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Abstract

We describe a method for inferring lin-
ear causal relations among multi-dimensional
variables. The idea is to use an asymme-
try between the distributions of cause and
effect that occurs if the covariance matrix of
the cause and the structure matrix mapping
the cause to the effect are independently cho-
sen. The method applies to both stochastic
and deterministic causal relations, provided
that the dimensionality is sufficiently high (in
some experiments, 5 was enough). It is ap-
plicable to Gaussian as well as non-Gaussian
data.

1. Motivation

Inferring the causal relations that have generated sta-
tistical dependencies among a set of observed random
variables is challenging if no controlled randomized
studies can be made. Here, causal relations are rep-
resented as arrows connecting the variables, and the
structure to be inferred is a directed acyclic graph
(DAG). There are several well-known approaches to
this task, of which perhaps the most established one is
the independence-based approach (Pearl, 2000; Spirtes
et al., 1993) based on the causal Markov condition and
an assumption of faithfulness: The guiding principle
is to accept only those causal DAGs that explain all
of the observed dependencies in the data and further-
more explain only those dependencies, i.e. all inferred
(marginal and conditional) independencies in the data
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are assumed to derive from the structure of the DAG.

Recently, several authors have proposed an entirely
different route to causal discovery, based on ICA or
(more generally) additive-noise models. These meth-
ods assume that the effects are given by some (possi-
bly nonlinear) functions of the cause up to an addi-
tive noise that is statistically independent of the cause
(Kano & Shimizu, 2003; Shimizu et al., 2006; Hoyer
et al., 2009). A recent proposal generalizes this model
class by further allowing non-linear transformations of
the effect (Zhang & Hyvärinen, 2009).

These methods both have their relative advantages
but also limitations. Approaches based solely on con-
ditional independencies cannot distinguish between
causally distinct models that impose the same set of in-
dendences; in particular, they cannot infer whether X
causes Y or Y causes X for just two observed variables
(Mooij & Janzing, 2010) X and Y . Methods based
on additive noise models fail for linear relationships
with Gaussian noise. Finally, neither of the above ap-
proaches can deal with deterministic relationships be-
tween the observed variables.

In the present paper, we describe a method based on a
recently proposed third principle. The idea is to reject
the causal hypothesis X→ Y whenever there are some
kind of dependences between P (X) and P (Y|X) that
suggest that P (X) and P (Y|X) were not generated
by “independent mechanisms” of nature. Janzing &
Schölkopf (2008) show examples illustrating how an in-
dependent choice of P (X) and P (Y|X) typically leads
to joint distributions where P (Y) and P (X|Y) sat-
isfy non-generic dependences indicating that Y → X
is not a plausible model. Based on an idea of Lemeire
& Dirkx (2006), Janzing & Schölkopf (2008) express
these dependences in terms of algorithmic informa-
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tion theory. Unfortunately, this leads to a criterion
that cannot be used for practical purposes due to the
uncomputability of Kolmogorov complexity. In this
contribution we provide an easily computable criterion
for detecting dependences between P (X) and P (Y|X)
for the case of two high-dimensional variables X and
Y coupled by a linear causal mechanism. We show
that the principle works even for multivariate Gaus-
sian models, and also if the relation is deterministic,
provided that the joint covariance matrix of X and Y
is sufficiently anisotropic.

Before proceeding to describe our method, we should
mention connections to Bayesian approaches (Hecker-
man et al., 1999) to causal discovery. Such methods
can, in principle and depending on the priors chosen,
use any of the information relied upon by the above-
mentioned three approaches. However, to date most
Bayesian causal discovery methods have focused on
conditional independence information. Furthermore,
the fact that deterministic relationships exist in real-
world settings shows that priors that are densities on
the parameters of the Bayesian networks, as is usu-
ally assumed, are problematic and the construction of
good priors is difficult. Thus, rather than defining a
prior explicitly, we will assume that it satisfies some
symmetry constraints and show how this already leads
to our inference rule (Theorem 1).

We start with two motivating examples. First, assume
that X is a multivariate Gaussian variable with values
in Rn and the isotropic covariance matrix ΣXX = I.
Let Y be another Rn-valued variable that is deter-
ministically influenced by X via the linear relation
Y = AX for some n × n-matrix A. This induces the
covariance matrix

ΣYY = AΣXXA
T = AAT .

