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Abstract

We examine maximum spanning tree-based
methods for learning the structure of tree
Conditional Random Fields (CRFs) P (Y|X ).
We use edge weights which take advantage of
local inputs X and thus scale to large prob-
lems. For a general class of edge weights, we
give a negative learnability result. However,
we demonstrate that two members of the
class–local Conditional Mutual Information
and Decomposable Conditional Influence–
have reasonable theoretical bases and per-
form very well in practice. On synthetic data
and a large-scale fMRI application, our meth-
ods outperform existing techniques.

1. Introduction

The study of probabilistic graphical models (cf., Koller
and Friedman (2009)) often focuses on Bayesian net-
works, Markov random fields, and other generative
models of probability distributions P (Y). However,
Conditional Random Fields (CRFs) (Lafferty et al.,
2001), which model conditional distributions P (Y|X ),
offer computational and statistical advantages when
we require P (Y|X ) but not the full joint distribution
P (Y,X ). CRFs have been successful in a variety of
areas, from natural language processing tasks such as
part of speech tagging (Lafferty et al., 2001) to ac-
tivity recognition (Vail et al., 2007) and heart motion
abnormality detection (Schmidt et al., 2008).

Most research on CRFs has focused on inference or pa-
rameter learning with fixed, expert-chosen structures.
Reliance on hand-picked structures is often pragmatic,
for structure learning can be very expensive. In fact,
parameter learning, which is often a subroutine in
structure learning methods, requires inference for each
training example at each iteration for CRFs; infer-
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ence, in turn, is intractable for general CRFs (Koller
& Friedman, 2009). Thus, although structured models
of Y are more expressive than unstructured ones, re-
searchers often use unstructured models for simplicity,
especially when expert knowledge does not specify a
structure (e.g., Palatucci et al. (2009)).

Low-treewidth CRFs–CRFs for which the outputs Y
form a low-treewidth graph–are a key exception, per-
mitting tractable inference and parameter learning
(Shahaf et al., 2009). In this work, we develop meth-
ods for efficiently learning tree structures for CRFs.
We take advantage of local inputs, where outputs Yi
are only directly influenced by small subsets of X . We
advocate a simple maximum spanning tree-based algo-
rithm, for which we examine a general class of easily
estimated edge weights. In a negative result for this
class, we prove a major distinction between learning
tree CRFs P (Y|X ) and learning trees P (Y). However,
for two weighting methods in this class, we demon-
strate favorable theoretical properties and, via analy-
sis on simple models, can expose the domains in which
they succeed. Using synthetic data, we demonstrate
empirically that our methods represent a significant
improvement over previous methods in terms of re-
covering the true structure of tree CRFs. Finally, we
apply our methods to a structured prediction problem
involving fMRI data from Palatucci et al. (2009).

2. CRF Structure Learning

We first define CRFs and structure learning. Let X be
a set of input variables and Y a set of output variables.
A CRF models a conditional distribution as P (Y|X ) =

1
Z(X )

∏
j φj(YCj , XCj ), where YCj ∈ Y, XCj ∈ X form

the domain of factor φj and Z is a partition func-
tion dependent on X . As for generative models, if
the CRF’s graph (over Y, not X ) is low-treewidth, in-
ference and parameter learning are tractable. Repre-
senting and learning P (Y|X ) can be easier than work-
ing with the joint P (Y,X ). Even if P (Y,X ) is high-
treewidth, the conditional P (Y|X ) may not be. (If
P (Y,X ) is low-treewidth, so is P (Y|X ).) We distin-
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Algorithm 1 Tree CRF Structure Learner
Input: Dataset D over Y,X ; inputs Xi for each Yi
Initialize G to be the complete graph over Y.
for all (Yi, Yj) do

In G, set Weight(Yi, Yj) ←− Score(i, j).
end for
Return: MaxSpanningTree(G)

guish between three learning tasks: feature selection,
structure learning, and parameter learning.

