
Multi-agent Learning Experiments on Repeated Matrix Games

Bruno Bouzy bruno.bouzy@parisdescartes.fr

Marc Métivier marc.metivier@parisdescartes.fr

LIPADE, Université Paris Descartes, 45 rue des saints-pères 75006 Paris, FRANCE

Abstract

This paper experimentally evaluates multi-
agent learning algorithms playing repeated
matrix games to maximize their cumulative
return. Previous works assessed that Q-
learning surpassed Nash-based multi-agent
learning algorithms. Based on all-against-
all repeated matrix game tournaments, this
paper updates the state of the art of multi-
agent learning experiments. In a first stage,
it shows that M-Qubed, S and bandit-based
algorithms such as UCB are the best algo-
rithms on general-sum games, Exp3 being
the best on cooperative games and zero-sum
games. In a second stage, our experiments
show that two features - forgetting the far
past, and using recent history with states -
improve the learning algorithms. Finally, the
best algorithms are two new algorithms, Q-
learning and UCB enhanced with the two fea-
tures, and M-Qubed.

1. Introduction

Multi-agent learning (MAL) is a recent field which asks
how to learn when there are several learners in the
environment. It inherits from reinforcement learning,
game theory, and from bandit algorithms. Works in
MAL can be divided into 5 agendas (Shoham et al.,
2007): computational (compute equilibria), descrip-
tive (describe human learners), normative (understand
equilibria arising between learners with game theory
tools), prescriptive cooperative (learn with communi-
cation, distributed problem solving), and prescriptive
non cooperative (learn without communication). The
background of this paper is the prescriptive non co-
operative agenda in which the goal of an agent is to
maximize its cumulative return over time.

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

Many MAL algorithms already exist (Littman,
1994; 2001; Stimpson & Goodrich, 2003;
Conitzer & Sandholm, 2003; Crandall & Goodrich,
2005; Powers & Shoham, 2004; 2005). Their perfor-
mances have been assessed on well-chosen Repeated
Matrix Games (RMG) highlighting them, sometimes
by using GAMUT (Nudelman et al., 2004), a tool
offering a way to generate instances of specific MG.
Few works exist to compare the various algorithms
systematically on a general and common test-bed
RMG. First, (Zawadzki, 2005) compares several
algorithms including Nash-equilibrium-oriented al-
gorithms (Conitzer & Sandholm, 2003; Littman,
1994; Singh et al., 2000; Banerjee & Peng, 2004),
Q-learning (QL) (Watkins & Dayan, 1992), and port-
folio algorithms (Powers & Shoham, 2004; 2005) on
instances of MG generated with GAMUT, concluding
on the superiority of QL. This result confirms that,
against various and unknown players, using the
concept of Nash Equilibrium is worse than simply
being a best response (BR) to other players. Second,
(Airiau et al., 2007) compares several algorithms,
including some learning ones, and concludes on the
superiority of Fictitious Play (FP) (Brown, 1951).

The objective of the paper is many-fold: first
evaluate MAL algorithms including the best al-
gorithms of (Zawadzki, 2005) and (Airiau et al.,
2007) (i.e. QL and FP), promising algorithms
not yet evaluated like (Stimpson & Goodrich, 2003;
Crandall & Goodrich, 2005) and bandit-based algo-
rithms (Auer et al., 2002a), and other reference algo-
rithms. Second, draw conclusions, identify the relevant
features, and assess the enhanced versions of the previ-
ous algorithms by including the features. Finally, the
best resulting algorithms, enhanced or not, are tested
in several classical games.

Section 2 presents the MAL algorithms implemented,
and evaluated in this work. Section 3 describes the
framework used to select good algorithms, and shows
the first results obtained in order to identify efficient
MAL features. Section 4 presents the results obtained

Multi-agent Learning Experiments on Repeated Matrix Games

by the previous algorithms enhanced, or not, by those
features. Before conclusion, section 5 shows the results
obtained by our best players on some well-known MG.

