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Abstract
We provide a novel view of learning an approx-
imate model of a partially observable environ-
ment from data and present a simple implemen-
tation of the idea. The learned model abstracts
away unnecessary details of the agent’s experi-
ence and focuses only on making certain pre-
dictions of interest. We illustrate our approach
in small computational examples, demonstrating
the data efficiency of the algorithm.

1. Introduction
Reasoning about the consequences of actions in a stochas-
tic, partially observable domain is a key desirable feature of
intelligent agents. Traditionally, the framework of choice
for modeling this process has been provided by Partially
Observable Markov Decision Processes (POMDPs) (see
e.g., Kaelbling et al., 1998). It is well understood how to
plan good courses of action in a POMDP, if the model of the
environment is given. If the model is not known, the tradi-
tional solution is to use Expectation Maximization (EM) to
acquire it from data. This approach has been demonstrated
in several practical applications (e.g. Shatkay & Kaelbling,
1997). However, the empirical evidence to date suggests
that this approach works well mainly if one starts with a
good initial model. If the initial model is imprecise, EM
typically ends up in a bad (but locally optimal) solution.

Recent work on predictive state representations (PSRs)
(Littman et al., 2002) is aimed at addressing this prob-
lem. Their proposed representation is based on predicting
the conditional probability of future observation sequences,
conditioned on future sequences of actions and on the past
history. Because there is no hidden (or latent) state in the
model, in principle, such a representation should be eas-
ier to learn from data. Linear PSRs, which have been ex-
plored most, are an exact model of the system in the sense
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that they can predict the probability of any future, given
any history. Similar exact models have been provided in
other work (e.g., Rivest & Schapire, 1995; Rosencrantz et
al., 2004; Hundt et al. (2006)). At the heart of the linear
PSR construction lies the computation of a “system dynam-
ics” matrix (Singh et al., 2004), which contains conditional
probabilities of future action-observation sequences (called
tests) given past sequences (i.e. histories). Then, one needs
to determine the linearly independent columns of this ma-
trix. However, this operation is not numerically stable, so it
only works well if a lot of data has been accumulated, and
the estimates of the probabilities are very precise. In envi-
ronments with many observations and actions, computing
all these probabilities is too expensive. This has lead to
a wave of recent work on learning approximate predictive
representations (which we review in detail in Sec. 8). The
common thread in all this work is the idea that one has to
give up building an exact model, which is able to predict all
possible future behaviors, and replace it with a more mod-
est goal of predicting only specific quantities of interest.
The approaches differ greatly in terms of the computational
mechanisms involved.

In this paper, we attempt to provide a unified way of think-
ing about this problem. There are two key ideas. First,
the only goal of the model is to maintain only particular
types of predictions (e.g., predictions about specific obser-
vations, about the total rewards that the agent might obtain
etc.). One might think of this model as incomplete, in the
sense that it can only make certain predictions, not all pre-
dictions. Second, the history of the agent has to be summa-
rized in such a way as to make these (restricted) predictions
possible. We take the view that the predictions of the model
will be maintained via a regression process, which maps a
history representation to a prediction value for the quan-
tity of interest. Our goal is to find automatically a good
representation of the history. We propose a very simple
approach, inspired by the mechanism of eligibility traces
routinely used in reinforcement learning (Sutton & Barto,
1998). We show through small computational experiments
that this approach is capable of building good predictive
models from small amounts of experience.
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The paper is structured as follows. Sec. 2 presents back-
ground and notation. Sec. 3 describes our formalization for
building an incomplete predictive model. Sec. 4 presents
an approximate representation with guaranteed prediction
accuracy. The down side of this representation is that it
may be as expensive to compute as a linear PSR. To allevi-
ate this problem, Sec. 5 presents an approach for modeling
the history information. Sec. 6 presents a learning algo-
rithm which constructs an approximate state representation
from data. Sec. 7 provides experimental results. In Sec. 8
we discuss the relationship of our approach to related work,
and in Sec. 9 we conclude and discuss future work.

