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Abstract

POMDPs are the models of choice for re-
inforcement learning (RL) tasks where the
environment cannot be observed directly.
In many applications we need to learn the
POMDP structure and parameters from ex-
perience and this is considered to be a dif-
ficult problem. In this paper we address
this issue by modeling the hidden environ-
ment with a novel class of models that are
less expressive, but easier to learn and plan
with than POMDPs. We call these mod-
els deterministic Markov models (DMMs),
which are deterministic-probabilistic finite
automata from learning theory, extended
with actions to the sequential (rather than
i.i.d.) setting. Conceptually, we extend
the Utile Suffix Memory method of McCal-
lum to handle long term memory. We de-
scribe DMMs, give Bayesian algorithms for
learning and planning with them and also
present experimental results for some stan-
dard POMDP tasks and tasks to illustrate
its efficacy.

1. Introduction

In this paper we derive a method to estimate the hid-
den structure of environments in general reinforcement
learning problems. In such problems, at each discrete
time step the agent takes an action and in turn re-
ceives just an observation and a reward. The goal of
the agent is to take actions (i.e. plan) to maximize its
future time-averaged discounted rewards (Bertsekas &
Shreve, 1996). Clearly, we need to impose some struc-
ture on the environment to solve this problem.

The most popular approach in machine learning to
do this is by assuming that the environment is a par-
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tially observable Markov decision process (POMDP),
which are (essentially) hidden Markov models with
actions. Given the model (structure and parame-
ters) of a POMDP, there exists effective heuristic al-
gorithms for planning (see the survey (Ross et al.,
2008)), although exact planning is undecidable in gen-
eral (Madani et al., 2003). However, in many impor-
tant problems, the POMDP model is not available a-
priori and has to be learned from experience. While
there are some promising new approaches (e.g. (Doshi-
Velez, 2009) using HDP-POMDPs), this problem is as
yet unsolved (and in fact NP-hard even under severe
constraints (Sabbadin et al., 2007)).

One way to bypass this difficult learning problem is
to consider simpler environment models. In particu-
lar, in this paper we assume that each history deter-
ministically maps to one of finitely many states and
this state is a sufficient statistic of the history (Mc-
callum, 1995; Shalizi & Klinkner, 2004; Hutter, 2009).
Given this history-state map the environment becomes
a MDP which can then be used to plan. So the learn-
ing problem now is to learn this map. Indeed, the well
known USM algorithm (Mccallum, 1995) used Predic-
tion Suffix Trees (Ron et al., 1994) for these maps
(each history is mapped to exactly one leaf/state) and
was quite successful in benchmark POMDP domains.
However, PSTs lack long term memory and had dif-
ficulty with noisy environments and so USM was not
followed up on for the most part. In our work we con-
sider a Bayesian setup and replace PSTs with finite
state machines and endow the agent with long term
memory. The resulting model is a proper subclass of
POMDPs, but hopefully maintains the computational
simplicity and efficiency that comes with considering
deterministic history state maps.

We note that belief states of POMDPs are also de-
terministic functions of the history. But this state
space is infinite and so POMDP models learning al-
gorithms try to estimate the hidden states (see for in-
stance (Doshi-Velez, 2009)). As a result, these meth-
ods are quite different from algorithms using deter-
ministic history-state maps. Other notable meth-
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ods for learning the environment model include PSRs
(Littman et al., 2002) – unfortunately we lack space
and do not discuss these further. Superficially, finite
state controllers for POMDPs (Kaelbling et al., 1998)
seem closely related to our work but these are not
quite model learning algorithms. They are (powerful)
planning algorithms that assume a hidden but known
environment model (at the very least, implicitly, an
estimate of the number of hidden states).

We now proceed as follows. We define a general RL
environment and then our model, the deterministic
Markov model (DMM), and show how to use it to
model the environment, infer the state given a history
and compute the optimal policy. We then describe
our Bayesian inference framework and then derive a
Bayesian, heuristic Monte-Carlo style algorithm for
model learning and planning. Finally, we describe ex-
periments on standard benchmark POMDP domains
and some novel domains to illustrate the advantage
of our method over USM. Due to lack of space formal
proofs of our results are given in (Mahmud, 2010). Our
focus here is on motivating our approach via discussion
and experiments.

