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Abstract

Many real-world datasets can be clustered
along multiple dimensions. For example, text
documents can be clustered not only by topic,
but also by the author’s gender or senti-
ment. Unfortunately, traditional clustering
algorithms produce only a single clustering
of a dataset, effectively providing a user with
just a single view of the data. In this paper,
we propose a new clustering algorithm that
can discover in an unsupervised manner each
clustering dimension along which a dataset
can be meaningfully clustered. Its ability to
reveal the important clustering dimensions of
a dataset in an unsupervised manner is par-
ticularly appealing for those users who have
no idea of how a dataset can possibly be clus-
tered. We demonstrate its viability on several
challenging text classification tasks.

1. Introduction

Many real-world datasets can be naturally clustered
along multiple dimensions. For instance, speech data
can be clustered by the gender of the speaker or the
language used by the speaker; political blog postings
can be clustered not only by topic, but also by the
author’s stance on an issue (e.g., support, oppose) or
her political affiliation; and movie reviews can be clus-
tered by genre (e.g., action, romantic, documentary),
sentiment (e.g, positive, negative), or even the main
actors/actresses. In some data mining applications, it
is desirable to recover as many clusterings of a dataset
along its important clustering dimensions as possible.

A natural question is: given data X , is it possible
to discover in an unsupervised manner each dimen-
sion along which X can be meaningfully clustered?
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By a meaningful clustering, we mean a clustering that
is both human interpretable and qualitatively strong
in terms of basic qualitative criteria typically used to
evaluate the structure of a clustering. The ability of
a clustering algorithm to discover multiple clustering
dimensions is particularly appealing for a user who
may not know how a dataset can possibly be clus-
tered. Even if the user knows how she wants to cluster
the data, it would still be desirable if an algorithm can
unveil clustering dimensions that she is not previously
aware of, but may also be of interest to her.

Unfortunately, not only do traditional clustering al-
gorithms fail to produce multiple clusterings1 of a
dataset, the only clustering they produce may not be
the one that the user desires. The traditional “optimal
objective” approach to clustering is overly constrained
in the sense that it forces an algorithm to produce a
clustering along a single dimension, specifically the di-
mension along which the objective function employed
by the algorithm is optimized. However, the optimal
clustering might not be deemed fit by an end user, as
she may be interested in a clustering that is different
from the optimal clustering.

One may argue that it is possible to design the feature
space differently to produce different clusterings of a
dataset. This typically involves having a user iden-
tify a set of features that are relevant to a particular
clustering task (Liu et al., 2004). However, manually
identifying the “right” set of features is both time-
consuming and knowledge-intensive, and may even re-
quire a lot of domain expertise. To overcome this
weakness, researchers have attempted to cluster in
a semi-supervised setting (e.g., constrained clustering
(Wagstaff et al., 2001; Bilenko et al., 2004)) and learn
a similarity metric from side information (Xing et al.,
2002). Note that these approaches work under the as-
sumption that the user knows each of the plausible
clustering dimensions a priori, and “communicates”
her intention to the clustering algorithm by designing

1For brevity, we henceforth use the term multiple clus-
terings to refer to multiple meaningful clusterings.
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Dimension1 Dimension2 Dimension3

Book Subjective Positive

reader bought wonderful
information workout excellent

research recipes music
important information highly

text disappointed collection
DVD Objective Negative

music young boring
script men waste
actors scene novel
films cast worst

comdey role pages

Table 1. Three clustering dimensions for the BOOK-DVD
dataset that are induced by our clustering algorithm.

the feature space and/or constraints for each cluster-
ing dimension accordingly. In contrast, we work in a
setting where the user has little or no prior knowledge
about the plausible clustering dimensions, and our goal
is to help users identify and possibly visualize each of
the clustering dimensions latent in the data.

