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Abstract

In this paper we consider the problem of pol-
icy evaluation in reinforcement learning, i.e.,
learning the value function of a fixed policy,
using the least-squares temporal-difference
(LSTD) learning algorithm. We report a
finite-sample analysis of LSTD. We first de-
rive a bound on the performance of the LSTD
solution evaluated at the states generated by
the Markov chain and used by the algorithm
to learn an estimate of the value function.
This result is general in the sense that no
assumption is made on the existence of a
stationary distribution for the Markov chain.
We then derive generalization bounds in the
case when the Markov chain possesses a sta-
tionary distribution and is β-mixing.

1. Introduction

Least-squares temporal-difference (LSTD) learn-
ing (Bradtke & Barto, 1996; Boyan, 1999) is a widely
used algorithm for prediction in general, and in the
context of reinforcement learning (RL), for learning
the value function V π of a given policy π. LSTD has
been successfully applied to a number of problems
especially after the development of the least-squares
policy iteration (LSPI) algorithm (Lagoudakis & Parr,
2003), which extends LSTD to control problems. More
precisely, LSTD computes the fixed point of the op-
erator ΠT , where T is the Bellman operator and Π
is the projection operator in a linear function space.
Although LSTD and LSPI have been widely used in
the RL community, a finite-sample analysis of LSTD
(i.e., performance bounds in terms of the number of
samples) is still lacking.

Most of the theoretical work analyzing LSTD have
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been focused on the model-based case, where explicit
models of the reward function and the dynamics are
available. In particular, Tsitsiklis & Van Roy (1997)
showed that the distance between the LSTD solution
and the value function V π is bounded by the distance
between V π and its closest approximation in the lin-
ear space, multiplied by a constant which increases as
the discount factor approaches 1. In this bound, it is
assumed that the Markov chain possesses a stationary
distribution ρπ and the distances are measured accord-
ing to ρπ. Bertsekas (2001) reported a similar analy-
sis for the empirical version of LSTD. His analysis re-
veals a critical dependency on the inverse of the small-
est eigenvalue of the LSTD’s A matrix (note that the
LSTD solution is obtained by solving the system of lin-
ear equations Ax = b). Nonetheless, Bertsekas (2001)
does not provide a finite-sample analysis of the algo-
rithm. On the other hand, Antos et al. (2008) ana-
lyzed the modified Bellman residual (MBR) minimiza-
tion algorithm for a finite number of samples, bounded
function spaces, and a µ-norm that might be different
from the norm induced by ρπ. Although MBR mini-
mization was shown to reduce to LSTD in case of linear
spaces, it is not straightforward how the finite-sample
bounds derived by Antos et al. (2008) can be extended
to unbounded linear spaces considered by LSTD.

In this paper, we report a finite-sample analysis of
LSTD. To the best of our knowledge, this is the first
complete finite-sample analysis of this widely used al-
gorithm. Our analysis is for a specific implementation
of LSTD that we call pathwise LSTD. Pathwise LSTD
has two specific characteristics: 1) it takes a single
trajectory generated by the Markov chain induced by
policy π as input, and 2) it uses the pathwise Bellman
operator (will be precisely defined later), which is de-
fined to be a contraction w.r.t. the empirical norm. We
first derive a bound on the performance of the path-
wise LSTD solution for a setting that we call Markov
design. In this setting, the performance is evaluated at
the points used by the algorithm to learn an estimate
of V π. This bound is general in the sense that no as-
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sumption is made on the existence of a stationary dis-
tribution for the Markov chain. Then, in the case the
Markov chain admits a stationary distribution ρπ and
is β-mixing, we derive generalization bounds w.r.t. the
norm induced by ρπ.

Besides providing a full finite-sample analysis of
LSTD, the major insights gained by the analysis in
the paper can be summarized as follows. The first re-
sult is about the existence of the LSTD solution and
its performance. In Theorem 1 we show that with
a slight modification of the empirical Bellman opera-
tor T̂ (leading to the definition of pathwise LSTD),