Feature selection means to select inputs XCj
relevant

to each set YCj
; i.e., a factor φj involving YCj

can
only use the selected inputs: φj = φj(YCj

, XCj
). In

this work, we assume we are given an input mapping
specifying inputs XCj for each potential factor involv-
ing YCj . For many applications, expert knowledge can
provide input mappings (such as in image segmenta-
tion, where Y are segment labels and X are pixels);
in other cases, sparsistent methods (Ravikumar et al.,
2008) can be used for feature selection.

Structure learning means to select outputs YCj
for each

factor, thus choosing a graph over Y representing con-
ditional independence in the distribution. Though ex-
pert knowledge can sometimes dictate structure, con-
ditional independence can be less intuitive than non-
conditional independence (such as in our fMRI appli-
cation), making structure learning a valuable tool.

Parameter learning means choosing the values of the
factors φj(YCj , XCj ), where the factor domain YCj ∪
XCj is fixed. This has been well-studied for both
tractable structures (e.g., Lafferty et al. (2001)) and
intractable (e.g., Schmidt et al. (2008)).

2.1. Related Work

Few papers address CRF structure learning. Torralba
et al. (2004) proposed Boosted Random Fields, which
select features and learn CRF structure using greedy
steps to approximately maximize data log likelihood.
Schmidt et al. (2008) proposed maximizing block-
`1-regularized pseudolikelihood, which gives a convex
program and tends to produce sparse models. How-
ever, both methods learn intractable (high-treewidth)
models in general. Shahaf et al. (2009) learn low-
treewidth CRFs by using ideas from graph cuts to
maximize a conditional mutual information-based cri-
terion. Like us, Schmidt et al. (2008) and Shahaf et
al. (2009) assume pre-specified input mappings.

Like Shahaf et al. (2009), we consider learning
tractable, low-treewidth models. They demonstrate
that low-treewidth structures can perform better than
more general structures which require approximate in-

ference and parameter learning. After stating our ap-
proach, we compare it with theirs in Section 3.1.

We are not aware of learnability results for CRF struc-
tures other than learning being hard in general. This
claim follows from the hardness of learning general
generative models (e.g., Srebro (2003)).

3. Efficiently Recovering Tree CRFs

Since we only learn tree CRFs, we simplify notation.
We write Yij ≡ {Yi, Yj}. The inputs for Yi specified by
the input mapping are Xi; likewise, Xij corresponds to
Yij . Our goal now is a scalable algorithm for learning
tree CRF structures. We begin by proposing a gold
standard and showing it is ideal but impractical.

3.1. A Gold Standard

We can define an algorithm analogous to Chow-Liu
for generative models (Chow & Liu, 1968) by showing
that the conditional log likelihood of a tree CRF de-
composes over the edges (i, j) and vertices i in the tree
T . Let Q be our model and P the true distribution.
Using the (optimal) parameters Q(A|B) = P (A|B),

EP [logQ(Y|X )] =
∑

(i,j)∈T EP [logQ(Yij |X )]
−
∑
i(degi − 1)EP [logQ(Yi|X )]

=
∑

(i,j)∈T IP (Yi;Yj |X ) + C,

where subscript P means w.r.t. P , degi is the degree
of vertex i, and C is a constant w.r.t. the structure.

Assuming the global Conditional Mutual Information
(CMI) I(Yi;Yj |X ) is easy to compute, we can re-
cover the maximum likelihood model: ∀(i, j), com-
pute I(Yi;Yj |X ), and choose the maximum spanning
tree. This method was proposed by Friedman et al.
(1997) for learning Tree-Augmented Naive Bayes clas-
sifiers. Unfortunately, as the dimensionality of X
grows, this method quickly becomes intractable. Com-
puting I(Yi;Yj |X ) requires an accurate estimate of
P (Yij |X ) (or similar quantities); P (Yij |X ) can be as
expensive to compute and represent as P (Y|X ) when
the dimensionalities of Y and X are of the same order.
This observation emphasizes the need to parametrize
our model with local inputs Xi ⊂ X , rather than global
inputs Xi = X , to ensure scalability w.r.t. X . 1

Ideally, we could retain the efficiency of spanning trees
while making use of local inputs in X , i.e., only calcu-

1If the true model were a tree CRF with local inputs
and complexity were ignored, global CMI could recover the
true structure, after which the model could be succinctly
parametrized with local inputs. However, if the true CRF
were not a tree, it is unclear whether global CMI would
recover the optimal projection onto a tree with local inputs.
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lating probabilities of the form P (Yij |Xij) conditioned
on small sets Xij . With local inputs, though, the par-
tition function prevents the conditional log probability
from decomposing over edges and vertices:

logP (Y|X ) = − logZ(X ) +
∑

(i,j)∈T

log φij(Yij , Xij).