2. Background
We consider the case of an agent interacting with a dynam-
ical system at discrete time steps, by performing actions
from a discrete set A and receiving observations from a set
O. For simplicity, we assume that O is discrete, though our
approach can be generalized to continuous observations in
a straightforward way. At each time step τ, the agent takes
an action aτ ∈ A and receives an observation oτ ∈ O. A
history is a sequence of past actions and observations; we
denote by hτ the action-observation sequence received up
to τ: hτ = a0o0a1o1 . . .aτoτ.

An action-observation sequence starting at time τ + 1 is
called a test, tτ (cf. Littman et al., 2002). Given a test
tτ = (aτ+1oτ+1 . . .aτ+koτ+k), we denote by ω(t) the se-
quence of observations of the test, (oτ+1, . . .oτ+k) and by
σ(t) the sequence of actions of the test, (aτ+1, . . .aτ+k).
The prediction for test t given history h, p(t|h), is defined as
the conditional probability that ω(t) occurs, if the sequence
of actions σ(t) is executed (Singh et al., 2004):

p(t|h) = Pr(ω(t)|h,σ(t)).

Let T be the set of all tests and H the set of all histories.
Given an ordering (e.g. lexicographic) over H and T , one
can define a matrix D , called the system-dynamics matrix,
in which rows correspond to histories and columns corre-
spond to tests. The entries in the matrix are the predictions
of tests, i.e., Di, j = p(t j|hi). Singh et al. (2004) showed
that, even though this matrix is infinite, if histories and tests
are generated from a POMDP model, the matrix has finite
rank. Linear PSR models are based on finding the set of lin-
early independent columns of this matrix, called core tests,
and maintaining their predictions. While this approach is
theoretically elegant, it is problematic in practice. If the
data is not coming from a Markovian underlying system,
for example, or if the underlying system has continuous
states, the rank of the matrix may be infinite. Even if the en-
vironment is Markovian, but has many observations and ac-
tions, building a sufficient portion of the system-dynamics
matrix, to a sufficient degree of accuracy, may not be fea-
sible. Instead, to simplify the task, the agent can choose

to only answer a restricted set of questions, i.e., make a
limited number of predictions about the future. Much of
the recent approximate PSR work has been driven by this
idea, with the agent’s interest being specified in different
ways, for example, as subsets of the tests of interest, or lin-
ear combinations of tests (e.g. Talvitie & Singh, 2008). We
now propose a way to formalize it.

3. Specifying interest
Definition 1. A test probe, f , is a mapping, f : O∗ → R.
The prediction of a test t given a history h and a probe f
is defined as the expected value of f (t) given h:

p f (t|h) = p(t|h) f (ω(t)),

Finally, the prediction for a sequence of actions
aτ+1 . . .aτ+k given a history h and a probe f is defined as
the expected value of f over all tests t having the action
sequence as a skeleton:

p f (aτ+1 . . .aτ+k|h) = ∑
t:σ(t)=aτ+1...aτ+k

p f (t|h)

Note that the probe is defined only on the observation se-
quence, in order to ensure that the prediction can still be
properly conditioned on the sequence of actions for the test,
σ(t) (and thus independent of the agent’s policy).

This is a very general formulation and previous work can
be derived as special cases. A full linear PSR will have f
equal to 1 for all tests. If the agent is only interested in
predicting a linear combination of the form ∑i wi p(ti), we
can define f (ti) = wi,∀i and f (t) = 0 for all other tests;
this corresponds to transformed PSRs (TPSRs), defined by
Rosencrantz et al. (2004). If the agent wants to ignore all
observations except the last one in a test, f can be defined
as 1 for all tests ending in the desired observation and 0 for
all tests with the same skeleton but not ending in the desired
observation (this approach generalizes in a straightforward
way to union tests, cf. Talvitie & Singh, 2008). If the ob-
servations consist of a vector and certain components are
conditionally independent (cf. Wolfe et al., 2008), then dif-
ferent f s can be used for the parts of the observation vector
that can be modeled independently. An important special
case is the one in which the observations contain rewards;
in this case, f could be defined as the future sum of dis-
counted rewards and the predictions associated with action
sequences would be akin to value functions for sequences
of actions.