The converse causal hypothesis Y → X becomes im-
plausible because P (Y) (which is determined by the
covariance matrix AAT ) and P (X|Y) (which is de-
scribed by X = A−1Y) are related in a suspicious way:
the mechanism from Y to X seems to be adjusted to
the distribution P (Y) because it exactly stretches the
directions with small variance and shrinks the ones
with large variance “in order” to get an isotropic out-
put P (X). This can, indeed, be the result of a “de-
signed” mechanism, but it is unlikely to be obtained by
a simple process in nature having no feedback loops.1

The “atypical” relation between ΣYY and A−1 can
1The argument that complex processes like evolution

may be able to develop such intelligent system design is
certainly correct, but this is a problem for all approaches
to causal inference from non-experimental data.

also be phrased in terms of symmetries: A−1ΣYYA
−T

(here we have used the short notation A−T := (A−1)T )
is surprisingly isotropic compared to those matrices
obtained by applying A−1 to UΣYYU

T for some
generic orthogonal transformation U ∈ O(n). We will
show below that this remains true with high proba-
bility (in high dimensions) if we start with an arbi-
trary covariance matrix ΣXX and apply a random lin-
ear transformation A chosen independently of ΣXX.

To understand in what sense independent choices of
ΣXX and A typically induce atypical relations between
A−1 and ΣYY we also discuss a second example where
ΣXX and A are simultaneously diagonal with cj and aj
(j = 1, . . . , n) as corresponding diagonal entries. Thus
ΣYY is also diagonal and its diagonal entries (which
equal its eigenvalues) are a2

jcj . We now assume that
“nature has chosen” the values cj independently from
some distribution and the aj independently from some
other distribution. We can then interpret the values cj
as instances of n-fold sampling of the random variable
c with expectation E(c) and the same for aj . If we
assume that a and c are independent, we have

E(a2c) = E(a2)E(c) . (1)

Due to the law of large numbers, this equation will
for large n approximately be satisfied by the empirical
averages, i.e.,

1
n

n∑
j=1

a2
jcj ≈

 1
n

n∑
j=1

a2
j

  1
n

n∑
j=1

cj

 . (2)

For the backward direction Y → X we observe that
the diagonal entries c̃j = a2

jcj of ΣYY and the diagonal
entries ãj = a−1

j of Ã := A−1 have not been chosen
independently because E(ã2c̃) = E(a−2a2c) = E(c),
whereas

E(ã2)E(c̃) = E(a−2)E(a2c)
= E(a−2)E(a2)E(c) > E(c) .

The last inequality holds because the random variables
a2 and a−2 are always negatively correlated (from the
Cauchy-Schwarz inequality we obtain E(a2)E(a−2) ≥
1 with equality only for the trivial case where a is con-
stant). We thus observe a systematic violation of (1)
in the backward direction. The proof for non-diagonal
matrices in Section 2 uses spectral theory, and is based
upon the same intuition.

The paper is structured as follows. In Section 2, we
show that the above mentioned atypical relations be-
tween covariance and structure matrices can be de-
tected via a simple trace formula. In Section 3 we de-
scribe an algorithm that is based upon this result and
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in Section 4 discuss experiments with simulated and
real data. Section 5 proposes possible generalizations.

2. Identifiability results

Given a hypothetical linear causal model Y = AX+E
(where X and Y are n- and m-dimensional, respec-
tively) we want to check whether the pair (ΣXX, A)
satisfies some relation that typical pairs (UΣXXU

T , A)
only satisfy with low probability if U ∈ O(n) is ran-
domly chosen. To this end, we introduce the renor-
malized trace

τn(.) := tr(.)/n

for dimension n and compare the values

τm(AΣXXA
T ) and τn(ΣXX)τm(AAT ) . (3)

One shows easily that the expectation of both values
coincide if ΣXX is randomly drawn from a distribution
that is invariant under transformations

ΣXX 7→ UΣXXU
T .

This is because averaging the matrices UΣXXU
T over

all U ∈ O(n) projects onto τn(ΣXX)I since the average
UΣXXU

T commutes with all matrices and is therefore
a multiple of the identity. For our purposes, it is deci-
sive that the typical case is close to this average, i.e.,
the two expressions in (3) almost coincide. To show
this, we need the following result (Ledoux, 2001):

Lemma 1 (Lévy’s Lemma)
Let g : Sn → R be a Lipschitz continuous function on

the n-dimensional sphere with

L := max
γ 6=γ′

|g(γ)− g(γ′)|
‖γ − γ′‖

.