Our primary goal is to overcome the intractability of
the partition function by deriving a meaningful local
edge score Score(i, j) usable in Algorithm 1.

Shahaf et al. (2009) took a similar approach, defin-
ing edge scores and maximizing the weight of edges
chosen for a low-treewidth model. However, they
used global inputs, with edge scores set to the global
CMI I(Yi;Yj |X ). They focused on the second step–
maximizing the weight of edges included in the model–
while we focus on better methods for weighting edges.
Our work is compatible with theirs; their algorithm
could use our edge scores to learn treewidth-k models.

3.2. Score Decay Assumption

We phrase our analysis of edge scores in terms of recov-
ering the structure of tree CRFs. I.e., we assume the
true distribution is representable by a tree CRF. We
begin by defining a desirable property for edge scores.

Definition: If the true model P (Y|X ) is a tree T , the
Score Decay Assumption (SDA) states that, for any
edge (i, j) ∈ T , if a path in T of length > 1 between
k, l includes (i, j), then Score(i, j) > Score(k, l).

Intuitively, the SDA says the score between vertex
pairs decays with distance. Yet this is less strict than
requiring, e.g., that the assumption hold regardless of
whether (i, j) is an edge in T ; thus, the SDA does not
rely on comparing pairs of edges not in T . This con-
dition is necessary and sufficient for recovering trees.

Theorem 1 Suppose P (Y|X ) is representable by a
tree CRF with structure T . The Score Decay Assump-
tion holds for a score S w.r.t. P iff Algorithm 1 using
score S can recover T .

Proof: While building a maximum spanning tree over
Y by Kruskal’s Algorithm (Kruskal, Jr., 1956), say we
add edge (k, l) /∈ T . Let pathkl be the path between
k, l in T . There exists an edge (i, j) ∈ pathkl not yet
added, so Score(i, j) < Score(k, l), violating the SDA.
I.e., we add an edge not in T iff the SDA is violated,
so Algorithm 1 recovers T iff the SDA holds. �

Recall that we wish to use local scores S(i, j) =
f(Yij , Xij) for scalability. We make a simplifying as-
sumption about the input mapping: a factor involving
Yij depends on Xi ∪Xj (not arbitrary Xij). This as-

sumption makes our methods less general but more
practical. (E.g., feature selection requires inputs for
each of |Y| outputs, rather than for

(|Y|
2

)
possible edge

factors.) We now define a general class of such scores.

Definition: The Local Linear Entropy Scores are
scores Score(i, j) representable as linear combinations
of entropies over subsets of {Yi, Yj , Xi, Xj}.

This class of scores includes, for example, the lo-
cal Conditional Mutual Information I(Yi;Yj |Xij) =
H(Yi|Xij) + H(Yj |Xij) − H(Yij |Xij) we consider in
Section 4.2. Unfortunately, the Local Linear Entropy
Scores are insufficient in general for recovering tree
CRFs, as the following theorem demonstrates.

Theorem 2 Assume that the edge score S is symmet-
ric, i.e., S(i, j) = S(j, i). Even if we assume the class
of distributions we are learning:

• are representable by tree CRFs,

• obey the input mapping, i.e., that if the true model
has edge (i, j), a factor involving Yij involves no
more inputs than Xij,

• and have no trivial potentials, i.e., that no poten-
tials are deterministic or effectively absent,

then every Local Linear Entropy Score S violates the
Score Decay Assumption for some models from this
class, even with exact entropy estimates.