4. Learning predictions of interest
Suppose that instead of containing values p(t|h), the sys-
tem dynamics matrix would contain values p f (t|h), where
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f is a given probe. If two rows of this matrix, correspond-
ing to histories h1 and h2, would be equal, then the corre-
sponding histories yield the same predictions for all tests,
and they can be collapsed into one, aggregate class. Simi-
larly, if two tests t1 and t2 had the same predictions for all
histories, they could be collapsed into an equivalence class.
This process gives rise to a smaller matrix.

However, if the matrix is learned from data, exact equality
in the expectation estimates is unlikely to happen. Instead,
we will allow for small errors in these predictions. We can
partition the set of all possible tests T into a set of clusters
T ′, such that for each cluster Ti ∈ T ′,

∀t1, t2 ∈ Ti,∀h ∈ H, |p f (t1|h)− p f (t2|h)| ≤ ε f , (1)

where ε f is a small real value (chosen by the experimenter).
Note that the mapping of tests to such clusters is not unique.
Since every pair of tests in a cluster is similar, any single
test within the cluster can be used to uniquely identify a
specific cluster. We associate with each cluster T ′i a repre-
sentative test t ′i ∈ T ′i , which can be chosen arbitrarily (e.g.,
the lexicographically shortest member). The set T ′ can then
be considered to contain only the representative tests from
each cluster. The prediction for a cluster Ti and history h is:

p f (Ti|h) =
1
|Ti| ∑t∈Ti

p f (t|h)

Note that because of the way in which the clusters are con-
structed, all elements of a cluster will be within ε f of this
prediction. We define the probed prediction vector of a his-
tory to be:

p f (T ′|h) = [p f (t ′1|h), p f (t2|h), . . . , p f (t ′k|h)],

where k is the number of clusters in T ′.

Similarly, we can partition the set of all possible histories H
into a set of clusters H ′, such that for each cluster Hi ∈ H ′

∀h1,h2 ∈ Hi,∀t ∈ T, |p f (t|h1)− p f (t|h2)| ≤ εg, (2)

where εg is a parameter. As before, a representative history
h′i ∈H ′i can be chosen, with H ′ being the set of all clusters;
but by definition, all histories in a cluster will be within εg
of this value.

The probed prediction for a history cluster H ′i is the aver-
age value of the probed prediction vectors of the histories
in the class:

p f (T ′|H ′i ) =
1
|H ′i |

∑
hi∈H ′i

p f (T ′|hi).

The vector defined above gives the probed predictions for
the representative tests in T ′. Given a new history that can

be mapped to a cluster H ′j, we can get the probed predic-
tion for a test of interest t ′i by looking at the ith column of
the vector p f (T ′|H ′j). We use simple averaging but, if the
agent’s behavior were biased by a particular policy, the av-
eraging could be done based on the data received (so more
likely histories would naturally be given more weight). We
can collect all the probed predictions for H ′ in a set denoted
p f (T ′|H ′).

One possibility for obtaining T ′ and H ′ is to construct a
fragment of the system dynamics matrix, then use Eq. (1)
and (2) to collapse its rows and columns. The following
theorem gives an error guarantee for this approach.
Theorem 1. Suppose T ′ respects Eq. 1 and H ′ respects
Eq. 2. The the maximum prediction error will be at most
2(ε f + εg).