the operator Π̂T̂ (where Π̂ is an empirical projection
operator) has always a fixed point v̂ even when the
sample-based Gram matrix is not invertible and the
Markov chain does not admit a stationary distribution.
In this very general setting, it is still possible to de-
rive a bound for the performance of v̂ evaluated on the
states of the trajectory, and an analysis of the bound
reveals a critical dependency on the smallest strictly
positive eigenvalue νn of the sample-based Gram ma-
trix. Then, in the case in which the Markov chain has
a stationary distribution ρπ, it is possible to relate the
value of νn to the smallest eigenvalue of the Gram ma-
trix defined according to ρπ. Furthermore, it is possi-
ble to generalize the previous performance bound over
the entire state space under the measure ρπ, when the
samples are drawn from a stationary β-mixing pro-
cess (Theorem 2). It is important to note that the
asymptotic bound obtained by taking the number of
samples, n, to infinity is equal (up to constants) to the
bound in Tsitsiklis & Van Roy (1997) for model-based
LSTD. Furthermore, a comparison with the bounds
in Antos et al. (2008) shows that we successfully lever-
age on the specific setting of LSTD: 1) the space of
functions is linear, and 2) the distribution used to eval-
uate the performance is the stationary distribution of
the Markov chain induced by the policy. In particular,
we obtain a better bound both in terms of estimation
error, a rate of order O(1/n) instead of O(1/

√
n) for

the squared error, and in terms of approximation er-
ror, the minimal distance between the value function
V π and the space F instead of the inherent Bellman
errors of F . Finally, the extension in Theorem 3 to
the case in which the samples belong to a trajectory
generated by a fast mixing Markov chain shows that it
is possible to achieve the same performance as in the
case of stationary β-mixing processes.

2. Preliminaries

For a measurable space with domain X , we let S(X )
and B(X ; L) denote the set of probability measures

over X , and the space of bounded measurable func-
tions with domain X and bound 0 < L < ∞, respec-
tively. For a measure ρ ∈ S(X ) and a measurable
function f : X → R, we define the ℓ2(ρ)-norm of f ,
||f ||ρ, and for a set of n states X1, . . . , Xn ∈ X , we
define the empirical norm ||f ||n as

||f ||2ρ =

Z
f(x)2ρ(dx) and ||f ||2n =

1

n

nX

t=1

f(Xt)
2.

The supremum norm of f , ||f ||∞, is defined as ||f ||∞ =
supx∈X |f(x)|.
We consider the standard RL framework
(Sutton & Barto, 1998) in which a learning agent
interacts with a stochastic environment by following a
policy π and this interaction is modeled as a discrete-
time discounted Markov chain (MC). A discounted
MC is a tuple Mπ = 〈X , Rπ , P π, γ〉, where the state
space X is a subset of a Euclidean space, the reward
function Rπ : X → R is uniformly bounded by Rmax,
the transition kernel P π is such that for all x ∈ X ,
P π(·|x) is a distribution over X , and γ ∈ (0, 1) is a
discount factor. The value function of a policy π,
V π, is the unique fixed-point of the Bellman operator
T π : B(X ; Vmax = Rmax

1−γ ) → B(X ; Vmax) defined by1

(T πV )(x) = Rπ(x) + γ

Z

X

P π(dy|x)V (y).

To approximate the value function V , we use a linear
approximation architecture with parameters α ∈ R

d

and basis functions ϕj ∈ B(X ; L), j = 1, . . . , d. We

denote by φ : X → R
d, φ(·) =

(
ϕ1(·), . . . , ϕd(·)

)⊤
the feature vector, and by F the linear function space
spanned by the basis functions ϕj . Thus F = {fα, α ∈
R

d}, where fα(·) = φ(·)⊤α.

Let (X1, . . . , Xn) be a sample path (or trajectory) of
size n generated by the Markov chain M. Let v ∈ R

n

and r ∈ R
n such that vt = V (Xt) and rt = R(Xt) be

the value vector and the reward vector, respectively.
Also, let Φ = [φ(X1)

⊤; . . . ; φ(Xn)⊤] be the feature
matrix defined at the states, and Fn = {Φα, α ∈
R

d} ⊂ R
n be the corresponding vector space. We

denote by Π̂ : R
n → Fn the orthogonal projection

onto Fn, defined as Π̂y = argminz∈Fn

||y−z||n, where
||y||2n = 1

n

∑n
t=1 y2

t . Note that the orthogonal projec-

tion Π̂y for any y ∈ R
n exists and is unique.

3. Pathwise LSTD

Pathwise LSTD is a version of LSTD which takes as
input a single path X1, . . . , Xn and returns the fixed-

1To simplify the notation, we remove the dependency to
the policy π and use M, R, P , V , and T instead of Mπ,
Rπ, P π, V π, and T π throughout the paper.
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point of the empirical operator Π̂T̂ , where T̂ : R
n →

R
n is the pathwise Bellman operator defined as

(T̂ y)t =

{
rt + γyt+1 1 ≤ t < n,
rt t = n.

Note that by defining the operator P̂ : R
n → R

n as
(P̂ y)t = yt+1 for 1 ≤ t < n and (P̂ y)n = 0, we have

T̂ y = r + γP̂ y. The motivation for using the pathwise
Bellman operator is that it is γ-contraction in ℓ2-norm,
i.e., for any y, z ∈ R

n, we have

||T̂ y − T̂ z||2n = ||γP̂ (y − z)||2n ≤ γ2||y − z||2n .