Proof Sketch: Since conditional entropies equal a
difference between non-conditional entropies, any Lo-
cal Linear Entropy Score S(i, j) may be written as

w ·
(
H(Yi) +H(Yj), H(Xi) +H(Xj), H(Yij), H(Xij),
H(Yi, Xi) +H(Yj , Xj), H(Yi, Xj) +H(Yj , Xi),
H(Yi, Xij) +H(Yj , Xij), H(Yij , Xi) +H(Yij , Xj),
H(Yij , Xij)

)
(This has all non-conditional entropies, grouped since
S is symmetric.) The proof considers a list of cases us-
ing these observations: (1) Since tree CRFs generalize
trees (where X = ∅), the score must (approximately)
reduce to the mutual information S(i, j) = I(Yi;Yj)
when X = ∅. (2) Since we can have arbitrary fac-
tors over X , the score must not be exactly S(i, j) =
I(Yi;Yj). (3) We can introduce simplifying constraints
by considering models for which the inputs X are con-
ditionally independent given the outputs Y.
These constraints allow us to prove that, for certain
classes of distributions, we require S(i, j) ≈ I(Yi;Yj),
but that such a score fails for other classes. �
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Figure 1. Counterexample for piecewise likelihood and lo-
cal CMI: P (Y,X) has a comb structure, with weak pairwise
factors everywhere except for one strong factor φ(Y2, X2).

4. Heuristic Scores

Despite this negative result, we are able to identify cer-
tain Local Linear Entropy Scores which are intuitive
and have desirable theoretical properties. Though the
scores violate the Score Decay Assumption in general,
they are very successful empirically (Section 5).

4.1. Piecewise Likelihood

We want to base our scores upon the conditional log
likelihood, which does not decompose over edges be-
cause of the partition function Z(X ). Much research
aims at handling partition functions tractably. We
frame our analysis in terms of one such work: piece-
wise likelihood (Sutton & McCallum, 2005; 2007).

Piecewise likelihood approximates the log likelihood
by upper-bounding Z(X ). The bound effectively di-
vides Z(X ) into one term for each factor, permit-
ting learning each factor’s parameters independently.
Sutton and McCallum (2005; 2007) apply this ap-
proximation to parameter learning for Markov ran-
dom fields and CRFs, achieving fast learning and high
accuracy. For pairwise models, if we combine fac-
tors with their Z terms, piecewise likelihood becomes∑

(i,j) logP (Yij |Xij). This Local Linear Entropy Score
is usable in Algorithm 1: S(i, j) = EP [logP (Yij |Xij)].

However, piecewise likelihood is a poor edge score. If
a pair (Yi, Xi) share a strong potential, piecewise like-
lihood weights will likely result in a star structure over
Y with Yi at the center, as in the following example.

Example 1: Consider Figure 1’s model. (Y2, X2) has
a strong potential so that H(Y2|X2) ≈ 0. The score
for any edge (2, i) is:

E[logP (Y2,i|X2,i)] = −H(Y2,i|X2,i)
= −H(Yi|X2,i)−H(Y2|Yi, X2,i)
≈ −H(Yi|X2,i) > −H(Yi|Xi)

All other Xj participate in weak potentials, so
−H(Yi|Xi) ≈ −H(Yi|Xij) > −H(Yij |Xij). Even if
edge (Y2, Yi) is not in the true model and (Yi, Yj) is,
we will score (Y2, Yi) above (Yi, Yj). This behavior ap-
peared often in our synthetic experiments. �

Nevertheless, piecewise likelihood is a useful approxi-
mation which helps tie our two proposed edge scores
to the ideal but intractable global CMI.

4.2. Local CMI

The first Local Linear Entropy Score we select is a local
version of global CMI I(Yi;Yj |X ). The local CMI is:

I(Yi;Yj |Xij) = EP [logP (Yij |Xij)]
−EP [logP (Yi|Xi,j) + logP (Yj |Xi,j)] .

The local CMI score is interpretable as the piecewise
likelihood (first line), minus correction terms for the
edge’s endpoints (second line). Intuitively, these cor-
rections discount interactions between each Yi and X .
We can also interpret local CMI as a bound on the like-
lihood gain of a tree CRF over a disconnected model.