2. The players

This section lists the players considered in our eval-
uation framework. On the one hand, since they
were considered inferior to QL by (Zawadzki, 2005),
and difficult to implement, we did not include
MetaStrategy (Powers & Shoham, 2004), Awesome
(Conitzer & Sandholm, 2003), Minimax-Q (Littman,
1994), RV (Banerjee & Peng, 2004) and GIGA
(Bowling, 2003). PCM (Powers et al., 2007), Manip-
ulator (Powers & Shoham, 2005) and FFQ (Littman,
2001) being extensions of Metastrategy and Minimax-
Q, requiring having classes of opponents, we did not
insert them in our league. On the other hand, we
included learning algorithms, simple to implement, is-
sued from game theory, multi-agent learning or bandit-
based approach. Besides, we included reference non
learning algorithms: Minimax, Optimistic, Bully and
Random. Each algorithm has specific parameters
whose values are given below, and tuned experimen-
tally (see section 3.5).

JR. (Robinson, 1951) JR relies on the external regret
minimization: for every actions, taken or not, JR saves
the cumulative return. JR selects the action with the
best cumulative return.

Minimax. Minimax guarantees reaching at least the
minimax value on every game, but it cannot find
Pareto states when playing with friendly agents on
cooperative games. Minimax is a synonym of Deter-
mined in (Zawadzki, 2005), or Nash in (Airiau et al.,
2007).

Fictitious Play (FP). FP (Brown, 1951) computes
empirical estimations of opponents’ actions, and plays
each step the BR to that empirical distribution. It was
ranked first by (Airiau et al., 2007).

Q-learning (QL). Q-learning (Watkins & Dayan,
1992) is a BR player. It is the best algorithm in
(Zawadzki, 2005). QL has two parameters: the dis-
count factor γ and the learning rate α. We set γ to
0.95 and define α as 1/t with the t timestep of the cur-
rent game. Moreover, we used ǫ-greedy as exploration
scheme with ǫ defined as 1/

√

t/na with t the timestep
and na the number of actions avalaible to the player.
In section 4, QL is tested when using a fixed-width
windows, i.e. with a fixed learning rate. α is then
fixed to 0.01.

S. The S algorithm (Stimpson & Goodrich, 2003)
converges to Pareto optimal states in social dilemma
games. At each step, S updates an aspiration value.
Whenever its return is superior to the aspiration value,
S keeps the same action, otherwise it changes ran-
domly to another action. S has two parameters: the
initial aspiration level α and the learning rate λ. We
used the following values: α = 12, λ = 0.99.

M-Qubed (M3). M-Qubed (Crandall & Goodrich,
2005) is an offspring of S and QL. M-Qubed is designed
to either play the minimax policy, or a max policy. M-
Qubed plays greedily over Q-values when superior to a
minimax value, and minimax otherwise. M-Qubed has
three parameters: the discount factor γ, the learning
rate α, and a parameter λ used to update the policy
selection probabilities. We used the following values:
γ = 0.95, α = 0.1, and λ = 0.01.

UCB. UCB (Auer et al., 2002a) is a regret mini-
mization algorithm for the multi-armed bandit (MAB)
problem. It was never evaluated in RMG before. UCB
selects the action j with the highest value U(j) =
x̄j +

√

C ln (t)/nj , where x̄j is the average return ob-
tained when action j is played, t is the timestep and
nj is the number of time action j has been played. C
is a parameter set to 100.

Exp3. Exp3 (Auer et al., 2002b) is designed to min-
imize the regret on the MAB problem against an evil
player minimizing the returns of Exp3. The urgency
of an action is the sum of two terms. The first term is
an exponential term in the success of the action for ex-
ploitation, and the second term is a constant term for
exploration. Exp3 has one parameter, γ, set to 0.001
in our experiments.

HMC. (Hart & Mas-Colell, 2000) describes a simple
method, called HMC, converging to correlated equi-
libria. HMC is based on internal regret minimisation.
HMC has one parameter, µ, set to 3.