Moreover, it can be shown that the orthogonal projec-
tion Π̂ is non-expansive: since ||Π̂y||2n = 〈y, Π̂y〉n ≤
||y||n||Π̂y||n, using the Cauchy-Schwarz inequality we

obtain ||Π̂y||n ≤ ||y||n. Therefore, from Banach fixed
point theorem, there exists a unique fixed-point v̂ of
the mapping Π̂T̂ , i.e., v̂ = Π̂T̂ v̂. We call v̂ the path-
wise LSTD solution. Note that the unicity of v̂ does
not imply that there exists a unique parameter α̂ such
that v̂ = Φα̂.

4. Markov Design Bound

Theorem 1. Let X1, . . . , Xn be a trajectory of the
Markov chain, and v, v̂ ∈ R

n be the vectors whose com-
ponents are the value function and the pathwise LSTD
solution at {Xi}n

i=1, respectively. Then with probabil-
ity 1 − δ, where the probability is w.r.t. the random
trajectory, we have

||v̂ − v||n ≤ 1

1 − γ

[
||v − Π̂v||n (1)

+ γVmaxL

√
d

νn

(√
8 log(2d/δ)

n
+

1

n

)]
,

where the random variable νn is the smallest strictly-
positive eigenvalue of the sample-based Gram matrix
1
nΦ⊤Φ.

Remark 1 When the eigenvalues of the sample-
based Gram matrix 1

nΦ⊤Φ are non-zero, Φ⊤Φ is in-

vertible, and thus, Π̂ = Φ(Φ⊤Φ)−1Φ⊤. In this case,
the unicity of v̂ implies the unicity of α̂ since

v̂ = Φα =⇒ Φ⊤v̂ = Φ⊤Φα =⇒ α̂ = (Φ⊤Φ)−1Φ⊤v̂. (2)

Since v̂ is the unique fixed-point of Π̂T̂ , it can be re-
placed by Π̂T̂ v̂ in Eq. 2. Using the definitions of Π̂
and T̂ , we obtain Φ⊤(I − γP̂ )Φα̂ = Φ⊤r. By defining

A = Φ⊤(I − γP̂ )Φ and b = Φ⊤r, α̂ can be seen as the
unique solution of the d× d system of linear equations
Aα = b.

Remark 2 Note that in case there exists a constant
ν > 0, such that with probability 1 − δ′ all the eigen-
values of the sample-based Gram matrix are lower
bounded by ν, Eq. 1 (with νn replaced by ν) holds
with probability at least 1 − (δ + δ′).

Remark 3 When the sample-based Gram matrix
1
nΦ⊤Φ is not invertible, the unicity of v̂ does not im-
ply the unicity of the solution to the system Φα = v̂.
However, since v̂ is the unique fixed point of Π̂T̂ ,
the vector v̂ − T̂ v̂ is perpendicular to the space Fn,
and thus, Φ⊤(v̂ − T̂ v̂) = 0. By replacing v̂ with

Φα, we obtain Φ⊤Φα = Φ⊤(r + γP̂Φα) and then

Φ⊤(I − γP̂ )Φα̂ = Φ⊤r. Therefore, we still have the
same system of equations Aα = b as in Remark 1, with
the exact same A and b, but now the system may have
many solutions.2 Among all possible solutions, one
may choose the one with minimal norm: α̂ = A+b,
where A+ is the Moore-Penrose pseudo-inverse of A.

Remark 4 Theorem 1 provides a bound without any
reference to the stationary distribution of the Markov
chain. In fact, the bound of Eq. 1 holds even when
the chain does not possess a stationary distribution.
For example, consider a Markov chain on the real line
where the transitions always move the states to the
right, i.e., p(Xt+1 ∈ dy|Xt = x) = 0 for y ≤ x. For
simplicity assume that the value function V is bounded
and belongs to F . This Markov chain is not recurrent,
and thus, does not have a stationary distribution. We
also assume that the feature vectors φ(X1), . . . , φ(Xn)
are sufficiently independent, so that the eigenvalues of
1
nΦ⊤Φ are greater than ν > 0. Then according to The-
orem 1, pathwise LSTD is able to estimate the value
function at the states at a rate O(1/

√
n). This may

seem surprising because at each state Xt the algorithm
is only provided with a noisy estimation of the ex-
pected value of the next state. However, the estimates
are unbiased conditioned on the current state, and we
will see in the proof that using a concentration inequal-
ity for martingale, pathwise LSTD is able to learn a
good estimate of the value function at a state Xt using
noisy pieces of information at other states that may be
far away from Xt. In other words, learning the value
function at a given state does not require making an
average over many samples close to that state. This
implies that LSTD does not require the Markov chain
to possess a stationary distribution.