In this paper, we propose a text clustering algorithm
that can induce and visualize multiple clustering di-
mensions latent in a text collection without using any
prior knowledge or supervision. Our main contribution
lies in our demonstration of the feasibility to use a sin-

gle feature space and a single clustering algorithm with
a single similarity metric and a single objective func-

tion to produce multiple clusterings of a given dataset.
The key idea behind our approach is to produce mul-
tiple suboptimal clusterings along the prominent clus-
tering dimensions of a dataset on top of the optimal

clustering obtained by optimizing the objective func-
tion. Specifically, our clustering algorithm assumes as
input a simple feature representation (composed of un-
igrams only) and a simple similarity function (i.e., the
dot product), and operates by (1) inducing the im-
portant clustering dimensions of a given set of docu-
ments; and (2) representing each clustering dimension
by a (small) number of automatically chosen words,
which help the user visualize and subsequently select
the dimension(s) along which she wants to cluster the
documents. Experimental results are very promising:
our algorithm is able to produce multiple clusterings
along induced dimensions with reasonable accuracies
on several challenging text classification tasks.

As a concrete example, we show in Table 1 three clus-
tering dimensions that are induced by our algorithm
for a dataset containing book and DVD reviews. Here,
a clustering dimension corresponds to a 2-way cluster-
ing, and is represented by the top unigrams automat-
ically extracted from each of the two clusters involved
in the dimension. By inspecting the unigrams, it may
be possible for a user to realize that this data can be

Topic 1: book read pages information chapter cover
Topic 2: god christian bible jesus faith spiritual christ

Topic 13: music live song great songs band show put
Topic 22: bad worst acting dialogue terrible absolutely
Topic 33: movie cast role performance actor plays
Topic 43: work writing style fiction read writer works
Topic 69: war battle german american men military
Topic 89: love wonderful time loved enjoy heart list

Table 2. Selected topics induced by the Latent Dirichlet
Allocation model for the BOOK-DVD dataset.

clustered by topic (Book or DVD), sentiment (Positive
or Negative), or subjectivity (Subjective or Objective).
It is worth mentioning that our goal is fundamentally
different from that of topic modeling (Blei et al., 2003):
while a topic model attempts to discover latent topics
from a set of documents, we attempt to discover latent
clustering dimensions (compare Table 1 and 2). Nev-
ertheless, the two models bear resemblance to each
other: not only are both models unsupervised, they
both display the learned information to the user us-
ing representative words. We believe that the impact
of our work goes beyond text clustering: it can poten-
tially enhance the capability of exploratory text analy-
sis and summarization algorithms for the unsupervised
discovery of information from a text collection.

The rest of the paper is organized as follows. Section 2
discusses related work on producing multiple cluster-
ings. Section 3 describes our clustering algorithm. We
present evaluation results in Section 4 and summarize
our conclusions in Section 5.

2. Related Work

Previous work on inducing clustering dimensions has
focused on producing multiple clusterings of a dataset,
and can be broadly divided into two categories.

Semi-supervised methods. These methods are
semi-supervised in the sense that one of the cluster-
ings is provided (by the human) as input, and the goal
is to produce another clustering that is distinctively
different from the given one. For instance, Gondek
& Hofmann’s (2004) approach learns a non-redundant
clustering that maximizes the conditional mutual in-
formation I(C;Y |Z), where C, Y and Z denote the
clustering to be learned, the relevant features and the
known clustering. It turns out to be difficult to im-
plement, since it requires modeling the joint distri-
bution of the cluster labels and the relevant features.
On the other hand, Davidson & Qi (2007) first learn
a distance metric DC from the original clustering C,
and then reverse the transformation of DC using the
Moore-Penrose pseudo-inverse to get the new distance
metric D′

C , which is used to produce a new clustering.
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Unsupervised methods. Here, each of the possi-
ble clusterings is produced without using any labeled
data. Meta clustering (Caruana et al., 2006) is an ap-
proach that produces multiple clusterings of a dataset
by running k-means multiple times, each time with a
random selection of seeds and a random weighting of
features. Its goal is to present each local minimum
found by k-means as a possible clustering. This ap-
proach has two weaknesses. First, many of these local
minima are qualitatively poor. Second, k-means tends
to produce similar clusterings regardless of the num-
ber of times it is run (see our meta clustering results
in Section 4). Jain et al.’s (2008) approach is more
sophisticated, as it learns two clusterings in a “decor-
related” k-means framework. Its joint optimization
model aims to achieve typical k-means objectives and
at the same time ensures that the two induced clus-
terings are distinctively different. Note that Jain et
al. use this framework to produce only two clusterings
of a dataset, as the objective function becomes too
convoluted to allow more clusterings.