If a point γ on Sn is randomly chosen according to an
O(n)-invariant prior, it satisfies

|g(γ)− ḡ| ≤ ε

with probability at least 1 − exp(−κ(n − 1)ε2/L2) for
some constant κ, where ḡ can be interpreted as the
median or the average of g(γ).

Given the above Lemma, we can prove the following
Theorem:

Theorem 1 (multiplicativity of traces)
Let Σ be a symmetric, positive definite n × n-matrix

and A an arbitrary m × n-matrix. Let U be ran-
domly chosen from O(n) according to the unique O(n)-
invariant distribution (i.e. the Haar measure). Intro-
ducing the operator norm ‖B‖ := max‖x‖=1 ‖Bx‖, we
have

|τm(AUΣUTAT )− τn(Σ)τm(AAT )| ≤ 2ε‖Σ‖‖AAT ‖

with probability at least q := 1− exp(−κ(n− 1)ε2) for
some constant κ (independent of Σ, A, n,m, ε).

Proof: for an arbitrary orthonormal system
(ψj)j=1,...,m we have

τm(AUΣUTAT ) =
1
m

m∑
j=1

〈ψj , AUΣUTATψj〉 .

We define the unit vectors γj := UTATψj/‖ATψj‖.
Dropping the index j, we introduce the function
f(γ) := 〈γ,Σγ〉 . For a randomly chosen U ∈ O(n),
γ is a randomly chosen unit vector according to a uni-
form prior on the n-dimensional sphere Sn.

The average of f is given by f̄ = τn(Σ). The Lipschitz
constant is given by the operator norm of Σ, i.e., L =
2‖Σ‖ . An arbitrarily chosen j satisfies

|〈γj ,Σγj〉 − τn(Σ)| ≤ 2ε‖Σ‖

with probability 1 − exp(−κ(n − 1)ε2). This follows
from Lemma 1 after replacing ε with εL. Hence

|〈ψj , AUΣUTATψj〉 − τn(Σ)〈ψj , AATψj〉|
≤ 2ε‖Σ‖‖AAT ‖ .

Due to

τm(AUΣUTAT ) =
1
m

m∑
j=1

〈ψj , AATψj〉〈γj ,Σγj〉 ,

we thus have

|τm(AUΣUTAT )− τm(AAT )τn(Σ)| ≤ 2ε‖Σ‖‖AAT ‖ .

�

It is convenient to introduce

∆(Σ, A) := log τm(AΣAT )− log τn(Σ)− log τm(AAT )

as a scale-invariant measure for the strength of the
violation of the equality of the expressions (3). We will
also write ∆X→Y if Σ is the covariance matrix of X
and A the structure matrix defining the linear model
from X to Y. Note that ∆ vanishes for dimension
one, our method is certainly not able to distinguish
between cause and effect for just two one-dimensional
variables.

We will assume that ∆ can be used to detect the causal
direction because we expect ∆ ≈ 0 for the correct one
(due to Theorem 1). Certainly, ∆ can also be close
to zero for the wrong direction, but our theory and
experiments will suggest that this rarely happens.
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First, we restrict the attention to deterministic models

Y = AX

and the case where n ≤ m and A has rank n. This
ensures that the backward model is also deterministic,
i.e.,

X = A−1Y ,

with (.)−1 denoting the pseudo inverse. The following
theorem shows that ∆X→Y = 0 then implies ∆Y→X ≤
0:

Theorem 2 (violation of trace formula)
Let n,m with n ≤ m denote the dimensions of X

and Y, respectively. If Y = AX and X = A−1Y, the
covariance matrices satisfy

∆X→Y + ∆Y→X

= − log (1− Cov(Z, 1/Z)) + log
n

m
, (4)

where Z is a real-valued random variable whose distri-
bution is the empirical distribution of eigenvalues of
AAT , i.e., τm((AAT )k) = E(Zk) for all k ∈ Z.

Proof: We have

τn(Σ)
τm(AΣAT )τn(A−1A−T )

=
1

τm(AAT )τn(A−1A−T )
τn(Σ)τm(ATA)
τm(AΣAT )

. (5)

Using

τn(A−1A−T ) = τn(A−TA−1) = τn((AAT )−1)

=
m

n
τm((AAT )−1)

and taking the logarithm we obtain

∆Y→X = log
1

E(Z)E(1/Z)
+ log

n

m
−∆(Σ, A) .