Proposition 3 Let QT (Y|X ) be the projection of the
true distribution P (Y|X ) onto tree structure T w.r.t.
P (X ), and let Qdisc(Y |X) ≡

∏
i P (Yi|Xi) be the pro-

jection onto the disconnected model. The local CMI
score CMI(i, j) for QT bounds the likelihood gain 2:

EP [logQT (Y|X )− logQdisc(Y|X )] ≥
∑

(i,j)∈T

CMI(i, j)

Proof: Choose a topological ordering of Y in T with
root Y1. Let YPai be Yi’s parent. Entropies and expec-
tations are defined w.r.t. Q′(Y,X) ≡ QT (Y |X)P (X).

E[logQT (Y |X)− logQdisc(Y |X)]
=
∑
iH(Yi|Xi)−H(Y |X)

=
∑
iH(Yi|Xi)−H(Y1|X)−

∑
i>1H(Yi|YPai , X)

= H(Y1|X1)−H(Y1|X)
+
∑
i>1H(Yi|Xi)−H(Yi|YPai

, X)
≥ H(Y1|X1)−H(Y1|X1)

+
∑
i>1H(Yi|Xi,Pai

)−H(Yi|YPai
, Xi,Pai

)
=
∑
i>1H(Yi|Xi,Pai) +H(YPai |Xi,Pai)
−H(Yi,Pai |Xi,Pai)

=
∑

(i,j)∈T CMI(i, j) �

Like piecewise likelihood, local CMI can perform
poorly if a pair (Yi, Xi) has a strong potential.

Example 2: Consider again Figure 1’s model, where
φ(Y2, X2) is strong enough that H(Y2|X2) is small. Lo-
cal CMI gives a small score to any edge with Y2 since

I(Y2;Yj |X2,j) = H(Y2|X2,j)−H(Y2|Yj , X2,j) ≈ 0.

Since the score for the false edge (Y1, Yn) does not
condition on X2, it could be much higher than the

2Both piecewise likelihood and local CMI have bounds
relating them to the tree CRF log likelihood; we can show
that neither bound is strictly better for all distributions.
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score of the true edges (Y1, Y2), (Y2, Y3). Note that
this is a separate issue from identifiability; with local
inputs, it is vital that we connect Y1, Y2 and Y2, Y3. �
However, local CMI performs fairly well in practice.

4.3. Decomposable Conditional Influence

To overcome the above counterexample, we propose a
final Local Linear Entropy Score dubbed the Decom-
posable Conditional Influence (DCI):

DCI(i, j) ≡ EP [logP (Yij |Xij)]
−EP [logP (Yi|Xi) + logP (Yj |Xj)] .

The first expectation is the piecewise likelihood (as
for local CMI), but the second has terms equal to
the edge’s endpoints’ scores in the disconnected model
Pdisc(Y |X) ≡

∏
i P (Yi|Xi), giving the following result:

Proposition 4 When building a spanning tree T , if
we add edge (i, j) and T does not yet contain edges
adjacent to i, j, then DCI is an exact measure of the
likelihood gain from adding edge (i, j).

Moreover, DCI succeeds on Figure 1’s counterexample
for piecewise likelihood and local CMI.

Example 2, continued: The DCI edge scores are:

DCI(1, 2)
= −H(Y1,2|X1,2) +H(Y1|X1) +H(Y2|X2)
≈ −H(Y1|X1,2) +H(Y1|X1)

DCI(1, n)
= −H(Y1,n|X1,n) +H(Y1|X1) +H(Yn|Xn)
= [H(Y1|X1)−H(Y1|X1,n)]

+ [H(Yn|Xn)−H(Yn|Y1, X1,n)]

Since Y1, Yn are far apart, the two terms in DCI(1, n)
are much closer to 0 than the sum in DCI(1, 2). �
DCI performs very well in practice (Section 5.1).

4.4. Sample Complexity

Though Local Linear Entropy Scores violate the Score
Decay Assumption in general, it is instructive to con-
sider the sample complexity if the assumption is met.