Before moving on to the details of our clustering algo-
rithm, we describe the primary differences between our
algorithm and the aforementioned approaches. First,
our algorithm neither uses labeled data nor assumes
the existence of a human-supplied clustering, unlike
the semi-supervised models. Second, while we employ
spectral clustering, none of the existing approaches do.
To our knowledge, we are the first to exploit spectral
clustering to produce multiple clusterings of a dataset.
Finally, none of the aforementioned approaches are in-
tended to provide visualization of the induced cluster-
ing dimensions, which is a key goal in our work.

3. Our Approach

As mentioned before, our ultimate goal is to induce
and visualize the dimensions along which a dataset
can be meaningfully clustered. To this end, we first
describe an algorithm that produces multiple cluster-
ings along the distinct dimensions of the data. Then,
to visualize a clustering dimension, we show how to
represent it using a small number of features that are
automatically selected from each clustering produced
in the first step.

3.1. Problem Formulation

Let us begin by introducing some notation. Let X =
{x1, . . . , xn} be a set of n data points to be clus-
tered, where each point xi, i = 1 : n is represented
by d features w1, w2, . . . , wd. Let s : X × X → ℜ
be a similarity function over X , and S be a simi-
larity matrix that captures pairwise similarities (i.e.,

Si,j = s(xi, xj)). We desire a clustering algorithm G

that can learn m (m > 1) different partitioning func-
tions fi, i = 1 : m that correspond to m different 2-
way clusterings Ci = {Ci

1, C
i
2}, i = 1 : m such that

Ci
1 ∪ Ci

2 = X and Ci
1 ∩ Ci

2 = φ.2 Specifically, a par-
titioning function f assigns a cluster label to each of
the n data points in X , and is typically represented
as a vector of length n such that f(i) ∈ {1, −1} indi-
cates which of the two clusters contains data point i.
G is associated with an objective function, o : C → ℜ,
which assigns a qualitative score to each clustering.

To produce multiple clusterings, we require a cluster-
ing algorithm to satisfy two important properties:

(1) Each clustering Ci, i = 1:m produced by the clus-
tering algorithm should be distinctively different. By
distinctively different, we mean that two clusterings
are highly dissimilar w.r.t. some measure for compar-
ing clusterings. More formally, if ψ is a non-negative
function that measures the similarity between two par-
titioning functions, then ∀i,j ψ(fi, fj) ≈ 0. Note that
distinctivity is a crucial property in the existing ap-
proaches that also aim to produce multiple clusterings
(Davidson & Qi, 2007; Jain et al., 2008).

(2) Each clustering Ci, i = 1 : m should be qualita-
tively strong (i.e., close to optimal) w.r.t. the objec-
tive function o. This condition ensures that none of
the clusterings that the algorithm produces are overly
suboptimal and thus completely structure-less.

3.2. Achieving Multi-Clusterability

Next, we describe our algorithm for producing multi-
ple clusterings of a dataset. At the core of our system
resides spectral clustering. Although spectral cluster-
ing is widely researched, it has been traditionally used
to produce a single clustering of a dataset. To our
knowledge, we are the first to exploit spectral cluster-
ing to produce multiple clusterings of a dataset. As we
will see, spectral clustering algorithm naturally satis-
fies the aforementioned distinctivity and quality cri-
teria. Many variants of spectral clustering have been
proposed. Here, we use Shi & Malik’s (2000) spectral
clustering algorithm, as it is widely used.

Our algorithm is unique in its use of spectral clustering
to produce multiple suboptimal clusterings along dis-
tinct dimensions on top of the optimal clustering. Our
key hypothesis is that suboptimal clusterings may re-
veal important clustering dimensions of a dataset. Be-
low we show how to learn the optimal clustering and
suboptimal clusterings using Shi & Malik’s algorithm.

2Note that our algorithm can be extended fairly easily
to produce k-way (k > 2) clusterings.
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In spectral clustering, a set of n data points X in an
arbitrary feature space is represented as an undirected
graph, where each node corresponds to a data point,
and the edge weight between two nodes is their simi-
larity as defined by S. The goal of spectral clustering
is to induce a partitioning function obtained by opti-
mizing an objective that typically involves maximizing
within-cluster similarity and inter-cluster dissimilarity.
The partitioning function that optimizes the objective
is the optimal partitioning function. All other parti-
tioning functions are suboptimal.