2. Modeling Environments

To recap, we model a general RL environment by our
model, the DMM, and then use the MDP derived from
the DMM to plan for the problem. In the following
we introduce notation (Sect. 2.1), define a general
RL environment (Sect. 2.2), define our model, the
DMMs (Sect. 2.3) and show how they can model the
environment and construct the requisite MDP to plan
with (Sect. 2.4). We then describe the DMM inference
criterion and the learning algorithm in Sect. 3 and 4.

2.1. Preliminaries

EP (x)[f(x)] denotes the expectation of the function f
with respect to distribution P . We let A be a finite set
of actions, O a finite set of observations and R ⊂ IR
a finite set of rewards. We set H := (A × O)∗ to be
the set of histories and γ ∈ [0, 1) to be a fixed discount
rate. We now need some notation for sequences over
finite alphabets. x0:n will denote a string of length
n+ 1 and x<n ≡ x0:n−1 will denote a string of length
n. xi:j will denote elements i to j inclusive, while xi
will denote the the ith element of the sequence. The
indices will often be time indices (but not always). If
there are two strings x0:n and y0:n, we will use xy0:n to
denote the interleaved sequence x0y0x1yn . . . xnyn; we
will use xyi and xyi:j to denote xiyi and xiyi . . . xjyj
respectively. Finally, λ will denote the empty string.
As an example, each element of H is of the form ao0:n

and λ denotes the empty history.

2.2. General RL Environments

A general RL environment, denoted by grle, is defined
by a tuple (A,R, O, RO, γ) where all the quantities
except RO are as defined above. RO defines the dy-
namics of the environment: at step t when action a
is applied, the next reward×observation is selected ac-
cording to probability RO(ro|h, a) where h = ao0:t−1 is
the history before step t. We will write the marginals
over R and O w.r.t. RO by R and O respectively.
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Figure 1. A DMM with A = {a}, R := {0, 1} and O :=
{o, o′, o′′}. The edges are labeled with z ∈ A × O that
cause the transition along with the probability for that
transition (parameters ~φs,a). The reward distributions for

each state appear above each state (parameters ~θs,a).

The actions at each step are chosen using a policy π :
H → A; the value function of π is defined as:

V π(h) = ER(r|h,a)(r) + γEO(o|h,a)[V
π(hao)] (1)

where a := π(h). The goal in RL problems is to learn
the optimal policy π∗ which satisfies V π

∗
(h) ≥ V π(h)

for each policy π and history h. In particular the value
function of this policy is given by:

V π
∗
(h) := V ∗(h) := max

a

{
ER(r|h,a)(r)+

γEO(o|h,a)[V
∗(hao)]

}
(2)

The existence of these functions follow via standard
results (Bertsekas & Shreve, 1996). For the sequel we
fix a particular RL environment and denote it by grle
:= (A,R, O, RO, γ).

2.3. Deterministic Markov Models

Our model is a graphical model and as such defined
by two components – a structure and associated pa-
rameters/probabilities (see Fig. 1). We use DMM to
refer to the structure as during Bayesian learning we
will marginalize out the parameters leaving us with the
marginal likelihood of the just the structure. We will
use the term ‘model’ to refer to DMM+parameters.

The DMM. A DMM ξ is a standard deterministic
finite state automaton (Hopcroft et al., 2006) and is
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defined by the tuple (q◦,S,Σ, δ). Here, q◦ is the start
state, S is the set of states, Σ = A×O is the edge-label
alphabet and δ : S ×Σ→ S is the transition function.
When ξ is at state s, it transitions to state s′ on input
z ∈ Σ iff δ(s, z) = s′. The DMM always starts off
at state q◦ and, overloading δ to denote its transitive
closure, δ(s, h) = s′ means that ξ transitions to s′ from
s when h is given as input. We define H(s) := {h|h ∈
H, δ(q◦, h) = s} as the set of histories that result in
state s.

The Parameters. The parameters of our model are
{~θs,a} (:= ~θ) and {~φs,a} (:= ~φ) indexed over S and

actions A. Pr(r|~θs,a, ξ) and Pr(s′|~φs,a, ξ) are, respec-
tively, the probability that the next reward is r and
next state is s when ξ at state s and action a is cho-
sen. Since both R and S are finite spaces, both the
above distributions are multinomials:

∑
r
~θs,a(r) = 1

and Pr(r|~θs,a, ξ) = ~θs,a(r) and similarly for the ~φs,as.