Remark 5 The most critical part of the bound in
Eq. 1 is the inverse dependency on the smallest pos-
itive eigenvalue νn. A similar dependency is shown
in the LSTD analysis of Bertsekas (2001). The main

2Note that since the fixed point v̂ exists, this system
always has at least one solution.



Finite-Sample Analysis of LSTD

difference is that here we have a more complete finite-
sample analysis with an explicit dependency on the
number of samples and the other characteristic pa-
rameters of the problem. Furthermore, if the Markov
chain admits a stationary distribution ρ, we are able to
relate the existence of the LSTD solution to the small-
est eigenvalue of the Gram matrix defined according
to ρ (see Section 5.1).

In order to prove Theorem 1, we first introduce the
model of regression with Markov design and then state
and prove a Lemma about this model.

Definition 1. The model of regression with Markov

design is a regression problem where the data
(Xt, Yt)1≤t≤n are generated according to the follow-
ing model: X1, . . . , Xn is a sample path generated by
a Markov chain, Yt = f(Xt) + ξt, where f is the
target function, and the noise term ξt is a random
variable which is adapted to the filtration generated by
X1, . . . , Xt+1 and is such that

|ξt| ≤ C, and E[ξt|X1, . . . , Xt] = 0. (3)

Lemma 1 (Regression bound for the Markov design
setting). We consider the model of regression with
Markov design from Definition 1. Let ŵ ∈ Fn be the
least-squares estimate of the (noisy) values Y = {Yt}n

1 ,

i.e., ŵ = Π̂Y , and w ∈ Fn be the least-squares esti-
mate of the (noiseless) values Z = {Zt}n

1 = {f(Xt)}n
1 ,

i.e., w = Π̂Z. Then for any δ > 0, with probability at
least 1 − δ, where the probability is w.r.t. the random
sample path X1, . . . , Xn, we have

||ŵ − w||n ≤ CL

√
2d log(2d/δ)

nνn
, (4)

where νn is the smallest strictly-positive eigenvalue of
the sample-based Gram matrix 1

nΦ⊤Φ.

Proof of Lemma 1. We define ξ ∈ R
n to be the vector

with components ξt, and ξ̂ = ŵ−w = Π̂(Y −Z) = Π̂ξ.

Since the projection is orthogonal we have 〈ξ̂, ξ〉n =

||ξ̂||2n. Since ξ̂ ∈ Fn, there exists at least one α ∈ R
d

such that ξ̂ = Φα, so by Cauchy-Schwarz inequality
we have

||ξ̂||2n = 〈ξ̂, ξ〉n =
1

n

dX

i=1

αi

nX

t=1

ξtϕi(Xt)

≤ 1

n
||α||2

"
dX

i=1

“ nX

t=1

ξtϕi(Xt)
”

2

#1/2

. (5)

Now among the vectors α such that ξ̂ = Φα, we define
α̂ to be the one with minimal ℓ2-norm, i.e., α̂ = Φ+ξ̂.
Let K denote the null space of Φ, which is also the
null space of 1

nΦ⊤Φ. Then α̂ can be decomposed as

α̂ = α̂K + α̂K⊥ , where α̂K ∈ K and α̂K⊥ ∈ K⊥,
and because the decomposition is orthogonal, we have
||α̂||22 = ||α̂K ||22 + ||α̂K⊥ ||22. Since α̂ is of minimal norm

among all the vectors α such that ξ̂ = Φα, its compo-
nent in K must be zero, thus α̂ ∈ K⊥.

The Gram matrix 1
nΦ⊤Φ is positive-semidefinite, thus

its eigenvectors corresponding to zero eigenvalues gen-
erate K and the other eigenvectors generate its orthog-
onal complement K⊥. Therefore, from the assumption
that the smallest strictly-positive eigenvalue of 1

nΦ⊤Φ
is νn, we deduce that since α̂ ∈ K⊥,

||ξ̂||2n =
1

n
α̂⊤Φ⊤Φα̂ ≥ νnα̂⊤α̂ = νn||α̂||22. (6)

By using the result of Eq. 6 in Eq. 5, we obtain

||ξ̂||n ≤ 1

n
√

νn

[
d∑

i=1

( n∑

t=1

ξtϕi(Xt)
)2

]1/2

. (7)

Now, from Eq. 3, we have that

E[ξtϕi(Xt)|X1, . . . , Xt] = ϕi(Xt)E[ξt|X1, . . . , Xt] = 0,

thus ξtϕi(Xt) is a martingale difference sequence
w.r.t. the filtration generated by the Markov chain,
and one may apply Azuma’s inequality to deduce that
with probability 1 − δ,

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2/δ) .