Proof: Fig. 1 depicts the main idea of the proof. The large
dots represent the histories, and the small dots are the pre-
dictions for specific tests. Within each circle, i.e. each clus-
ter of tests, all predictions are ε f away from the center, and
thus the difference in prediction is at most the diameter of
the circle, which is 2ε f . Similarly, histories are only as-
signed to the same cluster Hi if their predictions of the tests
of interest are εg away from the center. So within each clus-
ter of histories, any two predictions will have a total error
of at most 2(ε f + εg)�.

h2 h1 h3

εf εf εf

εgεg

Ci

Figure 1. Maximum prediction error

Unfortunately, this approach does not scale well with the
number of action-observations pairs; depending on ε f and
εg, one may need to build a very large fragment of the sys-
tem dynamics matrix to get the representation. We now
turn our attention to methods which are faster, but may pro-
vide rougher approximations to the predictions of interest.

5. History representations
In the rest of the paper, we will assume that f is given and
the goal is to learn predictions p f from data. Given the defi-
nition, the simplest approach is to use discriminative learn-
ing, where the history (or the history-action sequence) is
treated as an input and the output to be predicted is p f . Ex-
isting results (Ng & Jordan, 2002) suggest that discrimina-
tive learning may have advantages compared to generative
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models (like those that might be learned by EM) in terms of
the quality of the solution obtained. Intuitively, this should
be especially true for temporal predictions, in which small
errors in the model estimates may cause predictions to drift
considerably for long sequences of observations. With this
view, the problem of learning a predictive representation
becomes a traditional supervised learning problem that can
be solved in a straightforward way if a mapping of histo-
ries H into a finite set of features Φ is given. However,
finding such a good encoding automatically may be very
hard (this is akin to the feature construction problem). In
the context of learning predictive models, an early attempt
at this task is the work on utile distinction memory (Mc-
Callum, 1995), which learns an action-value function based
on a variable-length history representation. More recently,
Wolfe & Barto (2006) used decision trees to learn similar
predictions, but in a fully observable environment.

To make this problem computationally tractable, we restrict
our attention to mappings in which Φ = R (i.e., each history
is mapped to a real number). Furthermore, we would like
the value of this function to be updated incrementally as
new action-observation pairs are received.

Definition 2. A history probe is a function g : H→ R de-
fined recursively as:

g(ao) = θao

g(hao) = ϕg(h)+ γθao,

where γ, ϕ and θao,∀a ∈ A ,o ∈ O are parameters.

This particular form of history representation is inspired
by eligibility traces; previous work (Loch & Singh, 1998;
Bellemare & Precup, 2007) observed that these functions
produce good representations for partially observable sys-
tems, because they provide implicitly a form of memory to
remember past events. Note that in an MDP, g would be
defined for states and the usual eligibility traces can be rep-
resented by setting θ = 1, ϕ to the product of the discount
factor and the eligibility parameter (usually denoted λ) and
γ = 1. However, for a general partially observable environ-
ment, we would like all these parameters to be learned from
data. We now turn our attention to learning algorithms for
such representations.

6. Learning approximate state
representations

Given a history probe g, we could create clusters of histo-
ries, where histories h1 and h2 are mapped together if their
value under g is close:

|g(h1)−g(h2)| ≤ εg,

where εg is a small real value. The history probe value of a
cluster is:

g(H ′i ) =
1
|H ′i |

∑
h∈H ′i

g(h).

The tuple 〈T ′,H ′, f ,g, p f (T ′|H ′)〉 forms an approximate
system dynamics matrix, which we will call the approxi-
mate agent state representation (AASR). This representa-
tion can be easily updated as the agent collects experience:
whenever a history h is observed, the agent computes the
associated value g(h) and uses it to attribute the history to
an appropriate cluster. Any history h is uniquely mapped to
the cluster i∗ = argmaxi |g(H ′i )−g(h)| that has the closest
history probe value. The probed predictions for the tests of
interest can be obtained from p f (T ′|H ′i∗) (defined as before,
but for the new history clusters). Furthermore, as the agent
observes more data, the clusters (and thus the predictions
for the tests of interest) can be updated.