Learning the optimal partitioning function.

Normalized cut (Shi & Malik, 2000) is a widely used
objective function in spectral clustering. Note that
finding the optimal normalized cut solution is NP-hard
when f is constrained to be discrete (i.e., f ∈ {1,−1}).
However, if we relax the optimization problem by al-
lowing f to be continuous (i.e., f ∈ ℜ), the normalized
cut partition of X can be derived from the solution to
the following constrained optimization problem:

arg min
f∈ℜn

∑

i,j

Si,j(
f(i)√
di

− f(j)
√

dj

)2 (1)

subject to ||f ||2 =
∑

i

di and f ⊥ D1/21,

where D is a diagonal matrix with Di,i =
∑

j Si,j and
d is a n-dimensional vector with di = Di,i. It can be
proved that the closed form solution to this optimiza-
tion problem is e2, the eigenvector corresponding to
the second smallest eigenvalue of the Laplacian ma-
trix L = D−1/2(D − S)D−1/2 (Shi & Malik, 2000).3

Given that f=e2, we discretize f to produce a 2-way
clustering of X by applying 2-means to the n data
points represented by e2 (Ng et al., 2001). Note that
e2 is only an approximation to the (discrete) normal-
ized cut solution. Our definition of optimal and subop-
timal clusterings refers to the continuous normalized
cut objective as defined in (1).

Learning suboptimal partitioning functions.

Suboptimal clusterings would be useful if they can re-
veal distinct clustering dimensions of the data. Our al-
gorithm for producing multiple suboptimal partition-
ing functions is simple: we put progressively more con-
straints on the solution space in our constrained op-
timization problem. For example, if we add the con-
straint f ⊥ e2, we obtain a new partitioning function
f ′, which captures the normalized cut partition that
is orthogonal to e1 and e2.

4 Similar to the deriva-

3We refer to the nth smallest eigenvector of the Lapla-
cian simply as the nth eigenvector, and denote it by en.

4Note that the constraint f ⊥ D1/21 in the problem
ensures that the solution is always orthogonal to e1.

tion of the optimal partitioning function, one can show
that f ′=e3. More generally, if our candidate solutions
are restricted to those vectors that are orthogonal to
the first n eigenvectors of L, then en+1 is the solu-
tion (Shi & Malik, 2000). In other words, except e2,
all eigenvectors of L are suboptimal solutions to the
optimization problem, with en being more suboptimal
as n increases. Hence, we can produce a suboptimal
clustering by applying 2-means to each en separately.
To our knowledge, employing suboptimal partitioning

functions to produce multiple clusterings is an unex-

plored idea: existing work has focused on using only
e2 (or a combination of e2 and other eigenvectors) to
derive a single partition of the data; in contrast, we
use each of the eis (with i ≥ 2) separately to produce
multiple clusterings of the data.

To put it in a nutshell, our algorithm produces multiple
clusterings as follows: given data X and a similarity
function s, we form the Laplacian L, compute the sec-
ond through (m + 1)-th eigenvectors of L, and apply
2-means to each of these m eigenvectors to produce
m different clusterings. Interestingly, spectral learn-
ing naturally ensures that each of these m clusterings
are distinctively different and qualitatively strong:

Distinctivity: Note that we employ the principal
eigenvectors of L as real-valued partitioning functions.
If fi, i = 1 : m is our set of m partitioning func-
tions where f1 is the most optimal and fm is the
least optimal, then fi=ei+1. With some algebra, one
can show that (1) L is symmetric when the similar-
ity matrix S is symmetric, and (2) the eigenvectors
of L are orthogonal to each other when L is symmet-
ric. Since we employ a symmetric similarity measure
to compute the similarity between two data points,
S and L are symmetric. As a result, the eigenvec-
tors of L are orthogonal to each other. This gives
us direct proof of the distinctivity of each partition-
ing function. For example, if we use the squared
dot product, ψ, to compute the similarity between
two partitioning functions, then we can show that
∀i,j ψ(fi, fj) = (fT

i fj)
2 = (eT

i+1ej+1)
2 = 0. Hence,

our algorithm satisfies the distinctivity constraint.5

Quality: As noted before, if we disallow the first n
eigenvectors of L to be the solution to our optimiza-
tion problem, then en+1 is the solution. This implies
that the partitioning function corresponding to e3 is
the next optimal solution that is orthogonal to e2,
and the partitioning function corresponding to e4 is
the next optimal solution that is orthogonal to e2 and