Theorem 5 Let Y,X be discrete and P (Y|X ) be rep-
resentable by a CRF with tree structure T . (Assume
w.l.o.g. that Xi is a single variable; we can merge mul-
tiple variables into a new variable of higher arity.) Let
all variables have arity ≤ R. Let |Y| = n. Assume a
Local Linear Entropy Score S meets the Score Decay
Assumption by ε; i.e., for each edge (i, j) ∈ T on the
path between k, l, S(i, j)− S(k, l) > ε.
To recover the tree with probability at least 1 − γ, it
suffices to train on a set of i.i.d. samples of size

O

(
R8

ε2
log2

(
R

ε

)(
log n+ log

1
γ

+ logR
))

Proof: We use this result on the sample complexity of
estimating entropies from Hoffgen (1993): The entropy
over k discrete variables with arity R may be estimated
within absolute error ∆ with probability ≥ 1−γ using
O
(
R2k

∆2 log2
(
Rk

∆

)
log
(
Rk

γ

))
i.i.d. samples (and time).

Local Linear Entropy Scores may be represented by a
constant number of entropies over ≤ k = 4 variables.
With

(
n
2

)
potential edges, we must compute O(n2) en-

tropies. To ensure estimates of scores order edges in
the same way as the true scores, we must estimate
scores within error ∆ = ε/2. These values, Hoffgen’s
result, and a union bound complete the proof. �

This theorem makes 2 key predictions: 1) sample com-
plexity will increase only logarithmically in n = |Y|,
and 2) high arity R drastically increases sample com-
plexity, indicating the importance of local inputs.
Both predictions are born out by our empirical results.

5. Experiments

We first use synthetic data to compare local CMI and
DCI against other CRF learning methods: piecewise
likelihood, global CMI, and Schmidt et al. (2008)’s
block-`1-regularized pseudolikelihood. (We omit re-
sults from piecewise likelihood since it does poorly.)
We also tested two unstructured models: the discon-
nected CRF with global inputs P (Y|X ) =

∏
i P (Yi|X )

and the disconnected CRF with local inputs P (Y|X ) =∏
i P (Yi|Xi). Based on these results, we tested the

best methods on the larger-scale fMRI application.

5.1. Synthetic Models

We tested a wide variety of synthetic models over bi-
nary variables; the models varied as follows:
Chains vs. trees: Chains have joint distributions
P (Y,X ) representable by ladders composed of cliques
(Yi, Yi+1), (Xi, Xi+1), (Yi, Xi). Trees are the natural
generalization, generated using non-preferential ran-
dom attachment (Nakazatoa & Arita., 2007). We
tested with and without cross factors φ(Yi, Xi+1).
Tractable vs. intractable joint models P (Y,X ): For
our tractable models, P (Y,X ) may be sampled from
directly. For our intractable models, P (X ) and
P (Y|X ) are tractable, but P (Y,X ) is not (but may
be sampled via x ∼ P (X ), y ∼ P (Y|X = x)).
Associative vs. random factors: Associative factors set
φ(A,B) = exp(s) if A = B and φ(A,B) = 1 if A 6= B,
where s is a factor strength. Random factors have
each value log φ(a, b) sampled from Uniform[−s, s].
We set strengths s separately for Y-Y, Y-X, and X-
X factors. For associative factors, we tried both fixed
and alternating positive and negative strengths.
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Figure 2. Local CMI vs. DCI with exact scores. Chains
with associative factors, cross factors, alternating +/−
strengths. Plots: varying magnitudes of Y-Y and Y-X
strengths for fixed magnitude 2 for X-X (in log space).
“Edge recovery” is the fraction of true edges recovered;
“edge ranking” is the fraction of (true, false) edge pairs
with the true edge ranked above the false. |Y| = |X | = 10.

These models have natural input mappings from Yi to
Xi which we gave our learners access to.

5.1.1. Exact Scores

We tested exact scores on simple models to illuminate
domains in which local CMI and DCI succeed. Figure
2 shows model recovery results for length-10 chains.
DCI outperforms local CMI when Y-X potentials are
stronger (matching the counterexample in Figure 1)
and when Y-Y potentials are weak. Peculiarly, lo-
cal CMI does better when X-X potentials are strong.
These trends were similar for most models we tested,
though local CMI did significantly better without al-
ternating positive and negative potentials.