Then the statement follows from

Cov(Z, 1/Z) = 1− E(Z)E(1/Z) .

�

If |∆X→Y| is smaller than the absolute value of the
right hand side of eq. (4), we obtain a non-trivial
lower bound on |∆Y→X|. To show that this bound
need not be small in high dimensions, we consider
the case n = m and a sequence of n × n random
matrices (An) whose eigenvalue distributions Zn con-
verge to some distribution on R with non-zero vari-
ance. − log (1− Cov(Z, 1/Z)) then converges to some
negative value.

We should, however, mention a problem that occurs
for m > n in the noise-less case discussed here: Since
ΣYY has only rank n, we could equally well replace
A−1 with some other matrix Â that coincides with A−1

on all of the observed y-values. For those matrices Â,
the value ∆ can get closer to zero because the term
log n/m expresses the fact that the image of ΣYY is
orthogonal to the kernel of A−1, which is already an
atypical relation.

It turns out that the observed violation of the mul-
tiplicativity of traces can be interpreted in terms of
relative entropy distances. To show this, we need the
following result:

Lemma 2 (anisotropy and relative entropy)
Let Σ be the covariance matrix of a centralized non-
degenerate multi-variate Gaussian distribution PΣ in
n dimensions. Let the anisotropy of Σ be defined by the
relative entropy distance to the closest isotropic Gaus-
sian

D(Σ) := min
Q isotropic

D(PΣ||Q) .

Then

D(Σ) =
1
2

(n log τn(Σ)− log det(Σ)) . (6)

Proof: the relative entropy distance of two centralized
Gaussians with covariance matrices Σ,Σ0 in n dimen-
sions is given by

D(PΣ||PΣ0) =
1
2

(
log
(detΣ0

detΣ

)
+ tr(Σ−1

0 Σ)− n
)
.

Setting Σ0 = λI, the distance is minimized for λ =
τn(Σ), which yields eq. (6). �

Straightforward computations show:

Theorem 3 (multiplicativity and rel. entropy)
Let Σ and A be n×n-matrices with Σ positive definite.
Then

D(AΣAT ) = D(Σ) +D(AAT ) +
n

2
∆(Σ, A) .

Hence, for independently chosen A and Σ, the
anisotropy of the output covariance matrix AΣAT is
approximately given by the anisotropy of Σ plus the
anisotropy of AAT , which is the anisotropy of the out-
put that A induces on an isotropic input. For the
backward direction, the anisotropy is smaller than the
typical value.

We now discuss an example with a stochastic relation
between X and Y. We first consider the general linear
model

Y = AX + E ,
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where A is an m × n matrix and E is a noise term
(statistically independent of X) with covariance ma-
trix ΣEE. We obtain

ΣYY = AΣXXA
T + ΣEE .

The corresponding backward model2 reads

X = ÃY + Ẽ .

with
Ã := ΣXYΣ−1

YY .

Now we focus on the special case where A is an orthog-
onal transformation and E is isotropic, i.e., ΣEE = λI
with λ > 0. Then ∆Y→X is positive:

Lemma 3 (noisy case)
Let Y = AX + E with A ∈ O(n) and the covariance

matrix of E be given by ΣEE = λI. Then we have

∆Y→X > 0 .

Proof: We have ΣYY = AΣAT + λI and ΣYX = AΣ,
with Σ := ΣXX. Therefore,

Ã = ΣAT (AΣAT + λI)−1 = Σ(Σ + λI)−1AT .

One checks easily that the orthogonal transformation
A is irrelevant for the traces and we thus have

∆Y→X = log
τ(Σ2(Σ + λI)−1)

τ(Σ + λI)τ(Σ2(Σ + λI)−2)

= log
E
(
Z2/(Z + λ)

)
E(Z + λ)E (Z2/(Z + λ)2)

,

where Z is a random variable of which distribution re-
flects the distribution of eigenvalues of Σ. The function
z 7→ z/(z + λ) is monotonously increasing for positive
λ and z and thus also z 7→ z2/(z + λ)2. Hence Z + λ
and Z2/(Z + λ)2 are positively correlated, i.e.,

E(Z2/(Z + λ)) = E((Z + λ)Z2/(Z + λ)2)
> E(Z + λ)E

(
Z2/(Z + λ)2

)
,

for all distributions of Z with non-zero variance. Hence
the logarithm is positive and thus ∆Y→X > 0. �

Theorem 2 and Lemma 3 show that independent
choices of A and ΣXX can induce positive or nega-
tive values of ∆ in the wrong direction. We therefore
propose to prefer the causal direction for which ∆ is
closer to zero.