Bully. Since a good MAL algorithm is neces-
sarily a BR to a stationary environment, Bully
(Stone & Littman, 2001), which exploits the BR learn-
ers, is an interesting non learning player. Bully chooses
the action that maximizes its own return assuming its
opponent is a BR learner.

Optimistic. The optimistic player basically chooses
the action with the best return assuming the other
player is friendly. In self-play on cooperative games
with exactly one optima, it plays optimally.

Multi-agent Learning Experiments on Repeated Matrix Games

Random. This is the player that plays randomly ac-
cording to the uniform probability.

Moreover, each algorithm has its own information re-
quirements: the whole matrix (Minimax, Optimistic
and Bully), the virtual returns (i.e. the returns that
would have been obtained with all the actions) (JR
and HMC), the opponent actions and the actual re-
turn (FP), the actual return (QL, S, UCB, Exp3), or
nothing (Random). M3 needs the actual return but
also the minimax value, consequently the matrix. All
the experiments let all the players have its require-
ments satisfied.

3. Evaluation framework and first

assessments

This section presents the tournament framework (sub-
section 3.1), a first set of results with a fixed number
of RMG (subsection 3.2), the elimination mechanism
(subsection 3.3), a second set of results on general-
sum games with the elimination mechanism (subsec-
tion 3.4), the importance of tuning parameters (sub-
section 3.5), a third set of results on cooperative games
and competitive games (subsection 3.6), and a fourth
set of results depending on the number of actions (sub-
section 3.7).

3.1. The tournament framework

Our evaluation framework is based on experiments.
An experiment is a set of N RMG tournaments. A
RMG is a game consisting in playing the same MG
repetitively, and cumulating the outcomes obtained at
each repetition. One experiment consists in drawing
N matrix games at random with return values in the
interval [−9,+9] and execute N tournaments, one for
each MG generated, in which each player meets all
players in a RMG match. We call this an all-against-
all tournament. When two players play a RMG match,
they have to maximize their cumulative return. At the
end of a tournament, a player has a cumulative return
over all his matches. In an experiment, the output of
an algorithm is its cumulative return over repetitions
and matrix games played. The output of an experi-
ment is a ranking. To some extents, our framework is
similar to (Zawadzki, 2005; Airiau et al., 2007). The
differences are that (Zawadzki, 2005) draws the games
in specific categories with GAMUT, and (Airiau et al.,
2007) selected its games with (Brams, 1994). We think
our game selection method is not biased with human
interpretation.

3.2. First results

As first results, we performed experiments in 3x3
general-sum matrix games. The first experiment in-
volves all the players presented in section 2 in 100
matrix games drawn randomly. This experiment thus
permits to see the evolution of the players ranking ac-
cording to the number of steps allowed in the games.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14
 100 1000 10000 100000 1e+006 1e+007 1e+008

UCB
M3

S
JR
FP

HMC
QL

Exp3
Bully

MinMax
Optim
Rand

Figure 1. Exp. 1: ranking evolution according to the num-
ber of steps played in games (logscale). The key is ordered
according to the final ranking.

Figure 1 shows the ranking evolution when the number
of steps increases from 100 repetitions up to 3,000,000
repetitions. Figure 1 highlights the number of steps
each algorithm needs to stabilize its best strategy. FP,
JR and HMC, which take the first three ranks in 100-
step RMG, converge faster than the other algorithms
but their ranks decrease as the step number increases.
In 1,000,000-step RMG, these players are surpassed
by UCB, M3 and S. UCB is ranked first in 10,000-
step RMG, but it is surpassed by M3 in 300,000-step
RMG, and it is ranked first in 1,000,000-step RMG.
The M3’s rank is improved as the number of steps in-
creases. Having states corresponding to joint actions
may account for this result. S algorithm is very simple,
and it improves its ranks as the number of steps in-
creases until 30,000 steps and then stays in third rank
until the end. Exp3 improves its rank until being 5th
when 300,000 steps are played but goes down to 8th
rank at the end of the experiment. QL is ranked 8th in
100-step RMG, behind Bully and Optimistic. When
the steps number increases, its rank remains almost
stable because it surpasses non-adaptive players while
it is surpassed by M3 and S. Non-adaptive players such
as Minimax, Bully, Optim and Random obtain their
best rank in 100-step RMG, which is normal. Random
is the worst player, behind Optim, Minimax and Bully
which is the best non adaptive player. It is worth not-
ing that (Airiau et al., 2007) used few hundred repeti-
tions only. Figure 1 clearly shows that many changes
occur after 1,000 repetitions. (Zawadzki, 2005) used