However, if histories are collapsed based solely on the g
values, there is no guarantee that histories assigned to the
same cluster actually have similar predictions. We would
like to construct a history probe such that g values are close
for histories with similar predictions and very different for
histories with different predictions. Thus, we want to learn
a parameter configuration {ϕ,γ,θ} that minimizes the dis-
tance (in terms of the value of the history probe) between
histories in the same cluster, while maximizing the distance
among all clusters. Formally, we pick θ with

max
{ϕ,γ,θ}

∑
i, j

[g(H ′i )−g(H ′j)]
2,∀H ′i ,H ′j clusters, such that

∀hi,h j ∈ H ′i , |g(hi)−g(h j)| ≤ max
Ti∈T ′
|p f (Ti|hi)− p f (Ti|h j)|

Because the distance between histories in the same cluster
is bounded above by a prediction error, which is a prob-
ability value, we must normalize the values of the history
probes by dividing each g(h) by the theoretical maximal
value, computed as follows:

g(a0o0 . . .anon) = ϕg(a0o0 . . .an−1on−1)+ γθn

= ϕ[ϕg(a0o0 . . .an−2on−2)+ γθn−1]+ γθn

. . .

= ϕ
n
θ0 + γ

n−1

∑
i=0

ϕ
i
θn−i

where θi = θaioi . In the limit, as the length of the history
goes to infinity, the first term goes to zero, and using the
geometric series, the second term converges to γ

R
1−ϕ

, where
R = maxi θi is the highest weight over all observations.

To solve this optimization problem, we begin by construct-
ing a small system-dynamics matrix from the short term
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experience (e.g., a couple of steps in the past). Short se-
quences occur frequently, so the matrix can be computed
easily and accurately. Then we determine the exact clus-
ters of histories and tests of interests. This is similar to the
clustering procedure described before, with the exception
that histories are now collapsed according to their predic-
tions, not according to the history probe. First, the set T ′ of
tests of interest are formed, such that:

∀h|p f (t1|h)− p f (t2|h)| ≤ ε f .

Then, clusters of histories, H ′, are formed, such that:

∀Ti, |p f (Ti|h1)− p f (Ti|h2)| ≤ εg

where εg , ε f are small real values. Finally, we perform a
search in parameter space to solve the optimization prob-
lem above. Note that more efficient solution methods can
be used here; we use line search just for simplicity. More
details on the algorithm (including pseudocode) are avail-
able in (Dinculescu, 2010).

The short-term system dynamics matrix, along with the
parametrized g function learned from it are the new predic-
tive model, which we call the local agent state represen-
tation (LASR). Predictions of tests already in the system-
dynamics matrix are made as explained above: the history
h is mapped to the cluster Hi closest to g(h) and p f (t|Hi)
is read. To make long term predictions, we assume that
predictions are compositional, i.e.:

p f (t1t2|h) = p f (t2|ht1)

The agent is now guaranteed to have errors in prediction
- for example, whether or not ht1 can occur, it will be
mapped to an actual cluster and a valid, possibly non-zero
prediction will be returned. Note that compositionality can
be checked from data and a new representation could be
learned if compositionality is violated; however, this goes
beyond the scope of this paper and we leave it for future
work.

7. Experimental Results
We illustrate our learning algorithm on three small environ-
ments.

7.1. Tunnel World

The first environment is a small probabilistic domain,
shown in Fig. 2. The agent transitions from state i to state
i− 1 with probability p and to state i + 1 with probability
1− p. In our experiments, p = 0.7. There are two deter-
ministic observations: dark (D) and light (L). The starting
state is always the rightmost state (s4 in the figure).

The tests of interest are given by a binary test probe: for any
test t whose observation sequence contains light, f (ω(t)) =

s1 s2 s3 s4

0.3 0.3 0.3

0.3

0.70.70.7

0.7

Figure 2. Tunnel World

1; otherwise, f (ω(t)) = 0. The history probe has the same
form and it only takes into consideration the observation
sequence starting at the last time light was seen.
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Figure 3. Tunnel World: Average prediction error (top), maxi-
mum prediction error (middle) and total number of states (bot-
tom)

The data consists of action-observation trajectories of
length 16. From these, we extract the initial p(t|h) pre-
dictions through counting, while requiring the histories in
the table to be no longer than 10 time steps, and the tests no
longer than 6. All results are averaged over 10 independent
runs. We used γ = 1, ϕ = 0.8 and ε f = 0.04. The parameter
for the light observation, θL, is learned.