By a union bound over all features, we have that with
probability 1 − δ, for all i = 1 . . . d,

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ CL

√
2n log(2d/δ) . (8)

The results follows by combining Eq. 8 with Eq. 7.

Remark about Lemma 1 In the Markov design
model considered in this lemma, states {Xt}n

1 are
random variables generated according to the Markov
chain and the noise terms ξt may depend on the next
state Xt+1 (but should be centered conditioned on the
past X1, . . . , Xt). This lemma will be used in order to
prove Theorem 1, where we replace the target function
f with the value function V , and the noise term ξt with
the temporal difference r(Xt) + γV (Xt+1) − V (Xt).

Note that this lemma is an extension of the bound for
the model of regression with deterministic design in
which the states {Xt}n

1 are fixed and the noise terms,
ξt’s, are independent. In the setting of deterministic
design, usual concentration results provide high prob-
ability bounds similar to Eq. 4, but without the de-
pendence on νn. An open question is whether it is
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T̂ v̂

v

Fn

Π̂v

T̂ v

Π̂T̂ v

v̂ = Π̂T̂ v̂

Figure 1. This figure represents the space R
n, the linear

vector subspace Fn and some vectors used in the proof of
Theorem 1.

possible to remove νn in the bound for the Markov
design regression setting.

Proof of Theorem 1. Step 1: Using the triangle in-
equality, we have (see Figure 1)

||v̂−v||n ≤ ||v̂− bΠ bT v||n + ||bΠ bT v− bΠv||n + ||bΠv−v||n. (9)

From the γ-contraction of Π̂T̂ mapping and the fact
that v̂ is its unique fixed point, we obtain

||v̂ − Π̂T̂ v||n = ||Π̂T̂ v̂ − Π̂T̂ v||n ≤ γ||v̂ − v||n, (10)

Thus from Eq. 9 and 10, we have

||v̂− v||n ≤ 1

1 − γ

[
||Π̂v − v||n + ||Π̂T̂ v− Π̂v||n

]
. (11)

Step 2: We now provide a high probability bound
on ||Π̂T̂ v − Π̂v||n. This is a consequence of Lemma 1

applied to the vectors Y = T̂ v and Z = v. Since v
is the value function at the points {Xt}n

1 , from the
definition of the pathwise Bellman operator, we have
that for 1 ≤ t ≤ n − 1,

ξt = yt − vt = r(Xt) + γV (Xt+1) − V (Xt)

= γ
[
V (Xt+1) −

∫
P (dy|Xt)V (y)

]
,

and ξn = yn − vn = −γ
∫

P (dy|Xn)V (y). Thus, Eq. 3
holds for 1 ≤ t ≤ n − 1. Here we may choose C =
2γVmax for a bound on ξt, 1 ≤ t ≤ n − 1, and C =
γVmax for a bound on ξn. Azuma’s inequality may only
be applied to the sequence of n − 1 terms (the n-th

term adds a contribution to the bound), thus instead
of Eq. 8, we obtain with probability 1 − δ

∣∣∣
n∑

t=1

ξtϕi(Xt)
∣∣∣ ≤ γVmaxL

(
2
√

2n log(2d/δ) + 1
)
,

for all 1 ≤ i ≤ d. Combining with Eq. 7, we deduce
that with probability 1 − δ, we have

||bΠ bT v − bΠv||n ≤ γVmaxL

r
d

νn

“r
8 log(2d/δ)

n
+

1

n

”
, (12)

The claim follows by combining Eq. 12 and 11.

Remark 6 In addition to Eq. 1, one may easily de-
duce a tighter bound (when γ is close to 1):

||v̂ − v||n ≤ 1√
1 − γ2

||v − Π̂v||n

+
1

1 − γ

[
γVmaxL

√
d

νn

(√
8 log(2d/δ)

n
+

1

n

)]

by using Pytagora’s Theorem in Step 1, i.e., ||v̂−v||2n ≤
(||v̂ − Π̂T̂ v||n + ||Π̂T̂ v − Π̂v||n)2 + ||Π̂v − v||2n instead
of Eq. 9.