5.1.2. Tests with Samples

Our next tests used samples from the synthetic mod-
els. For structure learning, we computed P (Yi, Yj |XC)
where XC is small using tables of counts. For large
sets XC , we used `2-regularized logistic regression.
We chose regularization parameters separately for ev-
ery regression during structure learning, which outper-
forms fixed regularization. We smoothed estimates of
P (A|B = b) with one extra example per a ∈ V al(A).

For parameter learning, we used conjugate gradient to
maximize the `2-regularized data log likelihood. For
both structure and parameter learning, we chose regu-
larization parameters via 10-fold cross-validation, test-
ing 10 values between .001 and 50 (on a log scale).

Global CMI has a natural parametrization with fac-
tors P (Yi, Yj |X ), but to be fair, we switched to fac-
tors with local inputs φ(Yi, Yj , Xij) during parameter
learning, which gave higher performance.

We tested Schmidt et al. (2008)’s method using their
implementation of structure and parameter learning
and inference (via loopy belief propagation).

Figures 3 and 4 show results for tree CRFs with in-
tractable joints P (Y,X ), associative factors with al-
ternating potentials (Y-Y, Y-X, X-X alternating be-
tween ±4, ±2, ±1, respectively, in log space), with
cross factors. “Test accuracy” is 0/1 (predicting all of
Y or not). Training time includes cross-validation for
choosing regularization for structure but not parame-
ter learning. Figure 3 compares varying training set
sizes, while Figure 4 varies the model size.

In both, DCI consistently outperforms other methods
in recovering true edges, except for small sample sizes.
Global CMI is the next most competitive, overtaking
DCI in accuracy with enough training data. How-
ever, global CMI becomes prohibitively expensive as
the training set and model sizes increase. Like DCI,
local CMI is tractable, but it underperforms DCI.

These tests are difficult for the Schmidt et al. (2008)
method, for it learns general CRFs, not tree CRFs.
The plots omit log likelihood for Schmidt et al. since
it is intractable to compute, though it could be approx-
imated via a projection. We omit results from other
models for lack of space. In general, DCI performs
best, especially with large models and random factors.

Though local CMI and DCI do not obey the Score De-
cay Assumption in general, we observed that they ap-
proximately follow it. Figure 5 plots SDA violation for
consecutive triplets (i, j, k) in the true CRF, measured
as (1/2)[(S(i, k)−S(i, j))+(S(i, k)−S(j, k))]. SDA vi-
olation and edge recovery are strongly anti-correlated.

5.2. fMRI

We next applied our CRF learning methods to an
fMRI application from Palatucci et al. (2009). The
learners takes inputs X which are voxels (3-D pixels)
from fMRI images of test subjects’ brains and predicts
a vector Y of semantic features which describe what
the test subject is thinking of (e.g., “Is it man-made?”;
“Can you hold it?”). This application is much more
challenging than our synthetic experiments. After pre-
processing, their dataset has 60 examples (objects),
with |Y| = 218 and |X | = 500, for each of 9 test sub-
jects. Palatucci et al. (2009) gives more details.

Given the success of DCI in synthetic tests, we chose
it for the fMRI data. Y and X are real-valued,
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Figure 3. Synthetic data: Varying training set size. Tree
CRFs P (Y|X ) with associative factors. |Y| = |X | = 40.
1000 test examples. Averaged over 10 models/random
samples; error bars (very small) show 2 standard errors.

so we used conditional Gaussian factors φ(y, x) =
exp(−(1/2)(Ay − (Cx + b))2, where y, x are vectors.
This parametrization is similar to that of Tappen et
al. (2007), though they do not do general parameter
learning, and it permits unconstrained optimization. 3

We regularized A and C, b separately, choosing regu-
larization via 10-fold cross validation (CV) on values
between .0001 and 30 (in a grid in log space). Because
of the expense of CV, we ran CV on test subject 0 and
used the chosen regularization for subjects 1-8.