Model Dynamics. The dynamics of our model is
deterministic or probabilistic depending on the condi-
tioning values (see also (Vidal et al., 2005)). If ξ is
at state s and some action a is taken it transitions
to state s′ with probability Pr(s′|~φs,a, ξ). However,
if the next observation o is also given, the dynam-
ics is deterministic and ξ transitions to state s′ iff
δ(s, ao) = s′. Therefore, given a history ao0:n, there
is exactly one state sequence s0:n that ξ could have
transitioned through (with δ(q◦, ao0:k) = sk). In other
words, DMMs are DPFAs from learning theory (Vidal
et al., 2005) but extended with actions to a sequential
setting1. The states of the DMM can also be inter-
preted as discretization of belief states in a POMDP.
This seems like a rich avenue of future research, but we
do not pursue this here. We are now ready to define
how DMMs model RL environments.

Modeling Environments. Our central modeling as-
sumption is that for the grle we are trying to learn,
there exists a ξg (g stands for ‘generating’) that sat-
isfies for all states s, action a, history h ∈ H(s) and
reward r,

∃~θgs,a, P r(r|~θgs,a, ξg) = R(r|h, a) (3)

DMMs do not model the observation distribution O
because all we actually care about is the reward dis-
tribution (Hutter, 2009). And in fact, we may end up
sacrificing reward prediction accuracy or learn a too
complex model by trying to model task-irrelevant de-

1DMMs are sequential because, unlike DPFAs, they do
not have a terminal state and hence never ‘stop’. So they
define distributions over infinite sequences of rewards in-
stead of reward strings (Shalizi & Klinkner, 2004). This is
more appropriate for possibly non-episodic tasks.

tails of O. For example, in a domain with a million
states where O is different at each state but R is the
same everywhere, it will be a bad idea to try to learn
O. A more realistic example is the fact that when
crossing a street we want to model car movements,
but not swaying of the trees lining the road.

We are not ignoring the observations: they determine
the transition function δ and hence our model. So
we only use observation in so far as they help predict
rewards. But we do need to impose some additional
consistency constraint to account for not modeling O
– we assume ξg satisfies, for all s, s′, a and h ∈ H(s),

∃~φgs,a, P r(s′|~φgs,a, ξg) =
∑

o|hao∈H(s′)

O(o|h, a) (4)

That is, for any s and h ∈ H(s), the probability of the
state s′ on action a must be equal to the cumulative
probability of the observations o such that δ(s, ao) =
s′. Together, this motivates the following definition

Definition 1. We say a DMM ξ computes the grle
reward function R if it satisfies (3) and (4).

So our central assumption is the existence of ξg

computing R.

Final Remark. Trivially, from a formal perspective,
DMMs are maximally general as all the history-state
maps computable using finite time and memory must
have a FSM representation. Whether this formal prop-
erty translates to practical efficacy over wide variety
of applications will need to be established by future
development of the method and learning algorithms.

2.4. DMMs → MDPs and Optimal Policies

Each ξ = (q◦,S,Σ, δ) & parameters ~θ, ~φ de-
fines an MDP (Bertsekas & Shreve, 1996) mdp :=
(A,R,S, RM , T, γ). The first 3 components of mdp
are as defined above and RM and T are the reward
and state-transition distributions respectively

RM (r|s, a) := Pr(r|~θs,a, ξ) (5)

T (s′|s, a) := Pr(s′|~φs,a, ξ) (6)

We denote the mdp corresponding to ξg by mdpg.

Given a policy π̄ : S → A for mdpg, the value function
is defined as follows:

V π̄(s) := ERM (r|s,a)(r) + γET (s′|s,a)[V
π̄(s′)]

where a = π̄(s). Using π̄ we act in the grle as follows.
If the history at step t is h, we choose π̄(s) as our
action where δ(q◦, h) = s. Note that if h = h′ao and
q = δ(q◦, h

′), it must be that δ(q, ao) = s and hence we
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can infer states of our model incrementally. It is now
easy to show that an optimal policy for mdpg is also
an optimal policy for the grle. This fact follows from
(3), (4), (5) and (6) after some algebraic manipulation
(Mahmud, 2010). So we now state the following:

Theorem 1. An optimal policy π̄∗ for mdpg is also
an optimal policy for the grle.

3. Inference of the Correct Model

In this section we define the likelihood function, pos-
terior and predictive distributions for Bayesian learn-
ing of DMMs. In the next section we will develop
a heuristic algorithm to learn these models and plan
with them. We assume a fixed policy π for taking
actions (not necessarily a MDP policy).