5. Generalization Bounds

The generality of Theorem 1 comes at the cost that the
performance is evaluated only at the states visited by
the Markov chain. The reason is that no assumption
about the existence of the stationary distribution of
the Markov chain is made. However in many problems
of interest, the Markov chain has a stationary distribu-
tion ρ, and thus, the performance can be generalized to
the whole state space under the measure ρ. Moreover,
if ρ exists, it is possible to derive a condition for the
existence of the pathwise LSTD solution depending on
the number of samples and the smallest eigenvalue of
the Gram matrix defined according to the stationary
distribution ρ ; G ∈ R

d×d , Gij =
∫

φi(x)φj(x)ρ(dx).
In this section, we assume that the Markov chain M
is exponentially fast β-mixing with parameters β̄, b, κ,
i.e., its β-mixing coefficients satisfy βi ≤ β̄ exp(−biκ)
(see e.g., Sections 7.2 and 7.3 in Lazaric et al. 2010 for
a more detailed definition of β-mixing processes).

Before stating the main results of this section, we in-
troduce some notation. If ρ is the stationary distri-
bution of the Markov chain, we define the orthogonal
projection operator Π : B(X ; Vmax) → F as

ΠV = argmin
f∈F

||V − f ||ρ. (13)
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Furthermore, in the rest of the paper with a little abuse
of notation, we replace the empirical norm ||v||n de-
fined on states Xn

1 by ||V ||n, where V ∈ B(X ; Vmax)
is such that V (Xt) = vt. Finally, we should guaran-
tee that the pathwise LSTD solution V̂ is uniformly
bounded on X . For this reason, we move from F to
the truncated space F̃ . A function f̃ ∈ F̃ is defined as

f̃(x) =


f(x) if |f(x)| ≤ Vmax ,
sgn

`
f(x)

´
Vmax otherwise.

(14)

In the next sections, we present conditions on the ex-
istence of the pathwise LSTD solution and derive gen-
eralization bounds under different assumptions on the
way that the samples X1, . . . , Xn are generated.

5.1. Existence of Pathwise LSTD Solution

In this section, we assume that all the eigenvalues of G
are strictly positive and derive a condition to guaran-
tee that the sample-based Gram matrix 1

nΦ⊤Φ is in-
vertible. In particular, we show that if a large enough
number of samples (depending on the smallest eigen-
value of G) is available, then the smallest eigenvalue
of 1

nΦ⊤Φ is strictly positive with high probability.

Lemma 2. Let G be the Gram matrix defined accord-
ing to the distribution ρ and ω > 0 be its smallest
eigenvalue. Let X1, . . . , Xn be a path of length n of a
stationary β-mixing process with stationary distribu-
tion ρ. If the number of samples n satisfies the follow-
ing condition

Λ(n, δ)

n
max


Λ(n, δ)

b
, 1

ff
1/κ

<
ω

288L2
, (15)

where Λ(n, δ) = log e
δ + log

(
max{6, nβ̄}

)
, then with

probability 1 − δ, the family of features (ϕ1, . . . , ϕd)
is linearly independent on the states X1, . . . , Xn (i.e.,
||fα||n = 0 implies α = 0) and the smallest eigenvalue
νn of the sample-based Gram matrix 1

nΦ⊤Φ satisifies

√
νn ≥

√
ω

2
−

s

72L2
Λ(n, δ)

n
max


Λ(n, δ)

b
, 1

ff
1/κ

> 0 .

(16)

Proof. From the definition of the Gram matrix and the
fact that ω is its smallest eigenvalue, for any function
fα ∈ F , we have

||fα||2ρ = ||φ⊤α||2ρ = α⊤Gα ≥ ωα⊤α = ω||α||2.

Using a concentration inequality (see Corollary 4
of Lazaric et al. 2010) and the fact that the basis func-
tions ϕj are bounded by L, thus fα is bounded by
L||α||, we have ||fα||ρ − 2||fα||n ≤ ǫ with probability
1 − δ, where

ǫ = ‖α‖

s

288L2
Λ(n, δ)

n
max


Λ(n, δ)

b
, 1

ff
1/κ

.

Thus we obtain

2||fα||n + ǫ ≥
√

ω||α||. (17)

Let α be such that ||fα||n = 0, then from Eq. 17 and
the definition of ǫ we deduce that α = 0. Thus νn > 0
and the inequality in Eq. 16 is obtained by choosing
α to be the eigenvector of 1

nΦ⊤Φ correspond to the
smallest eigenvalue νn. For this value of α, we have
||fα||n =

√
νn||α||, and the claim follows using Eq. 17.

Remark 1 If Λ(n, δ)/b > 1 and nβ̄ ≥ 6, the condi-
tion on the number of samples can be rewritten as

n

log
`

e
δ
nβ̄

´ 1+κ

κ

≥ 288L2

ωb1/κ
.

As it can be seen, the number of samples needed to
have strictly positive eigenvalues in the sample-based
Gram matrix has an inverse dependency on the small-
est eigenvalue of G. As a consequence, the more G
is ill-conditioned the more samples we need for the
sample-based Gram matrix 1

nΦ⊤Φ to be invertible.