5Note that we compare two partitioning functions in
the continuous space. Their similarity might be different
in the discrete space.
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e3. Hence, each of the m− 1 suboptimal partitioning
functions is the “next best” orthogonal solution that
can be achieved by a spectral system. In other words,
they are the closest to optimal partitioning function
w.r.t. the objective function. Hence, if m is reasonably
small, then each of the m − 1 suboptimal clusterings
are qualitative strong. This gives us direct control over
suboptimality: if we do not desire overly suboptimal
solutions, we can simply put restrictions on m. In our
experiments, we setm to 4, producing one optimal and
three suboptimal clusterings for each dataset.6

From a modeling point of view, it is not easy to de-
sign a clustering algorithm that can produce multiple
clusterings of a dataset and satisfy both distinctivity
and quality, as also demonstrated by the related work
discussed in Section 2. For example, Jain et al. (2008)
learn two clusterings C1 and C2 with k1 and k2 clus-
ters respectively in a “decorrelated” k-means frame-
work, by proposing the following objective function:

k1
∑

i=1

∑

x∈C1

i

||x− µi||2 +

k2
∑

j=1

∑

x∈C2

j

||x− νj ||2

+λ
∑

i,j

(βT
j µi)

2 + λ
∑

i,j

(αT
i νj)

2

where αi, βj are the mean vectors of C1
i and C2

j respec-

tively; µi, νj are the representative vectors of C1
i and

C2
j respectively; and λ is a regularization parameter.

The first two terms in the above objective function cor-
respond to typical k-means type error terms, whereas
the last two terms ensure that two clusterings are dis-
tinctively different. Note that to generate two distinct
clusterings, the objective function needs to have four
terms. To generate m distinct clusterings, it needs to
have (m+

(

m
2

)

) terms, which make the objective func-
tion highly convoluted. On the other hand, producing
m distinct clusterings in our spectral framework is rel-
atively straightforward.

3.3. Visualizing Clustering Dimensions

So far, we have shown how to produce multiple cluster-
ings (Ci, i = 1:m) of a dataset. Next, we identify the
most informative unigrams characterizing each clus-
tering so that the corresponding clustering dimension
is visualizable to the user. To select informative fea-
tures, we rank them by their weighted log-likelihood

ratio (WLLR): P (wi | Cj) · log
P (wi | Cj)

P (wi | ¬Cj)
, where wi

and Cj denote the ith feature and the jth cluster re-
spectively, and each probability is add-one smoothed.

6Using only up to e5 is by no means a self-imposed
limitation of our algorithm, since we can employ as many
eigenvectors as we desire.

Informally, wi will have a high rank w.r.t. Cj if it ap-
pears frequently in Cj and infrequently in ¬Cj . This
correlates reasonably well with what we think an in-
formative feature should be. Now, for each partition,
we (1) derive the top 100 features for each cluster ac-
cording to the WLLR, and then (2) present the ranked
lists to the user. The user can then visualize each in-
duced clustering dimension by inspecting the features
in the corresponding ranked lists.

4. Evaluation

We perform evaluations on document clustering tasks.

4.1. Experimental Setup

Datasets. We employ five text datasets. Two News-

groups (TNG) consists of all the documents from
two sections of 20 Newsgroups, talks.politics and
sci.crypt. Blitzer et al.’s (2007) book (BOO) and
DVD datasets each contains 2000 customer reviews of
books and DVDs from Amazon. The MIX dataset is a
4000-document dataset consisting of the 2000 BOO re-
views and the 2000 DVD reviews, as described above.
Finally, our POA dataset contains 2000 political ar-
ticles written by columnists who identified themselves
as either Republicans or Democrats.7