3.1. The Likelihood function

We assume that we are given a history + reward se-
quence āō0:n and r̄0:n generated from the environment
using π (that is āk = π(āō<k) ). For convenience, we
write the data as ār̄ō0:n. We define the likelihood of a
DMM+parameters as:

Pr(r̄0:n|āō0:n, ~θ, ξ) :=

n∏
i=0

~θs̄i−1,āi(r̄i)

=
∏
s,a

∏
r

~θs,a(r)ms,a(r) (7)

where, δ(q◦, āō0:k) = s̄k and s̄−1 = q◦; the second
line is a rewriting using the definitions with ms,a(r)
as the number of times reward r̄i = r and s̄i−1 = s
and āi = a in r̄0:n and ās̄0:n. (7) is a distribution
over reward sequences that may be observed given the
action-state sequence ās̄0:n.

We now check that this likelihood is statistically con-
sistent2. In particular, we need to ensure that likeli-
hood function tests whether the ~φ for the model are
also correct, as they are not used in definition in (7).
To establish consistency we need to show two things:
(1) a model predicting incorrect rewards is not selected
and (2) a model with incorrect state transitions is not
selected in the limit of infinite data if we use this like-
lihood. In the following we will do so informally.

For case (1), if a model given by ξA, ~φA, ~θA predicts
rewards incorrectly, this means ∃s ∈ SA such that
H(s) ∩ H(ŝ) is infinite for some ŝ ∈ Sg and ~θAs,a 6=
~θgŝ,a for some a. It is now intuitively clear from line 2
of (7) that the likelihood ratio of the true model and

2If DMMs modeled observation distributions, then the
likelihood function would be the generative probability of
r̄ō0:n given ā0:n and there would be nothing to prove.

this incorrect model will go to infinity as the length
of the data sequence goes to infinity. This means the
likelihood function is consistent for case (1).

For case (2) we assume ξA, ~φA, ~θA predicts the rewards

correctly at every step for each history, but the ~φA are
incorrect. That is, ∃s ∈ SA such that H(s) ∩ H(ŝ) is

infinite for some ŝ ∈ Sg and ~φAs,a 6= ~φgŝ,a for some a.
For simplicity, we further assume that the parameters
~θg are distinct for each s, a pair.

First, note that by the determinism of the δ functions,
for any ao0:n, ξA and ξg deterministically goes through
state sequences (say) sA0:n and sg0:n respectively. Since
ξA predicts the rewards correctly at each state in the
sequence, and since the reward distributions ~θgs,a are
assumed to be distinct for each pair s, a, each state
in sA0:n must map to exactly one state of sg0:n. That
is if sAk = s ∈ SA, and sgk = ŝ ∈ Sg, then for all
other k′ such that of sAk′ = s, it must be that sgk′ = ŝ.
So if s, s′ ∈ SA corresponds to states ŝ, ŝ′ ∈ Sg in
the above sense, then as n → ∞, the (Bayes or ML)
estimate of the state transition distribution P̂ r(s′|s, a)
obtained from the sequence sA0:n must converge to the

true value ~φgŝ,a(s′). Now during learning we will in
fact compute a Bayes estimate of the state transition
distribution from data (see next section), and hence

by the above arguments, the fact that ~φ is not in the
likelihood function become irrelevant. This establishes
consistency of the likelihood function for case (2).

Rigorous proofs of the above, without the simplifying
assumption, is long, technical, unilluminating and re-
quire measure theoretic arguments (Mahmud, 2010).
But the key to all the proofs is the deterministic na-
ture of the transitions when conditioned on actions
and observations. In addition, we make the following
identifiability assumption about ξg, ~θg, ~φg: for any two
states s and s′ there must exist a history h such that
δ(s, h) = q and δ(s′, h) = q′ and q and q′ have dif-
ferent reward distributions for some action. In words,
given any two distinct states s, s′, there must exist an
input history h that, starting from s, s′, lead to states
q, q′ with different reward distributions. It is easy to
see that this assumption is satisfied by many, if not all
domains we are likely to encounter in practice.