5.2. Generalization Bounds for Stationary
β-mixing Processes

In this section, we show how Theorem 1 can be gen-
eralized to the entire state space X when the Markov
chain M has a stationary distribution ρ. In particular,
we consider the case in which the samples X1, . . . , Xn

are obtained by following a single trajectory in the sta-
tionary regime of M, i.e., when we consider that X1

is drawn from ρ.

Theorem 2. Let X1, . . . , Xn be a path generated by
a stationary β-mixing process with stationary distribu-
tion ρ. Let ω be the smallest eigenvalue of the Gram
matrix defined according to ρ and n satisfy the condi-
tion in Eq. 15. Let Ṽ be the truncation (using Eq. 14)
of the pathwise LSTD solution, then

||Ṽ − V ||ρ ≤ 2

1 − γ

h
2
√

2||V − ΠV ||ρ + ε2 (18)

+ γVmaxL

r
d

ν

“r
8 log (8d/δ)

n
+

1

n

”i
+ ε1

with probability 1− δ, where ν is a lower bound on the
eigenvalues of the sample-based Gram matrix defined
by Eq. 16,

ε1 =

s
Λ(n, d, δ/4)

nC2

max


Λ(n, d, δ/4)

b
, 1

ff
1/κ
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with Λ(n, d, δ/4) = 2(d + 1) log n + log 4e
δ +

log+
(
max{18(C1C2)

2(d+1), β̄}
)
, C1 = 6912eV 2

max, and
C2 = (1152V 2

max)
−1, and

ε2 =

s

288
`
Vmax + L||α∗||

´
2 Λ(n, δ/4)

n
max


Λ(n, δ/4)

b
, 1

ff
1/κ

where Λ(n, δ/4) = log 4e
δ +log

(
max{6, nβ̄}

)
and α∗ is

such that fα∗ = ΠV .

Proof. This result is a consequence of applying gener-
alization bounds to both sides of Eq. 1 (Theorem 1).
We first bound the left-hand side.

2||V̂ − V ||n ≥ 2||Ṽ − V ||n ≥ ||Ṽ − V ||ρ − ε1

with probability 1− δ′. The first step follows from the
definition of the truncation operator, while the sec-
ond step is a straightforward application of Corollary 3
in Lazaric et al. (2010).

We now bound the term ||V − Π̂V ||n in Eq. 1:

||V − bΠV ||n ≤ ||V − ΠV ||n ≤ 2
√

2||V − ΠV ||ρ + ε2

with probability 1 − δ′. The first step follows from
the definition of the operator Π̂. The second step
is an application of the inequality of Corollary 4
in Lazaric et al. (2010) for the function V − ΠV .

From Theorem 1, the two generalization bounds, and
the lower bound on ν, each one holding with proba-
bility 1 − δ′, the statement of the Theorem (Eq. 18)
holds with probability 1 − δ by setting δ = 4δ′.

Remark 1 Rewriting the bound in terms of the ap-
proximation and estimation error terms (up to con-
stants and logarithmic factors), we obtain

||Ṽ − V ||ρ ≤ O

„
1

1 − γ
||V − ΠV ||ρ +

1

1 − γ

1√
n

«
.

While the first term (approximation error) only de-
pends on the target function V and the function space
F , the second term (estimation error) primarily de-
pends on the number of samples. Thus, when n goes
to infinity, the estimation error goes to zero and we
obtain the same performance bound (up to a 4

√
2

constant) as for the model-based case reported by
Tsitsiklis & Van Roy (1997).

Remark 2 Antos et al. (2008) reported a sample-
based analysis for the modified Bellman residual
(MBR) minimization algorithm. They consider a gen-
eral setting in which the function space F is bounded
and the performance of the algorithm is evaluated ac-
cording to an arbitrary measure µ (possibly different

than the stationary distribution of the Markov chain
ρ). Since Antos et al. (2008) showed that the MBR
minimization algorithm is equivalent to LSTD when
F is a linearly parameterized space, it may be inter-
esting to compare Theorem 2 to the bound in Lemma
11 of Antos et al. (2008). In Theorem 2, similar to
Antos et al. (2008), samples are drawn from a station-
ary β-mixing process, however, F is a linear space and
ρ is the stationary distribution of the Markov chain.
It is interesting to note the impact of these two dif-
ferences in the final bound. The use of linear spaces
has a direct effect on the estimation error and leads
to a better convergence rate due to the use of im-
proved functional concentration inequalities (Lemma 5
in Lazaric et al. 2010). In fact, while in Antos et al.
(2008) the estimation error for the squared error is of
order O(1/