2For non-Gaussian X or E, this induces a joint distribu-
tion P (X,Y) that does not admit a linear backward model

with an independent noise Ẽ, we can then only obtain un-
correlated noise. We could in principle already use this fact
for causal inference (Kano & Shimizu, 2003). However, our
method also works for the Gaussian case or if the dimension
is too high for testing higher-order statistical dependences
reliably.

Algorithm 1 Identifying linear causal relations via
traces
1: Input: (x1, y1), . . . , (xk, yk), ε

2: Compute the estimators ΣXX, ΣXY, ΣYX, ΣYY

3: Compute A := ΣYXΣ−1
XX

4: Compute Ã := ΣXYΣ−1
YY

5: if |∆Y→X| > (1 + ε)|∆X→Y| then
6: write “X is the cause”
7: else
8: if |∆X→Y| > (1 + ε)|∆Y→X| then
9: write “Y is the cause”

10: else
11: write “cause cannot be identified”
12: end if
13: end if

3. Inference algorithm

Motivated by the above theoretical results, we propose
to infer the causal direction using Alg. 1.3

In light of the theoretical results, the following issues
have to be clarified by experiments with simulated
data:

1. Is the limit for dimension to infinity already jus-
tified for moderate dimensions?

2. Is the multiplicativity of traces sufficiently vio-
lated for noisy models? – Note that Lemma 3
only covers a special case.

Furthermore, the following issue has to be clarified by
experiments with real data:

3. Is the behaviour of real causal structures quali-
tatively sufficiently close to our model with inde-
pendent choices of A and ΣXX according to an
isotropic prior? How large must we choose the
threshold ε in Alg. 1 to get reliable results?

4. Experiments

4.1. Simulated data

We have generated random models Y = AX + E as
follows: We independently draw each element of the
m × n structure matrix A from a standardized Gaus-
sian distribution. This implies that the distribution
of column vectors as well as the distribution of row
vectors is isotropic. To generate a random covariance

3A code package implementing this algorithm (and re-
producing all experiments reported in this paper), is avail-
able at: http://www.kyb.tuebingen.mpg.de/causality/
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Figure 1. Simulation results. (a) Performance of the
method as a function of the input dimensionality n, when
the output dimensionality m = n and the sample size is
N = 2n. The green curve (circles) denotes the fraction of
simulations on which the true causal direction was selected,
while the red curve (squares) gives the fraction of wrong
answers. (b) Mean values of ∆ corresponding to the true
direction (green) vs the wrong direction (red). (c) Per-
formance as a function of noise level σ, for dimensionality
n = m = 10 and sample size N = 1000. To compare,
the dashed lines give the performance based on the ex-
act covariance matrices rather than based on the samples.
(d) Mean values of ∆ corresponding to the true direction
(green) vs the wrong direction (red). See main text for
discussion.

matrix ΣXX, we similarly draw an n×n matrix B and
set ΣXX := BBT . Due to the invariance of our deci-
sion rule with respect to the scaling of A and ΣXX, the
structure matrix and the covariance can have the same
scale without loss of generality. The covariance ΣEE

of the noise is generated in the same way, although
with an adjustable parameter σ governing the scaling
of the noise with respect to the signal: σ = 0 yields the
deterministic setting, while σ = 1 equates the power
of the noise to that of the signal.

First, we demonstrate the performance of the method
in the close-to deterministic setting (σ = 0.05) as a
function of the dimensionality n = m of the simu-
lations, ranging from dimension 2 to 50. To show
that the method is feasible even with a relatively small
number of samples, we choose the number of samples
N to scale with the dimension as N = 2n. (Note
that we must have N ≥ min(n,m) to obtain invertible
estimates of the covariance matrices.) The resulting
proportion of correct vs wrong decisions is given in
Fig. 1a, with the corresponding values of ∆ in Fig. 1b.
As can be seen, even at as few as 5 dimensions and
10 samples, the method is able to reliably identify the
direction of causality in these simulations.