3.2. Posterior and Predictive Distributions

We now derive other quantities of interest using rou-
tine methods (Chipman et al., 1998). First, we
put a conjugate uninformative Dirichlet prior w() on
~θs,a and integrate to obtain L(r̄0:n|āō0:n, s, a, ξ), the
marginal likelihood of each state-action pair s, a:
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Figure 2. Example of the looped DMM. The edge labels
have been removed for clarity. The root node/state is at
the top and is the start state. The leaf nodes at the bottom
and the parent of each node is the node above it.∫ ∏

r

~θs,a(r)ms,a(r)w(~θs,a)d~θs,a

= Γ(1)

∏
r′ Γ(ms,a(r′) + 1

|R| )

Γ(
∑
r′ ms,a(r′) + 1)

(8)

where Γ is the Gamma function. L is a distribution
over rewards at state s for action a. The marginal
likelihood of ξ is a distribution over reward sequences
(with s̄0:k as the corresponding state sequence) and is
given by:

Pr(r̄0:n|āō0:n, ξ) =
∏
s,a

L(r̄0:n|āō0:n, s, a, ξ) (9)

Finally, we denote the space of DMMs by H and set it
to the set of all DMMs with < M states (say M = 2500

(!)) and we put a uniform prior W over this space (so
the posterior ratio is equal to the marginal likelihood
ratio for DMMs). Given the model space and the prior,
the posterior probability of a ξ given ār̄ō0:n is:

Pr(ξ|ār̄ō0:n) :=
Pr(r̄0:n|āō0:n, ξ)W (ξ)∑

ξ′∈H Pr(r̄0:n|āō0:n, ξ′)W (ξ′)
(10)

In the next section during learning the model we will
use the posterior as the selection criterion. To use
a learned model for planning, we need the predictive
distributions for rewards and states for pairs s, a given
the data, which are, respectively:

Pr(r|s, a, ār̄ō0:n, ξ) :=
ms,a(r) + 1

|R|

1 +
∑
r′ ms,a(r′)

(11)

Pr(s′|s, a, ār̄ō0:n, ξ) :=
m̂s,a(s′) + 1

|S|

1 +
∑
q m̂s,a(q)

(12)

where where m̂s,a(s′) is the number of times state
s̄i = s′ and s̄i−1 = s and āi = a in ās̄0:n. ( (12)
was obtained by performing the same trick as above
on the multinomials Pr(s′|~φs,a, ξ) using the conjugate
Dirichlet prior). Now we are ready describe our learn-
ing and planning algorithm.

4. Online Learning and Planning

We give a heuristic algorithm for learning the DMMs
and planning with them online. The algorithm inter-

leaves phases of acting in the environment and in the
process collecting data, and improving its estimate of
DMM of the target environment via learning. The al-
gorithm is given in Alg. 1. The initializations are self
explanatory and so we focus on the main for loop.

The first step (line 4), learning a better estimate, is
the heart of the algorithm and discussed in detail be-
low. The second step (line 5) is performed as follows.
First, a MDP corresponding to ξi is constructed using
the method in Sect. 2.4, but using the estimates (11)
and (12) for the MDP reward function (5) and state-
transition function (6) respectively. Then the optimal
policy is learned offline by using Q-learning on the con-
structed MDP (we do not use value iteration because
Q learning was seen to be quicker without any notice-
able difference in performance).

Algorithm 1 Algorithm for learning and planning.

Require: T the length of each phase of acting in the
world, N the number of phases.

1: Generate a random sample ār̄ō0:T from the envi-
ronment by choosing actions at random.

2: Let ξ0 be the initial estimate of the target DMM
with a single state (i.e. all transitions are to q◦).

3: for i = 1 to N do
4: Learn ξi from ξi−1 using history so far āō0:T ·i by

setting ξi to search (ξi−1, ār̄ō0:T ·i).
5: Estimate optimal policy π̂∗ for MDP corre-

sponding to ξi using Q-learning.
6: Generate a sample ār̄ōT ·i:T ·(i+1) from the envi-

ronment by choosing actions according to π̂∗.
7: end for

In the third step (line 6) we follow the policy as de-
scribed at the end of Sect. 2.4. Additionally, whenever
the MDP/DMM transitions from state s to s′ on ac-
tion a and observes reward r, we perform Q-learning
updates on the Q-value of s at a (the Q-values learned
in line 5 are used as initial values for this step). This
additional Q-learning is a heuristic to ensure that we
overcome incorrect parameter estimates due to mis-
match between δi, δg and Si,Sg of ξi and ξg and still
properly explore the domain. This is our approach
to dealing with the infamous ‘exacerbated exploration
problem’ that plagues general RL (Chrisman, 1992).
During this Q-learning, we also take a random action
with probability 0.1 to further aid in exploration.