Multi-agent Learning Experiments on Repeated Matrix Games

10,000 repetitions, which is still unsufficient according
to our experiment. Besides, this first experiment un-
derlines that QL and FP, ranked first by (Zawadzki,
2005) and (Airiau et al., 2007), are far from the top-
ranking programs, UCB, M3 and S. This is caused by
our set of players, very different from Zawadzki’s one.

3.3. The elimination mechanism

The performances of an algorithm may be related
with some opponents’ performances. The ranking of a
given algorithm depends on the presence, or absence,
of other given players. For instance, if algorithm A
succeeds well against algorithm C, and if algorithm
B plays poorly against algorithm C. Then, an all-
against-all tournament with A, B and C, favours A
against B while a tournament with A, B and not C,
favours B against A.

To illustrate that point, figure 2 presents new rankings
of the first results based on successive eliminations of
the last players. In that figure, a ranking is obtained by
performing several elimination stages. The players are
first ranked according their cumulative returns. The
last player is then eliminated and all returns obtained
against him are removed from the cumulative returns
of the other players. These new cumulative returns
enable to obtain a new ranking, and to eliminate a new
last player, and so on. Finally, each ranking observed
in figure 2 is computed as the opposite of the players
elimination order.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14
 100 1000 10000 100000 1e+006 1e+007 1e+008

M3
S

UCB
JR
FP

HMC
Bully
Exp3

QL
MinMax

Optim
Rand

Figure 2. Exp. 1: rankings based on eliminations. The key
is ordered according to the final ranking.

Figure 2 shows more stable rankings than figure 1.
Passed 30,000 steps most ranks are well defined. M3
has the first rank, followed by S and UCB. In the next
ranks, we may identify two groups of players. The
first one is composed of JR and FP, sharing the 4th
and 5th ranks. The second one concerns HMC, Bully
and Exp3, sharing the 6th, 7th and 8th ranks. Then
we find QL in 9th rank, followed by Minimax, Optim

and Random.

Taking into account these results, we introduced an
elimination mechanism in our framework. It consists
in launching an experiment with a large number of
players and removing the worst player when his cu-
mulative return is significantly behind the before-last
player or if the global ranking does not change during
a long time. When a player is removed, all the returns
obtained against him from the beginning of the ex-
periment are suppressed from the cumulative returns
of other agents. This removing process is applied at
the end of each RMG and is continued until only one
player remains.

In practice, at the end of a RMG tournament, if the
difference between the cumulative returns of the two
worst players is up than 600/

√
nT with nT the number

of tournaments performed, then the worst player is
removed. The worst one is also removed if the global
ranking has not changed during 100 × np

2/(np − 1)2

tournaments, with np the current number of players,
since the last elimination.

Beyond the relative assessment of each algorithm, the
first experiment informs us that at least 30,000 steps
are necessary to have most ranks well defined when
the ranking is based on elimination. We thus fixed
the number of steps at 100,000 in the most part of
the experiments, except for experiments assessing al-
gorithms using states as joint actions in which we used
1,000,000 steps.

3.4. Experiments in general-sum games

The second experiment has been performed with 3x3
action general-sum matrix games too. It applies the
elimination mechanism presented in section 3.3.