To illustrate the degree to which identifiability is ham-
pered by noise, the solid line in Fig. 1c gives the perfor-
mance of the method for a fixed dimension (n = m =
10) and fixed sample size (N = 1000) as a function
of the noise level σ. As can be seen, the performance

drops markedly as σ is increased. As soon as there
is significantly more noise than signal (say, σ > 2),
the number of samples is not sufficient to reliably es-
timate the required covariance matrices and hence the
direction of causality. This is clear from looking at the
much better performance of the method when based
on the exact, true covariance matrices, given by the
dashed lines. In Fig. 1d we show the corresponding
values of ∆, from which it is clear that the estimate
based on the samples is quite biased for the forward
direction.

The simulations point out at least one important issue
for future work: the construction of unbiased estima-
tors for the trace values or the ∆. The systematic
deviation of the sample-based experiments from the
covariance-matrix based experiments in Fig. 1c–d sug-
gest that this could be a major improvement.

4.2. Handwritten digits

As experiments with real data with known ground
truth, we have chosen 16 × 16 pixel images (so n =
256) of handwritten digits (LeCun et al., 1990). As
the linear map A we have used both random local
translation-invariant linear filters and also standard
blurring of the images. (We added a small amount of
noise to both original and processed images, to avoid
problems with very close-to singular covariances.) The
task is then: given a sample of pairs (xj , yj), each con-
sisting of the picture xj and its processed counterpart
yj , infer which of the set of pictures x or y are the orig-
inals (‘causes’). By partitioning the image set by the
digit class (0-9), and by testing a variety of random
filters (and the standard blur), we obtained a number
of test cases to run our algorithm on. Out of the total
of 100 tested cases, the method was able to correctly
identify the set of original images 94 times, with 4 un-
knowns (i.e. only two falsely classified cases).

4.3. Geographic position and precipitation

In the first experiment we took precipitation data from
4748 different locations in Germany4. The cause X
was 3-dimensional and consisted of

X = (altitude, longitude, latitude) .

The effect Y was 12-dimensional and consisted of the
average precipitation per month:

Y = (prec. in Jan., . . . , prec. in Dec.) .

Here we are faced with the following problem. The
scales of X1 are uncomparable to those of X2 and X3

4http://www.dwd.de

http://www.dwd.de
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since the quantities are measured in different units.
We have therefore renormalized all Xj to unit vari-
ance. One may debate whether one should then also
renormalize Y (even though all Yj refer to the same
unit) in order to have a method that treats X and Y
in the same way. We have done two runs, one with
only renormalizing X (top row of table below) and the
second with renormalizing X and Y (bottom row of
table below).

∆X→Y = −0.240; ∆Y→X = −2.25
∆X→Y = −0.278; ∆Y→X = −2.11

The results qualitatively coincide for both versions and
our method prefers the correct causal direction X →
Y. We will henceforth renormalize whenever a vector
contains quantities of different units, even if some of
the units coincide.

We also tried the same experiment with 3-dimensional
precipitation vector Y containing only months j to
j + 2 for all j = 1, . . . , 10. In all these 10 experiments
we also obtained correct results.

4.4. Weather and air pollution

In another experiment we used data on the relation be-
tween weather conditions and air pollution in Chem-
nitz, Germany, measured at 1440 days.5 We defined a
3-dimensional vector of weather conditions

X = (sin(φwind), cos(φwind), T ) ,

where φwind is the direction of the wind and T is the air
temperature. We then define a 6-dimensional vector
“air pollution”

Y = (ozone, sulfur dioxid, dust, CO, NO2, NOx) .

Clearly, the wind can blow the pollutants away from
or to the location of measurement, depending on its
direction. Moreover, the production of ozone is known
to be a problem of days with strong sun radiation.
We therefore assume the ground truth to be X → Y.
Here, we must obviously renormalize X and Y. We
obtained the result

∆X→Y = −0.0504; ∆Y→X = −1.44 ,

and thus prefer the correct causal direction. To ex-
clude a systematic preference of the lower dimension
as the cause we have also defined 3-dimensional vectors
(Yj ,Yj+1,Yj+2) and obtained the correct result for
all j = 1, . . . , 4. The dataset also contained a variable

5http://www.mathe.tu-freiberg.de/Stoyan/
Umweltdaten/chemnitz.txt

wind strength, but it was discretized into 3 values. We
have therefore dropped it because our method actu-
ally refers to continuous variables only. However, it is
noteworthy that our method actually assumes that the
data points are independently drawn from P (X,Y),
rather than being part of a time series as it is the case
here and in the following experiment.