4.1. Estimating ξi

We now discuss how to estimate ξi in the first step of
the for loop (line 4). DMMs are sequential versions of
DPFAs (Vidal et al., 2005) and learning the latter is
NP-hard when states might have equal distributions.
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Algorithm 2 Main Stochastic Search

function: search(ξ, ār̄ō0:n)

Require: K, the number of iterations.
1: Set ξcur to ξ.
2: for i = 1 to K do
3: With probability 0.6 and 0.4 respec-

tively, set ξprop to extend(ξcur, ār̄ō0:n) or
loop(ξcur, ār̄ō0:n).

4: Choose rnd ∈ [0, 1] uniformly at random.

5: If
Pr(ξprop|ār̄ō0:n)
αPr(ξcur|ār̄ō0:n) > rnd set ξcur to ξprop.

6: end for
7: Return ξcur.

Since this is in fact often the case in RL problems, we
need to put significant bias in our search algorithm.

Algorithm 3 Function for Extending Edges

function: extend(ξ, ār̄ō0:n)

1: Sample a leaf node/state s according to frequency
in s̄0:n (s̄k = δ(q◦, āō0:k)).

2: Sample an outgoing edge ao at s according to the
empirical (w.r.t. ār̄ō0:n) next step reward at ao.

3: Create a new state snew with context xsao where
xs is the context of s (the context of root is empty).

4: Set δ(s, ao) to snew; set δ(snew, a
′o′) =

arg max{length(xs′)|xs′ is a suffix of xsnew}.
5: Add snew to the state of ξ.
6: Return ξ.

We introduce bias by restricting our algorithm to a
particular class of DMMs. Each DMM in this class is
a tree, such that outgoing edges at each node can go
only to a child or an ancestor. Only leaf nodes are
allowed to transition to other nodes that are not its
descendants – see Fig. 2. This is similar to a loop-
ing suffix tree (Holmes & Isbell-Jr., 2006), but our
model is not a suffix tree structure – each node in
the graph is in fact a state. It is straightforward to
show that all DMMs have such a loopy representa-
tion although with possibly exponentially many states.
For the typical POMDP domains this representation
seems particularly suitable, as dynamics in such do-
mains have a neighborhood structure, where we are
only able to transition back to states that were visited
recently. Now our search algorithm (search, Alg. 2)
is a stochastic search over this space with the poste-
rior (10) as the selection criterion. search at each step
performs one of two possible operations. It chooses a
leaf node, and either it extends it by adding another
leaf node (extend, Alg. 3); or it chooses an inter-
nal or a leaf node and loops one of its un-extended

transitions back to an ancestor (loop, Alg. 4). The
modification is then accepted as the estimate of ξg in
the next iteration if it satisfies a Metropolis-Hastings
(MH) style condition (line 5). The condition contains
a parameter α which was set to 25 in all our exper-
iments (this simulates the proposal distribution ratio
in the MH acceptance probability).

Algorithm 4 Function for Looping Edges.

function: search(ξ, ār̄ō0:n)

1: Sample a leaf node/state s according to frequency
in s̄0:n (s̄k = δ(q◦, āō0:k)).

2: Sample an outgoing, unextended edge ao at s ac-
cording to the empirical (w.r.t. ār̄ō0:n) next step
reward at ao.

3: Choose a ancestor s′ of s according 2−m/Z where
m is the no. of ancestors of s between s and s′.

4: Set δ(s, ao) to s′.
5: Return ξ.

We now discuss the heuristics used in extend and
loop to choose nodes to modify. In line 1 of both pro-
cedure, we sample states according to its frequency in
the data because we expect the impact to the likeli-
hood to be the greatest if we modify high frequency
states. Then in line 2 of both we sample an outgo-
ing edge ao of the state s from line 1 according to the
average reward seen at s after taking action a and ob-
serving o. The intuition is that if the reward at that
edge is high, then it might be a good idea to create
a new state there (in extend ) or move it to a differ-
ent state (in loop ) to get a better model. A more
sophisticated version of this heuristic would be to use
the future discounted reward at the edge. In lines 3
and 4 extend constructs the new state for the cho-
sen edge. In line 3 loop chooses an ancestor to loop
back to, choosing a closer ancestor with higher prob-
ability. This is because in typical POMDP domains
we expect the state to transition back to states visited
very recently. loop then loops the edge in line 4.