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

M3
S

UCB
FP
JR

Exp3
Bully
HMC

QL
MinMax

Optim
Rand

Figure 3. Exp. 2: Evolution of mean returns over time.
The key is ordered according to the final ranking.

Figure 3 shows the mean return evolution when the
number of RMG increases up to 231 which is the num-

Multi-agent Learning Experiments on Repeated Matrix Games

Table 1. Exp. 2: final ranking with mean return and num-
ber of games played before being eliminated.

Rank Player Mean #Games
return

1 M3 4.532 -
2 S 4.381 231
3 UCB 4.450 230
4 FP 3.926 229
5 JR 3.878 228
6 Exp3 3.969 160
7 Bully 4.032 145
8 HMC 3.497 34
9 QL 3.328 9
10 Minimax 0.9181 3
11 Random -1.796 2
12 Optimistic -3.304 1

ber of RMG necessary to eliminate all players except
the first one. Table 1 shows the final ranking. One
may observe that, roughly, the better the rank, the
greater the mean return. However, the improvement
of the mean returns is not always increasing. For in-
stance, UCB has a greater mean return than S, and S
is ranked before UCB. Actually, before its elimination,
UCB had a smaller mean return than S, but after its
elimination, the confrontations against UCB are not
taken into account, and the S mean return decreases.

This elimination experiment being performed with
100,000-step RMG, it is worth comparing the ranking
of table 1 with the ranking given by figure 2 at 100,000
steps. We observe that the ranking is the same except
for Random and Optimistic which have switched their
last ranks. Using the elimination mechanism brings
some results conform with results observed in the first
experiment.

An experiment with the elimination mechanism pro-
vides the final ranking with better correctness guar-
antees on the top of the ranking than an experiment
without it. Indeed, an elimination only occurs when
the last player is significantly behind the before-last
player. In the remaining of the paper, all experiments
use the elimination mechanism.

3.5. About players’ parameters

Several algorithms have specific parameters. To set
them we developed a method based on our tourna-
ments framework consisting in using several players
of a same algorithm but with different parameter set-
tings. This enables to determine which value intervals
give the best performances for each algorithm in such

RMG tournament contexts.

For instance, Q-learning algorithm uses a γ parameter
named discount factor whose value in [0, 1] is usually
set near to 1. We created six Q-learner players with
γ = 0.99, 0.95, 0.90, 0.80, 0.60, 0.20 and launched
an experiment with these 6 copies of Q-learning and
the other players. The results then showed that Q-
learning had better cumulative returns with γ = 0.95.
As a result, we set γ = 0.95 in all the experiments
presented in this paper.

3.6. Experiments in cooperative and
competitive games

Matrix games can be divided in three classes: coopera-
tive (the two players receive same payoffs), competitive
(the two players receive opposed payoffs) or general
(the remaining cases). In this section, we present the
results of an experiment involving cooperative games
only, and another one involving competitive games
only.

Cooperative games Tables 2 shows the ranking of
our players on cooperative RMG. It underlines several
differences with the ranking obtained on general-sum
RMG. The main information is the first place occu-
pied by Exp3 (Exp3 was ranked 6th on general-sum
RMG). This fact shows that an algorithm may work
well on a specific class of games, and less well on other
games. Bully and Optimistic perform well on coopera-
tive games. Optimistic is non-adaptive and designed to
be optimal in self-play. However, Optimistic is ranked
5th only, which shows that against non optimal play-
ers, being optimal and non-adaptive is not good. Bully
performs better on cooperative games than on general-
sum games. This can be explained by the fact that,
for our learners, being a best response on cooperative
games is easier than on general-sum games. Conse-
quently, Bully has more space to show its strength in
cooperative games than he has on general-sum games.
Minimax, not designed for cooperative games, is weak
at these games. Among the set of learners, M3, JR,
HMC and QL remain stable. UCB, S and FP do not
succeed on cooperative games.