Gold-standard creation. We asked five gradu-
ate students not affiliated with this research to an-
notate each dataset with different clustering dimen-
sions. They first independently proposed plausible 2-
way clustering dimensions for a dataset after reading
its documents, and then agreed on a set of clustering
dimensions for the dataset through discussion. As seen
in Table 3, seven distinct clustering dimensions were
proposed for the five datasets, including: (1) Senti-
ment (whether the sentiment expressed in a review is
positive or negative); (2) Subjectivity (whether a re-
view contains mostly objective material (e.g., descrip-
tion of a product) or mostly subjective material (e.g.,
the author’s opinion about the product)); (3) Topic1
(whether a review was written for a book or a movie);
(4) Topic2 (whether a document is about science or
politics); (5) Strength (whether the opinion expressed
in a review is strong or weak); (6) Political affiliation
(whether a political article was written by a Democrat

or a Republican); and (7) Policy (whether a political
article describes a domestic or foreign policy).8

Next, we asked the same group of people to annotate

7These political articles were selected randomly from
http://www.commondreams.org/archives.

8Our annotated datasets are available at
http://www.utdallas.edu/∼sajib/multi-clusterings.html.
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TNG Topic2
BOO Sentiment, Subjectivity, Strength
DVD Sentiment, Subjectivity, Strength
MIX Topic1, Sentiment, Subjectivity, Strength
POA Political Affiliation, Policy

Table 3. Clustering dimensions for the five datasets.

each dataset along each of its clustering dimensions.
As these datasets have been annotated w.r.t. some of
the clustering dimensions (i.e., the italicized ones in
Table 3) when we collected them, the annotators only
need to annotate w.r.t. the non-italicized dimensions.

Preprocessing. To preprocess a document, we follow
Dasgupta & Ng (2009): we first tokenize and downcase
it, and then represent it as a vector of unstemmed uni-
grams, each of which assumes a value of 1 or 0 that in-
dicates its presence or absence in the document. More-
over, we remove from the vector punctuation, num-
bers, words of length one, and words that occur in
only a single document. Finally, we exclude words
with high document frequency, many of which are
stopwords or domain-specific general-purpose words.
We compute the similarity between two documents by
taking the dot product of their feature vectors.

4.2. Interpretability of Clustering Dimensions

To investigate (1) whether an induced clustering di-
mension is human-interpretable when represented as
two ranked lists of features, and (2) how well our algo-
rithm can recover the clustering dimensions manually
identified for each dataset (see Table 3), we performed
the following human experiment independently with
ten graduate students, none of whom were involved in
the human annotation process described previously.

Specifically, for each clustering produced by our al-
gorithm, we showed each human judge the top 100
features selected for each cluster according to WLLR,
(see Table 6 for a snippet), and asked her to determine
whether the resulting dimension can be labeled (e.g.,
with a dimension label such as Sentiment). If so, she
would assign a label to the dimension as well as a label
to each of the two clusters involved in the dimension.
In addition, she was told that the same dimension la-
bel can be assigned to more than one induced clus-
tering dimension for each dataset. Note that she was
not informed of the set of possible dimension labels
and cluster labels , although she had some knowledge
about each dataset. For instance, she knew that BOO
is composed of book reviews, and MIX is a collection
of book and DVD reviews.

Results of this experiment are shown in Table 4. For
each of the four dimensions (induced using e2 through

e5) for each dataset, we show (1) the fraction of judges
who determine that the dimension is interpretable
(and therefore can be labeled), and (2) the dimension
label assigned by the majority of these judges. As we
can see, the ten judges achieved high consistency in
terms of whether a dimension can be labeled. In fact,
in all cases where a dimension was determined to be in-
terpretable, an agreement rate of ≥ 70% was achieved
on which label should be assigned to the dimension.
Considering the fact that the judges were not informed
of the possible set of labels a priori, this is a fairly high
agreement rate. More importantly, the judges recov-
ered almost all of the dimensions shown in Table 3 for
each dataset, with the exception of Strength, which
was not identified for any of the three datasets that
contain this dimension. It is also worth noting that
some of the judges labeled the Policy dimension as
“War vs. Non-War”, which we considered correct as
the two roughly refer to the same dimension. Hence,
the human judges recovered 10 of the 13 dimensions
in Table 3, yielding a recall of 77%.

4.3. Clustering Quality

Next, we examine the quality of the clusterings in-
duced by our algorithm. To gauge the performance of
our algorithm, we will first report the results of four
baseline systems below. We use accuracy and Ad-
justed Rand Index (ARI) to evaluate the clusterings
produced by each system against the gold clusterings.