√
n), here we achieve a faster convergence

rate of order O(1/n). The use of ρ instead of an ar-
bitrary measure µ has a significant impact on the ap-
proximation error. The approximation error in Eq. 18
||V −ΠV ||ρ only depends on how well the space F can
approximate the value function V . On the other hand,
the approximation error of Antos et al. (2008) contains
terms that are related to more complex properties of
the space, such as its capability to approximate any
function obtained by applying the Bellman operator
T to any function in F . This term called the inherent
Bellman error can be shown to be small only for spe-
cific classes of MDPs (e.g., Lipschitz MDPs). Finally,
it is interesting to notice that although the solution of
MBR minimization reduces to LSTD, its sample-based
analysis cannot be directly used for LSTD. In fact, in
Antos et al. (2008) the function space F is assumed
to be bounded, while general linear spaces cannot be
bounded. Whether the analysis of Antos et al. (2008)
can be extended to the truncated solution Ṽ of LSTD
is an open question that requires further investigation.

5.3. Generalization Bounds for Markov Chains

The main assumption in the previous section is that
X1, . . . , Xn is generated by a stationary β-mixing pro-
cess with stationary distribution ρ. This is possible
if we consider samples of a Markov chain during its
stationary regime, i.e. X1 ∼ ρ. However in practice,
ρ is not known, and the first sample X1 is usually
drawn from a given initial distribution and the rest of
the sequence is obtained by following the Markov chain
from X1 on. As a result, the sequence X1, . . . , Xn is no
longer a realization of a stationary β-mixing process.
Nonetheless, under suitable conditions, after ñ < n
steps, the distribution of Xñ approaches the station-
ary distribution ρ. In fact, according to the conver-
gence theorem for fast-mixing Markov chains (see e.g.,
Proposition 3 in Lazaric et al. 2010), for any initial
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distribution λ ∈ S(X ), we have

||
∫

X

λ(dx)Pn(·|x) − ρ(·)||TV ≤ β̄ exp(−bnκ).

We now derive a bound for a modification of pathwise
LSTD in which the first ñ samples (that are used to
burn the chain) are discarded and the remaining n− ñ
samples are used as training samples for the algorithm.

Theorem 3. Let X1, . . . , Xn be a trajectory generated
by a β-mixing Markov chain with stationary distribu-
tion ρ. Let ñ (1 ≤ ñ < n) be such that n − ñ satis-
fies the condition of Eq. 15, and Xñ+1, . . . , Xn be the
samples actually used by the algorithm. Let ω be the
smallest eigenvalue of the Gram matrix defined accord-
ing to ρ and α∗ ∈ R

d be such that fα∗ = ΠV . Let Ṽ be
the truncation of the pathwise LSTD solution (using

Eq. 14), then by setting ñ =
(

1
b log 2eβ̄n

δ

)1/κ

, we have

||Ṽ − V ||ρ ≤ 2

1 − γ

h
2
√

2||V − ΠV ||ρ + ε2 (19)

+γVmaxL

r
d

ν

“r
8 log (8d/δ)

n − ñ
+

1

n − ñ

”#
+ ε1

with probability 1 − δ, where ε1 and ε2 are defined as
in Theorem 2 (with n − ñ as the number of training
samples).

The proof of this result is a simple consequence of
Lemma 8 in Lazaric et al. (2010) applied to Theo-
rem 2.

Remark 1 The bound in Eq. 19 indicates that in
the case of β-mixing Markov chains, a similar perfor-
mance to the one for stationary β-mixing processes is
obtained by discarding the first ñ = O(log n) samples.

6. Conclusions

In this paper we presented a finite-sample analysis of
a natural version of LSTD, called pathwise LSTD. We
first considered a general setting where we do not make
any assumption about the Markov chain. We derived
an empirical performance bound which indicates how
close the LSTD solution is to the value function V at
the states generated by the Markov chain. The bound
is expressed in terms of the best possible approxima-
tion of V (approximation error) in the linear approx-
imation space F and an estimation error term which
depends on the number of samples (the quadratic er-
ror scales with O(n−1/2)) and the smallest strictly-
positive eigeinvalue of the sample-based Gram matrix.
We then showed that when the Markov chain possesses

a stationary distribution, then one can deduce gen-
eralization performance bounds using the stationary
distribution of the chain as our generalization mea-
sure. In particular, we considered the cases where the
sample trajectory is generated by stationary and non-
stationary β-mixing Markov chains and derived the
corresponding bounds.

This work raises two open questions: 1) Is it possible
to remove the dependence to νn in the bound of Theo-
rem 1? 2) Is it possible to extend the current analysis
to the general case of LSTD(λ)?
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