Competitive games Table 3 shows the ranking
on competitive RMG. It underlines several differences
with the ranking obtained on general-sum RMG as
well. The main information is once more the first place
occupied by Exp3. Minimax is good because it is de-
signed to this aim. Among the learners, M3, FP, JR,
HMC, QL are stable. UCB and S loose several ranks
on competitive games. Bully and Optim are not de-
signed to play well in competitive games.

Multi-agent Learning Experiments on Repeated Matrix Games

Table 2. Cooperative games: final ranking with mean re-
turns and number of games played before elimination.

Rank Player Mean #Games
return

1 Exp3 7.340 -
2 M3 7.318 5848
3 Bully 7.388 5847
4 JR 7.312 2868
5 Optimistic 7.352 2867
6 S 7.343 2190
7 HMC 7.309 875
8 FP 7.311 341
9 UCB 7.272 24
10 QL 7.111 23
11 Minimax 4.342 2
12 Random 0.319 1

Table 3. Competitive games: final ranking with mean re-
turn and number of games played before elimination.

Rank Player Mean #Games
return

1 Exp3 0.01143 -
2 M3 -0.01143 1723
3 Minimax -0.06883 1695
4 JR -0.2171 1694
5 FP -0.1781 1693
6 S -0.2921 1017
7 UCB -0.1808 1016
8 QL -0.218 29
9 HMC -1.035 4
10 Bully -1.442 3
11 Random -1.482 2
12 Optimistic -2.705 1

Finally, it is worth noting that UCB and S show the
reverse property of the feature of Exp3: they are bad
players in both cooperative games and competitive
games, but they rank very well in general-sum games.

3.7. Experiments with different number of
actions

In this section, we test the performances of the players
in general-sum games involving number of actions set
to 2, 3, 5, 10 or 30. The maximum number of steps is
set to 1,000,000 in order to give more learning steps in
games involving many actions.

Figure 4 shows the effect of increasing the number of el-
ementary actions in the RMG. M3, using states, needs

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14
2 3 5 10 30

UCB
S

JR
FP

HMC
M3

MinMax
Exp3

QL
Bully
Rand
Optim

Figure 4. Evolution of mean returns according to the num-
ber of actions. The key is ordered according to the final
ranking.

more steps to learn well with many actions, this is the
explanation of its low ranking with 5 actions and more.
UCB, and S stay at the top of the ranking when the
number of actions increases. FP and JR also remain
stable when the number of actions increases. In 30
actions experiments, we can observe that FP, JR and
HMC all take advantage of the weakness of M3 and
get one place.

4. Experiments with enhanced players

This section presents results obtained by players en-
hanced with two features: the fixed-width window fea-
ture, and the state feature.

4.1. Fixed-width window

Given that the opponent’s behavior may change at ev-
ery moments, it may be important to be able to forget
the past further than a threshold. Among the players,
S and M3 use such a window mechanism.

This mechanism consists in updating the mean values
with a constant rate α = 0.01. This way, the old re-
turns are forgotten. We selected three learners without
the enhancement: QL, UCB and JR, and we added
the window mechanism giving new players: QLwin,
UCBwin, and JRwin respectively. We removed Exp3,
FP and HMC from the league, and we launched the
experiment. Table 4 shows the final ranking. Each
learner without the window mechanism is surpassed
by the corresponding learner with it, which shows the
significance of the window mechanism.

4.2. States and history

M3 uses states, each state corresponding to the last
joint action performed (Sandholm & Crites, 1996),

Multi-agent Learning Experiments on Repeated Matrix Games

Table 4. Fixed-width window experiment: final ranking
with mean returns and number of games played before
elimination.