4.5. Stock returns

We also ran an experiment with the relations between
the daily stock returns in different countries from the
Yahoo finance database at 2394 days (from January
04, 2000 to March 10, 2009). We defined

X := (SH, HSI, TWI, N225)

where the abbreviations stand for the stock returns of
Shanghai (China), Hang Seng (Hong Kong), Taiwan,
Nikkei (Japan). Moreover, we combine the European
indices

Y := (FTSE, DAX, CAC) ,

corresponding to England, Germany, and France, re-
spectively. Due to the different time zones, the Euro-
pean returns at the same day refer to a later time than
the Asian ones. We therefore assume that the ground
truth is X → Y. The results (without renormalizing
covariance matrices) are

∆X→Y = 0.408; ∆Y→X = 0.363 .

Here we infer the wrong direction but the difference
between the values is small. When applying a conser-
vative decision rule (via setting the threshold appro-
priately) we would not make a decision here.

To get vectors of higher dimensions we combined the
returns of Europe and the USA (DJ and Nas) because
both refer to a later time than the Asian ones.

Y := (FTSE, DAX, CAC, DJ, Nas) .

We obtain

∆X→Y = 0.312; ∆Y→X = 0.147 ,

which also infers the wrong direction (with higher sig-
nificance than before). The problem might be the fol-
lowing. The assumption that “the market chooses”
ΣXX and A independently is questionable since ΣXX

is the result of complex market phenomena that also
depend on what happened the day before (which was
also determined by A). To further explore the robust-
ness of our method with respect to violating the model
assumptions must be left to the future.

Since the threshold ε in Alg. 1 is hard to interpret one
may prefer a decision rule that is closer to standard

http://www.mathe.tu-freiberg.de/Stoyan/Umweltdaten/chemnitz.txt
http://www.mathe.tu-freiberg.de/Stoyan/Umweltdaten/chemnitz.txt
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statistical hypothesis testing: generate a large number
of random orthogonal transformations U , apply them
to X (while keeping A) and consider the distribution
of all these values ∆UX→Y. The observed value then
defines a p-value and we can infer directions by just
comparing p-values. We have done preliminary studies
for some of the above examples and obtained qualita-
tively the same results.

5. Outlook: generalizations of the
method

In this section, we want to place our theoretical results
in a more general context and state:

Postulate 1 (typicality for group orbits)
Let X and Y be random variables with joint distribu-
tion P (X,Y) and G be a group of transformations on
the range of X. Each g ∈ G defines a modified distri-
bution of Y via P (g)(Y) :=

∑
x P (Y|g(x))P (x). Let

K(.) be some real-valued function on the probability
distributions of Y. The causal hypothesis X → Y is
unlikely if K(P (Y)) is smaller or greater than the big
majority of all distributions (P (g)(Y))g∈G.

Our prior knowledge about the structure of the data
set determines the appropriate choice of G. The idea
is that G expresses a set of transformations that gener-
ate input distributions Pg(X) that we consider equally
likely. We have chosen K(P (Y)) := τ(ΣYY) and
G = O(n), but the permutation of components of X
also defines an interesting transformation group. For
time series, the translation group would be the most
natural choice.

Interpreting this approach in a Bayesian way, we thus
use symmetry properties of priors without the need to
explicitly define the priors themselves.

6. Discussion

Our experiments with simulated data suggest that the
method performs quite well already for moderate di-
mensions provided that the noise level is not too high.
Certainly, the model of drawing ΣXX according to a
distribution that is invariant under ΣXX 7→ UΣXXU

T

may be inappropriate for many practical applications.
Even though the example with diagonal matrices in
Section 1 shows that the statement ∆ ≈ 0 holds for a
much broader class of models, it remains to show that
most cause-effect pairs in the real world indeed satisfy
∆ ≈ 0 for the true causal direction. Our studies with
empirical data are still preliminary in this respect. It
is possible that the method presented here only shows
a future direction for the development of more mature

causal inference algorithms.

It would be interesting to know whether our method
could be a sanity check for complex causal networks:
Consider, e.g., a causal DAG G connecting 2n real-
valued variables. If X1, . . . ,X2n is an ordering that is
consistent with G, we define Y := (X1, . . . ,Xn) and
W := (Xn+1, . . . ,X2n) and test whether ∆Y→W ≈ 0.
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