4.3.1. Baseline Systems

Traditional clustering algorithms. We use Ng
et al.’s (2001) spectral clustering algorithm and Non-
negative Matrix Factorization (NMF) (Xu et al., 2003)
as our first two baselines. Since these methods can pro-
pose only one clustering per dataset but most of our
datasets contain at least two gold clusterings (one for
each clustering dimension), we compare this proposal
clustering against each of the gold clusterings to obtain
the accuracy results in rows 1 and 2 of Table 5.9

Meta clustering. Since our clustering algorithm pro-
duces multiple clusterings, it is desirable to have a
baseline that also produces multiple clusterings. How-
ever, as mentioned before, many of the existing al-
gorithms that produce multiple clusterings work in
a semi-supervised setting (Gondek & Hofmann, 2004;
Davidson & Qi, 2007). The only notable exceptions
are Caruana et al. (2006) and Jain et al. (2008) [see
Section 2 for a discussion]. Since Jain et al.’s approach
produces two clusterings but some of our datasets can

9The ARI results exhibit the same trend as those of
accuracy and are omitted here due to space limitations.
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2nd eigenvector 3rd eigenvector 4th eigenvector 5th eigenvector
TNG 1.0 Topic2 1.0 Topic2 1.0 Topic2 0.0 –
BOO 0.0 – 0.8 Subjectivity 1.0 Sentiment 0.4 –
DVD 0.8 Subjectivity 1.0 Sentiment 0.0 – 0.2 –
MIX 1.0 Topic1 0.7 Subjectivity 1.0 Sentiment 1.0 Sentiment
POA 0.7 Political Aff. 1.0 Policy 1.0 Policy 0.0 –

Table 4. Human interpretability results. Shown for each eigenvector are: (1) the fraction of the judges that believe the
corresponding dimension is human-interpretable; and (2) the label assigned by the majority of these judges if at least five
judges believe that the dimension is interpretable. A ’–’ is used to indicate a non-interpretable dimension.

TNG BOO DVD MIX POA
System Dim1 Dim1 Dim2 Dim3 Dim1 Dim2 Dim3 Dim1 Dim2 Dim3 Dim4 Dim1 Dim2

1 Ng et al. 89.8 58.9 58.8 51.5 54.9 61.5 54.9 77.9 52.9 68.5 51.8 54.3 67.6
2 NMF 85.2 52.1 57.8 50.7 50.3 60.5 51.9 69.2 51.7 58.6 52.9 53.0 61.1
3 META 76.2 50.8 51.2 51.5 53.9 71.0 52.9 50.2 50.2 58.6 50.1 59.4 61.6
4 IFR 83.8 58.9 63.2 50.2 51.2 60.5 50.1 77.1 50.0 51.0 50.1 57.8 61.6
5 Ours 83.8 69.5 63.8 56.7 70.7 60.5 55.4 77.1 68.9 59.7 54.2 69.7 70.2

Table 5. Results in terms of accuracy for the five datasets. Dimn of a dataset refers to the nth dimension listed for the
dataset in Table 3. For instance, Dim1 and Dim2 of BOO correspond to Sentiment and Subjectivity, respectively.

be clustered in three different ways, we evaluate meta
clustering (Caruana et al., 2006) only. We produce
multiple clusterings for each dataset by running this
algorithm 100 times and report in row 3 of Table 5 the
best result obtained for each dimension of each dataset.
Although the best results are reported, meta cluster-
ing underperforms the first two baselines for all but
two dimensions (DVD/Dim2 and POA/Dim1).

Iterative feature removal. We designed another
simple baseline for producing multiple clusterings.
Given a dataset, we (1) apply spectral clustering to
produce a 2-way clustering using the second eigenvec-
tor, and then (2) remove from the feature space the top
informative features that are identified using WLLR
for each cluster. To produce another clustering, we
repeat these two steps with the reduced feature space.
To obtain the results of this algorithm in row 4 of Table
5, we (1) run it for m iterations to produce m cluster-
ings, where m is the number of dimensions the dataset
has, and (2) find the bipartite matching between the
proposal clusterings and the gold standard clusterings
that has the highest average accuracy. Since we need
to specify the number of features to remove from each
cluster in each iteration, we tested values from 100 to
5000 in steps of 100, reporting the best result. Except
for BOO/Dim2 and POA/Dim1, this algorithm never
outperforms the first baseline.