Rank Player Mean #Games
return

1 M3 5.115 -
2 UCBwin 4.862 54
3 S 4.854 53
4 UCB 4.739 52
5 QLwin 4.481 51
6 JRwin 4.334 50
7 JR 4.219 29
8 QL 4.755 16
9 Bully 1.684 5
10 Minimax 1.669 3
11 Random -1.766 2
12 Optimistic -3.298 1

and compute state-action values. To take into ac-
count the past history, we define states corresponding
to the last H joint actions performed. To highlight the
improvement brought by states, we adapted QLwin,
UCBwin and JRwin to use states yielding QLw+s,
UCBw+s and JRw+s, and set H = 1. Table 5 shows
the final ranking. All the learners without the state
feature (QLwin, JRwin, UCBwin) are surpassed by
all the learners with it (QLw+s, JRw+s, UCBw+s),
which clearly shows the significance of this feature. In
this experiment, we used 1,000,000 steps instead of
100,000 steps.

5. Experiments in specific matrix games

In this section, we test the algorithms having the
best results in the previous experiments: M3, S,
QLw+s, UCBw+s and JRw+s on very classical MG
selected from the literature: the penalty game (k =
−100), the climbing game, a coordination game
(Claus & Boutilier, 1998), and the Prisoner Dilemma.
Table 6 shows the results obtained in self-play. It is
worth noting that QLw+s does not solve these games
well, as IL and JAL players (Claus & Boutilier, 1998)
which were QL based players. JRw+s does not solve
these games well neither. UCBw+s does not solve the
penalty game correctly but solves the other games well.
M3 and S correctly solve the four games. We see that
almost all our learners, previously tuned on a large set
of MG drawn randomly, play more or less well on very
specific MG extracted from the literature.

Table 5. History state experiment: final ranking with mean
return and number of games played before elimination.

Rank Player Mean #Games
return

1 QLw+s 4.194 -
2 M3 4.053 18
3 UCBw+s 3.868 17
4 JRw+s 3.923 16
5 Minimax 2.922 12
6 UCBwin 2.615 11
7 S 3.337 10
8 JRwin 3.637 9
9 QLwin 3.101 6
10 Bully 2.091 3
11 Random -1.465 2
12 Optimistic -3.309 1

Table 6. Self-play results of MAL algorithms on specific
games. The cells show the average return obtained by an
algorithm on a RMG with 100,000 repetitions, and aver-
aged over 10 runs. The + (resp. -) column indicates the
maximal (resp minimal) average return that can be ob-
tained.

Game + - M3 S UCB QL JR
Pen. 10 2 10.0 10.0 5.9 7.9 9.3
Clim. 11 5 11.0 11.0 11.0 10.1 9.0
Coor. 4 2 4.0 4.0 4.0 3.4 3.0
PDil. 3 2 3.0 3.0 3.0 2.5 2.0

6. Conclusion

The main contribution of this paper is two-fold. First,
our experiments give rankings of existing MAL algo-
rithms playing RMG on a wide set of MG. M3, S,
UCB are assessed as the best algorithms in this con-
text. This result updates the previous ones signifi-
cantly (Zawadzki, 2005; Airiau et al., 2007). Second,
our experiments show the crucial importance of two
features: the fixed-width window feature, and the state
feature. Adding such a feature into a MAL algorithm
greatly improves its rank. We never observed a MAL
algorithm becoming worst with the feature than the
algorithm without.

Two other contributions are worth mentioning. First,
our results highlight the good performances of three
algorithms, QLw+s, M3 and UCBw+s, among which
UCBw+s is a new promising bandit-based algorithm.
Second, a remarkable result is the great effectiveness
of Exp3 in competitive and cooperative settings.

In the future, a promising research direc-

Multi-agent Learning Experiments on Repeated Matrix Games

tion is to assess hedging or expert algorithms
(Chang & Kaelbling, 2005). Another interesting
direction is exploring why Exp3 is the best MAL
player on cooperative games, and on competitive
games as well, but not on general-sum games, and to
exploit this fact to design a new MAL algorithm.

7. Acknowledgments

This work has been supported by French National
Research Agency (ANR) through COSINUS program
(project EXPLO-RA number ANR-08-COSI-004).

