors method

Input: training set {σ(1), . . . , σ(m)}, k ≡ |A|.
Estimate and cache Îi;j,k for all i, j, k;
for all a1, a2 ∈ {1, . . . , n}, a1 6= a2 do

Îk ← kth smallest item in {Îx;a1,a2 ;x 6= a1, a2};
Aa1,a2 ← {x : Îx;a1,a2 ≤ Îk} ;

end for
Abest ← arg mina1,a2 F̂(Aa1,a2);

output Abest;

strong connectivity as in the previous section, one can
use similar arguments to derive sample complexity
bounds. We remark that there are practical di�erences
that can at times make the anchors method somewhat
less robust than an exhaustive search. Conceptually,
anchoring works well when there exists two elements
that are strongly connected with all of the other
elements in its set, whereas an exhaustive search can
work well in weaker conditions such as when items
are strongly connected through longer paths. We
show in our experiments that the anchors method can
nonetheless be quite e�ective for learning hierarchies.

6. Experiments

Synthetic data. We �rst applied our methods to
synthetic data to show that, given enough samples, our
algorithms do e�ectively recover the optimal hierarchi-
cal structures. For various settings of n, we simulated
data drawn jointly from a k-thin chain model (for
k = 4) with a random parameter setting for each struc-
ture and applied our exact method for learning thin
chains to each sampled dataset. First, we investigated
the e�ect of varying sample size on the proportion
of trials (out of �fty) for which our algorithms were
able to (a) recover the full underlying tree structure
exactly, (b) recover the topmost partition correctly,
or (c) recover all leaf sets correctly (but possibly out
of order). Figure 3(a) shows the result for an itemset
of size n = 16. Figure 3(b), shows, as a function of n,
the number of samples that were required in the same
experiments to (a) exactly recover the full underlying
structure or (b) recover the correct leaf sets, for at
least 90% of the trials. What we can observe from the
plots is that, given enough samples, reliable structure
recovery is indeed possible. It is also interesting to
note that recovery of the correct leaf sets can be
done with much fewer samples than are required for
recovering the full hierarchical structure of the model.

After learning a structure for each dataset, we learned
model parameters and evaluated the log-likelihood of
each model on 200 test examples drawn from the
true distributions. In Figure 3(c), we compare log-
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Figure 3. Simulated data experiments

likelihood performance when (a) the true structure
is given (but not parameters), (b) a k-thin chain is
learned with known k, and (c) when we use a random
generated 1-chain structure. As expected, knowing the
true structure results in the best performance, and
the 1-chain is overconstrained. However, our struc-
ture learning algorithm is eventually able to catch up
to the performance of the true structure given enough
samples. It is also interesting to note that the jump in
performance at the halfway point in the plot coincides
with the jump in the success rate of discovering all
leaf sets correctly � we conjecture that performance
is sometimes less sensitive to the actual hierarchy used,
as long as the leaf sets have been correctly discovered.

To test the Anchors algorithm, we ran the same sim-
ulation using Algorithm 1 on data drawn from hierar-
chical models with no �xed k. We generated roughly
balanced structures, meaning that item sets were
recursively partitioned into (almost) equally sized sub-
sets at each level of the hierarchy. From Figure 3(d),
we see that the Anchors algorithm can also discover
the true structure given enough samples. Interestingly,
the di�erence in sample complexity for discovering
leaf sets versus discovering the full tree is not nearly as
pronounced as in Figure 3(a). We believe that this is
due to the fact that the balanced trees have less depth
than the thin chains, leading to fewer opportunities
for our greedy top-down approach to commit errors.

Election data. We now demonstrate our methods
with real datasets. A number of electoral systems
around the world require voters to provide a ranking
of a set of candidates in order of preference. Diaco-
nis (1989), for example, analyzed a 1980 presidential
election of the American Psychological Association
(APA) consisting of 5738 rankings of �ve candidates
(W. Bevan, I. Iscoe, C. Kiesler, M. Siegle, and L.
Wright). We applied our methods to learning a hier-
archy from the APA data. Since there are only �ve
candidates, we tried both the exhaustive optimization
algorithm as well as the anchors algorithm. Both
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Figure 4. Irish election data experiments

methods recovered the same structure in roughly the
same time (shown in Figure 5), which is also the
structure that (Huang & Guestrin, 2009) obtained by
performing a brute-force search over partitions using
the KL-divergence objective (Equation 4.1). The
leaf sets of the learned hierarchy in fact re�ect three
coalitions in the APA made up of research, clinical
and community psychologists respectively.

Next, we applied our algorithms to a larger Irish House
of Parliament (Dáil Éireann) election dataset from
the Meath constituency in Ireland. See Gormley and
Murphy (2006) for more election details (including
candidate names) as well as an alternative analysis.
There were 14 candidates in the 2002 election belong-
ing to the two major rival political parties, Fianna Fáil
and Fine Gael, as well as a number of smaller parties.
We used a subset of 2500 fully ranked ballots from the
election. As with the APA data, both the exhaustive
optimization of F̂ and the anchors algorithm returned
the same tree, with running times of 69.7 seconds and
2.1 seconds respectively (not including the 3.1 seconds
required for precomputing mutual informations). The
resulting tree, with candidates enumerated alphabet-
ically from 1 through 14, is shown (only up to depth
4), in Figure 6. As expected, the candidates belonging
to the two major parties, Fianna Fáil and Fine Gael,
are neatly partitioned into their own leaf sets. The
topmost leaf is the Sinn Fein candidate, indicating
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Figure 6. Hierarchy learned from Irish election data.
See (Gormley & Murphy, 2006) for a list of candidates.
The candidates are ordered alphabetically in this tree.

that voters tended to insert him into the ranking
independently of all of the other 13 candidates.
To understand the behavior of our algorithm with
smaller sample sizes, we looked for features of the
tree from Figure 6 which remained stable even when
learning with smaller sample sizes. In Figure 4(a),
we subsample from the original training set 100 times
at di�erent sample sizes and plot the proportion of
learned hierarchies which, (a) recover the Sinn Fein
candidate as the topmost leaf, (b) partition the two
major parties into leaf sets, and (c) agree with the
original tree on all leaf sets. Note that even with few
training examples, candidates belonging to the major
parties are correctly grouped together indicating
strong party in�uence in voting behavior.

Finally, we compared the results between learning
a general hierarchy (without �xed k) and learning
a 1-thin chain model on the Irish data. Figure 4(b)
shows the log-likelihoods achieved by both models on
a held-out test set as the training set size increases.
For each training set size, we subsampled the Irish
dataset 100 times to produce con�dence intervals.
Again, even with small sample sizes, the hierarchy
outperforms the 1-chain and continually improves
with more and more training data. One might think
that the hierarchical models, which use more param-
eters are prone to over�tting, but in practice, the
models learned by our algorithm devote most of the

extra parameters towards modeling the correlations
among the two major parties. As our results suggest,
such intraparty ranking correlations are crucial for
achieving good modeling performance.

7. Conclusion

We have investigated an intuitive ranking model
based on hierarchical ri�ed independence decompo-
sitions and have shown that the structure of such
hierarchies can be e�ciently learned from data using
our proposed algorithm which can automatically �nd
ri�e independent partitions within item sets.

Like Bayesian networks, cliques of variables for hier-
archical ri�ed independence models can often form
intuitive groupings, such as in the election datasets
that we analyzed in this paper. However, for problems
in which the item groupings are nonobvious, structure
learning is of fundamental importance, and we believe
that our contributions in this paper open the door
to further research into the problem of decomposing
huge distributions into tractable �pieces� much like
Bayesian networks have done for other distributions.
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