4.3.2. Our Clustering Algorithm

Results of our algorithm are shown in row 5 of Ta-
ble 5 and are computed as follows. For each dataset,
we (1) find the one-to-one mapping between the m

proposal clusterings and the gold standard cluster-
ings that yields the highest average accuracy, and (2)

compute the accuracy of a proposal clustering against
the mapped gold standard clustering. Note that the
clustering accuracy along the Strength dimension for
all three sentiment datasets is low, which suggests
that our algorithm fails to induce a clustering along
Strength. Nevertheless, our algorithm frequently out-
performs all of the baselines, and its clustering accu-
racies along all other dimensions are reasonably good
(59.7% to 83.8%). This substantiates our claim that
our algorithm can induce multiple meaningful cluster-
ings of a dataset along distinct dimensions. As we can
see, the accuracies are generally higher for the topic-
related dimensions (e.g., Politics vs. Science and Do-
mestic vs. Foreign) than the other dimensions (e.g.,
Sentiment, Subjectivity). This should not be surpris-
ing: learning non-topical classification tasks is difficult
even for supervised systems that are trained on a large
amount of labeled data (e.g., Thomas et al. (2006)).

In Table 6, a shaded column corresponds to an eigen-
vector (i.e., a clustering) that achieves the best accu-
racy along the dimension it is labeled with for the DVD
and POA datasets. As we can see, the eigenvector that
achieves the best accuracy along Political Affiliation is
e5. Interestingly, according to Table 4, the eigenvector
that was labeled as Political Affiliation by the human
judges was e2, not e5. This discrepancy is perhaps not
surprising, as the informative features for Democrats
and Republicans are highly overlapping, which compli-
cates the recognition of the Political Affiliation dimen-
sion. Nevertheless, for each of the remaining clustering
dimensions, the human-selected eigenvector is also the
one that achieves the best accuracy. This provides
suggestive evidence that it is possible to visualize a
dimension based on the informative features.



Mining Clustering Dimensions

DVD POA
e2 e3 e4 e5 e2 e3 e4 e5

Subjective Positive C1 C1 C1 Foreign C1 Republican
fan music video saw israel iran countries voters

bought wonderful music watched islamic iraqi israel conservative
video collection found fan violence forces muslim gop
money cast workout loved muslim nuclear iran win
series quality bought series islam countries oil polls
waste video videos comedy god israeli god poll
dvds excellent times enjoy peace saddam living candidates
videos enjoy children season soldiers strategic peace hilary
season family watched whole saddam east western kerry

workout must kids liked enemy iraqis east clinton

Objective Negative C2 C2 C2 Domestic C2 Democrat
role money series money tax family nsa agency

young thought cast quality economy love court information
cast waste fan video budget person constitutional companies

actors worst money director companies someone judiciary department
men nothing stars found income parents surveillance justice
us actually actors version taxes church committee warrant

world maybe comedy sound spending book sen criminal
played boring original waste cuts young democrat investigation

performance read worst special billion woman nomination legal
script down action picture prices guy alito documents

Subjectivity Sentiment Policy Political Aff.

Table 6. Top ten features induced for each dimension for the DVD and POA datasets. The dimension/cluster labels are
taken from the gold clustering to which an eigenvector (e2, . . ., e5) is mapped; C1 and C2 are the unlabeled clusters.

5. Conclusions

We presented an algorithm for producing multiple
clusterings of a text collection along its important di-
mensions without using any labeled data. This con-
trasts with the majority of existing clustering algo-
rithms, which can only produce a single clustering of
a dataset along its most prominent dimension.

In addition, our work has led to a better understanding
of spectral clustering. To our knowledge, we are the
first to employ spectral clustering to produce multiple
clusterings of a dataset, and show in the context of
text clustering that a dimension induced by spectral
clustering can be human-interpretable.

Finally, we have contributed to text visualization and
summarization. By representing an induced cluster-
ing dimension using words that are representative of
the dimension, our algorithm offers humans a conve-
nient means to visualize a dimension, facilitating ex-
ploratory text analysis.
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