With no natural input mapping, we used `1-
regularized regression to do feature selection. To de-
crease the number of parameters (for both computa-
tional and statistical benefits), we tried two methods:
CRF 1: We chose ≤ 10 highest-weight inputs per Yi,
accounting for 1/5 of the regression weights on aver-
age. To use all of X without increasing complexity, we
added fixed factors φ(Yi,X ) = P (Yi|X ), ∀i.
CRF 2: We chose ≤ 20 inputs per Yi; we added
the same fixed factors. After structure learning, we
parametrized edge factors to be independent of X .

Palatucci et al. (2009) test zero-shot learning, which
permits predictions about classes not seen during

3We technically must constrain A so that ATA is in-
vertible, but this was not a problem in our tests.
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Figure 4. Synthetic data: Varying model size (|Y| = |X |).
Tree CRFs P (Y|X ) with associative factors. 50 training,
1000 test examples. Averaged over 10 models/random
samples; error bars (very small) show 2 standard errors.

training. After predicting semantic features Y from
images X , they use hand-built “true” Y vectors to de-
code which object the test subject is thinking of. For
testing, they use leave-2-out CV: Train on 58 objects;
predict Y for 2 held-out objects i, j. Object i is classi-
fied correctly if its predicted Ŷ(i) is closer in `2 norm
to its true Y(i) than to the true Y(j).

We used the same setup, scoring using their accuracy
measure, squared error of predicted Y, and log prob-
ability logP (Y|X ). Palatucci et al. (2009) use ridge
regression Yi ∼ X , ∀i, equivalent to a disconnected
CRF with global inputs; we used this as a baseline.

Figure 6 compares disconnected and tree CRFs. The
discrepancy between the 3 performance metrics is re-
markable: Tree CRFs are best at predicting Y w.r.t.
log likelihood and squared error (before decoding), but
disconnected CRFs are best w.r.t. the accuracy met-
ric (after decoding). This behavior could be caused
by decoding via Euclidean distance and not account-
ing for the relative importance of each Yi. We also
tested decoding by predicting the more likely of the
two held-out objects’ Y vectors, but this performed
worse with all learning methods. Learning this decod-
ing Y −→ objects might avoid this problem and be a
valuable addition to the zero-shot learning framework.
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Figure 5. Score Decay Assumption violation vs. edge re-
covery on 24 models: (|Y| = 10, 15, 20) × (with/out cross
factors) × (2 associative factor types, 2 random). SDA vi-
olation averaged over consecutive triplets. For edge recov-
ery, up=better; for SDA violation, down=better. 50 train
exs. Tests averaged over 10 samples. Tractable P (Y,X ).
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Figure 6. fMRI results. Error bars are 2 standard errors
long. CRF structure and parameter learning with fixed
regularization took only about 2-3 times as long as closed-
form leave-one-out cross validation for ridge regression.

6. Discussion

Combining a maximum spanning tree algorithm with
carefully chosen edge scores allows us to learn ex-
pressive models while avoiding the costliness of many
structure learning methods. Despite our negative re-
sult for Local Linear Entropy Scores, local CMI and
DCI scores can often recover the edges of tree CRFs.

Using our edge scores with Shahaf et al. (2009)’s gen-
eralization of the maximum spanning tree approach is
a natural next step. Also, finding subclasses of tree
CRFs which are recoverable via local scores would be
worthwhile. We are currently applying our methods to
templated models for relational data, a learning setting
which naturally suggests local inputs.

Software: Our CRF learning code is available at
http://www.select.cs.cmu.edu/code/index.html.

Acknowledgements

Many thanks to Mark Palatucci and Dean Pomerleau
for the fMRI data and helpful advice and to the anony-
mous reviewers for their feedback. This work was
supported by NSF Career IIS-0644225, ONR MURI
N000140710747, and ARO MURI W911NF0810242.

References

Chow, C.K. and Liu, C.N. Approximating discrete proba-
bility distributions with dependence trees. IEEE Trans.
on Info. Theory, 14:462–467, 1968.

Friedman, N., Geiger, D., and Goldszmidt, M. Bayesian
network classifiers. Machine Learning, pp. 131–163,
1997.
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