The top panel of Fig. 3 presents the total average predic-
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tion error (i.e. the difference, over all history and test pairs,
between the true predictions and the predictions given by
the learned model). The middle panel shows the maximum
prediction error over all history-test pairs. We compare
these errors with those obtained with four models learned
using Expectation Maximization (EM): two models that fit
the data to 10 states (the size of the learned model), and two
that fit the data to 4 states, the actual number of states in the
underlying environment. The initial values of these mod-
els is either uniform, random, or in the case of the 4-state
model, initialized very closely to the correct values.

We find that the initial values of the EM algorithm greatly
affect the accuracy of the model, with all models ending
up in local optima. The proposed algorithm performs bet-
ter overall, even though its maximum prediction is initially
higher; this is because with the amount of data seen, the
system dynamics matrix entries for rare history-test pairs
are inaccurate and they improve with more data. Once a
good representation is found, the number of states in the
approximate model does not increase as more data is seen,
although its accuracy increases. This is because the error
comes from the inaccurate p(t|h) estimations and not from
incorrect clustering. This result can be seen in the bottom
panel of Fig. 3. The states of the final model correspond to
histories that determine the position in the world.

7.2. Gridworld

We now consider a larger domain, similar to the one used
in Sutton et al. (2006), pictured in the left panel of Fig.
4. Each grid cell has 4 different orientations, so there are
6x6x4 states. There are 2 actions, forward (F) and turn left
(L), which changes the orientation without changing the
cell. Each action has a 5% probability of failing (in which
case the agent remains in the same state). The domain is
also partially observable: if the agent is next to a wall and
facing it, it will observe the wall’s colour, otherwise it will
observe white.

Figure 4. Gridworld environment (left) and half-moon environ-
ment (right)

We sample trajectories consisting of 40 transitions in which
the action is chosen uniformly randomly (histories of
length 30, tests of length 10). The start state of each tra-
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Figure 5. Grid world. Top: number of states in the learned model
as the amount of data increases; Bottom; prediction errors for sev-
eral selected tests

jectory is the top left corner, oriented towards the orange
wall. The goal of the task is to make predictions about
whether the agent will see the orange wall again, given the
history so far and a sequence of actions to be taken. θO = 1
and ε f = 0.04. The final model has no more than 50 states,
regardless of the complexity and size of the trajectories, as
can be seen in the top panel of Fig. 5. The bottom panel
contains a plot of the average prediction error for selected
history-test pairs that vary in both the length of the pre-
dicted tests, as well as the observed history. The results are
averaged over 10 runs and contain very tight 95% confi-
dence intervals. As expected, shorter tests have a smaller
prediction error, which converges very quickly, implying
that a model that predicts immediate futures can be learned
from a very small number of samples. Longer tests are seen
with much lower frequency; as a result, their initial p(t|h)
predictions are inaccurate and they take longer to learn.

7.3. Half-moon world

We illustrate the benefit of using local models on the Half-
Moon world used in (Koop, 2007), depicted in the right
panel of Fig. 4. This domain exhibits temporal coher-
ence, i.e. observations are consistent over a short period
of time. There are twenty states; in half of them the agent
observes black, in the others, white. The agent floats with
equal probability between adjacent states. The agent has a
very short term memory available: trajectories of length 5,
which are split in histories up to length 3 and tests up to
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Figure 6. Half Moon world: Maximum error (top panel), aver-
age error (middle panel) and parameter values (bottom panel) as
a function of amount of data

length 2. The start state is the first white state at the top,
and the f probe assigns a value of 1 to any test containing
Dark and 0 otherwise, thus answering the question ”Will I
see Dark in the near future”.