5. Experiments

5.1. Setup

We ran experiments to illustrate that we do in fact
extend McCallum’s Utile Suffix Memory in desirable
ways. We first ran three experiments on three POMDP
maze problems to evaluate our model on standard
problems. Then we ran experiments on three novel,
non-episodic domains to test the long term memory
ability of our method. The domains for the first are
given in Fig. 3 (numbered 1,2, and 3 respectively) and
they have the same dynamics as in (Mccallum, 1995)
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Figure 3. The three POMDP mazes. S is the start state
and G is the goal state.

with state transition and observation noise.

The domains for the second type of experiments are a
set of ‘harvesting’ tasks with m crops. A crop i become
ready to be harvested after being developed through
ki different phases. It is ready to be harvested for just
1 time step once development is complete and then it
spoils immediately, requiring to be grown again. The
agent has m + 1 different actions. Action ai devel-
ops crop i to its next phase with probability 0.7 and
develops some other crop with probability 0.3. The
remaining action allows the agent to harvest any crop
ready to be harvested at that step. The observation
at each step is the crop that has been developed at
that step. So essentially this is a counting task where
the agent has to remember which phase each crop is
at – so a finite history suffix is not sufficient to make a
decision. The agent receives −1.0 reward for each ac-
tion, and 5.0 reward for a successful harvest. There are
no episodes and the each problem instance essentially
runs forever.
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Figure 4. Results for the maze domains; USM i is the num-
ber of steps to goal state for maze i at the given trial.
Similarly for DMM i etc.

We used several different values of [m,
(k1, k2, · · · , km)] : [4, (2, 2, 2, 2)], [5, (2, 2, 2, 2, 2)]

and [7, (2, 2, 2, 2, 2, 2, 2)] (referred to as harvesting
problems 1, 2 and 3 respectively from now on). The
POMDP representation of these problems have, re-
spectively, 4 · 24 = 64, 5 · 25 = 160, 7 · 27 = 896 states.
In each of these cases, we let each USM and DMM
run for 3000 steps and report the total accumulated
reward for each method averaged over 10 trials.

5.2. Results

The results for the three maze domains are given in
Fig. 4 we report the median time per trial to get to the
goal state to be comparable to (Mccallum, 1995) – the
performance of our implementation of USM matches
that of (Mccallum, 1995). In these experiments in Alg.
1, T is variable, equal to the number of steps the agent
reaches the goal, while N := 30; and K := 5000.

As can be seen, our algorithm more or less matches
USM, except at the beginning where the number of
steps is much higher. This is because our model is
trying to learn a recursive model and hence gets con-
fused when there is little data. Unsurprisingly, the av-
erage number of states estimated by our method was
45.3, 67.5 and 90.5 compared to 204.5, 231.5 and 623.5
for USM. Similarly, our stochastic search took signif-
icantly longer off-line processing to learn (5 minutes
compared to 10s of seconds for USM). So for these
types of episodic tasks, it might be better to first learn
a model using USM and then compress it to a DMM
(Shalizi & Klinkner, 2004). Regardless, the experi-
ments give evidence that DMMs are viable for model-
ing hidden RL environment structure , and that our
inference criterion (7) is correct.

The results for the 3 harvesting/counter domains are
in Fig. 5. Here the difference between the two meth-
ods become quite significant, with our method domi-
nating USM completely. The differences in computa-
tional time was quite similar to that in the previous
set of experiments. The average number of states in-
ferred differed by about 400, with the USM continually
creating new states.

6. Conclusion

In this paper we introduced a novel model for learn-
ing hidden environment structure in RL problems. We
showed how to use the models to approximate the en-
vironment and compute optimal policies. We further
introduced a novel inference criterion, a heuristic al-
gorithm to learn and plan with these models. We then
performed experiments to show the potential of this
approach. The avenues for future research are many.
The most important at this time seems to be devel-
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Figure 5. Results for the mining domains. USM i is the
total reward accumulated by USM on mining problem i at
the given step. Similarly for DMM i etc.

oping a principled algorithm for learning these mod-
els that will apply across many different tasks. An-
other important generalization would be to consider
extending DMMs to more structured, possibly rela-
tional, state spaces. It would also be interesting to
extend the notion of DMMs to consider arbitrary mea-
surable state spaces and see how the inference criterion
works in that situation.
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