References

Airiau, S., Saha, S., and Sen, S. Evolutionary
tournament-based comparison of learning and non-
learning algorithm for iterated games. Journal of

Artificial Societies and Social Simulation, 10(3):7,
2007. ISSN 1460-7425.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-
time analysis of the multi-armed bandit problem.
Machine Learning, 47(2-3):235–256, 2002a.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire,
R.E. The non stochastic multi-armed bandit prob-
lem. SIAM Journal, 32(1):48–77, 2002b.

Banerjee, B. and Peng, J. Performance bounded re-
inforcement learning in strategic interactions. In
AAAI, pp. 2–7, 2004.

Bowling, M. Multiagent Learning in the Presence of

Agents with Limitations. PhD thesis, CMU, 2003.

Brams, S. J. Theory of Moves. Cambridge University
Press, 1994.

Brown, G.W. Iterative solution of games by fictitious
play. Activity Analysis of Production and Allocation,
pp. 374–376, 1951.

Chang, Y.H. and Kaelbling, L.P. Hedged learning:
regret-minimization with learning experts. In ICML,
pp. 121–128, 2005.

Claus, C. and Boutilier, C. The dynamics of reinforce-
ment learning in cooperative multi-agent systems.
In AAAI, pp. 746–752, 1998.

Conitzer, V. and Sandholm, T. AWESOME: A general
multiagent learning algorithm that converges in self-
play and learns a best response against stationary
opponents. In ICML, pp. 83–90, 2003.

Crandall, J.W. and Goodrich, M.A. Learning to
compete, compromise, and cooperate in repeated
general-sum games. In ICML, pp. 161–168, 2005.

Hart, S. and Mas-Colell, A. A simple adaptive proce-
dure leading to correlated equilibrium. Economet-

rica, 68(5):1127–1150, September 2000.

Littman, M. Markov games as a framework for multi-
agent reinforcement learning. In ICML, pp. 157–163,
1994.

Littman, M. Friend-or-foe Q-learning in general-sum
games. In ICML, pp. 322–328, 2001.

Nudelman, E., Wortman, J., Shoham, Y., and Leyton-
Brown, K. Run the GAMUT: a comprehensive ap-
proach to evaluating game-theoretic algorithms. In
AMAAS, pp. 880–887, 2004.

Powers, R. and Shoham, Y. New criteria and a new al-
gorithm for learning in multiagent systems. In NIPS,
2004.

Powers, R. and Shoham, Y. Learning against oppo-
nents with bounded memory. In IJCAI, pp. 817–
822, 2005.

Powers, R., Shoham, Y., and Vu, T. A general cri-
terion and an algorithmic framework for learning in
multi-agent systems. Machine Learning, 67(1-2):45–
76, 2007.

Robinson, J. An iterative method of solving a game.
Annals of Mathematics, 44:296–301, 1951.

Sandholm, T. and Crites, R. Multiagent reinforcement
learning in the iterated prisoner’s dilemma. Biosys-

tems, 37(1-2):147–166, 1996.

Shoham, Y., Powers, R., and Grenager, T. If multi-
agent learning is the answer, what is the question?
Artificial Intelligence, 171:365–377, 2007.

Singh, S., Kearns, M., and Mansour, Y. Nash conver-
gence of gradient dynamics in general-sum games.
In UAI, pp. 541–548, 2000.

Stimpson, J.L. and Goodrich, M.A. Learning to coop-
erate in a social dilemma: a satisficing approach to
bargaining. In ICML, pp. 728–735, 2003.

Stone, P. and Littman, M. Implicit negotiation in re-
peated games. In Meyer, John-Jules and Tambe,
Milind (eds.), ATAL, pp. 96–105, 2001.

Watkins, C. and Dayan, P. Q-learning. Machine

Learning, 8:279–292, 1992.

Zawadzki, E. Multiagent learning and empirical meth-
ods. Master’s thesis, University of British Columbia,
2005.