Results (averaged over 10 independent runs) are presented
in Fig. 6. The top panel compares the error in prediction
of the learned LASR with a 20-state model learned with
Expectation Maximization (EM), where the initial parame-
ters are initialized very close to the correct ones. We use
two different scenarios, one in which the testing data is
composed of histories of length 10 and tests of length 1
(thus effectively answering the question ”Will I see Dark”
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Figure 7. Half Moon world - Trajectory starting from 12:00
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Figure 8. Half Moon world - Trajectory starting from 9:00

in the next step), and a second in which the testing data has
tests of length 4. In both scenarios the LASR model has a
smaller total average prediction error (over all history-test
pairs in the training set) when compared to EM. In the mid-
dle panel we present the maximum prediction error of the
models. In both scenarios the learned model has a higher
maximum prediction error than EM, due to the composi-
tionality assumption. Because the algorithm does not try
to learn the dynamics of the system, it will sometimes re-
turn non-zero predictions for history-test pairs that do not
actually occur in the environment. In the bottom panel we
present the change in the two θ parameters over time. It
is interesting to note that the local model prefers assign-
ing a higher weight to the White observation (in the history
probe), even though it is not the observation for the tests.

In Figs. 7 and 8 we present two sample trajectories, one
starting from the top white state (12 o’clock), the other
starting from the 15th state (in the dark zone). The hori-
zontal axis shows the observation at each time step, and the
vertical axis shows the prediction of seeing dark in the next
time step. In both cases, predictions are high quality, albeit
with small oscillations.

8. Related work
Some learning algorithms have been proposed for PSRs.
McCracken & Bowling (2006) propose an on-line learn-
ing method for PSRs. We cannot compare results directly,
since their goal is to learn a complete model. Our algorithm
has a less ambitious goal (maintaining only predictions of
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interest) but as a result can use less data, as shown by com-
paring the reported amounts of time steps in their paper.
James et al. (2005) gradually construct a PSR by adding
memory. At any intermediate stage of learning, their rep-
resentation is approximate, but in the end their goal is to
make complete predictions.

TD networks (Sutton & Tanner, 2005) specify a predictive
model structure that can include approximations and learn
the parameters necessary to make the predictions of inter-
est (as specified by the network). They construct the pre-
dictions using bootstrapping from other predictions, while
we use Monte-Carlo-style estimation.

Our approach is most similar to the work of Talvitie &
Singh (2008), who provide a local, non-parametric ap-
proach to modeling sequences of observations. Our work
has two differences. First, we use action-observations se-
quences, rather than just observations. Second, they as-
sume that the form of the models is given, whereas we learn
it from data. Wolfe et al. (2008) provide approximate PSR
models under the assumption that the observations are mul-
tivariate and different parts of the observation vector can
be assumed to be conditionally independent. Still (2009)
proposes the use of information-theoretic criteria to sum-
marize the system’s history in a finite number of states; our
optimization problem is different, as we do not require in-
formation to be maximized. Our intuition is that the prob-
lem we define is easier to solve, because it does not require
simulated annealing, but an empirical comparison would be
valuable. Talvitie & Singh (2009) learn approximate repre-
sentations whose goal is to update accurately the values of
certain features even in the absence of a PSR model; these
features are used for control. In our work, once the tests of
interest are specified, all their predictions are maintained
continuously.

9. Conclusions and future work
We presented a blueprint for creating approximate repre-
sentations of partial environments from data and a simple
algorithm which makes these ideas concrete. The results
are very promising, but more experimentation, in larger do-
mains, is necessary. Better methods could be used to solve
the optimization problem that we defined (e.g., the prob-
lem could be formulated using L1 regularization). In more
complex tasks, a mapping of histories into reals may not be
sufficient, and instead one may need to use a mapping into
a feature vector. The methods that we proposed extend in a
straightforward way to this case, but the data efficiency re-
mains to be established through experimentation. Finally,
we are currently exploring the idea of checking if the com-
positionality property holds and changing the representa-
tion accordingly.
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