
Feature Selection Using Regularization in Approximate Linear
Programs for Markov Decision Processes

Marek Petrik* petrik@cs.umass.edu
Gavin Taylor† gvtaylor@cs.duke.edu
Ron Parr† parr@cs.duke.edu
Shlomo Zilberstein* shlomo@cs.umass.edu

* Department of Computer Science, University of Massachusetts, Amherst, MA 01003 USA

† Department of Computer Science, Duke University, Durham, NC 27708 USA

Abstract

Approximate dynamic programming has
been used successfully in a large variety of do-
mains, but it relies on a small set of provided
approximation features to calculate solutions
reliably. Large and rich sets of features can
cause existing algorithms to overfit because
of a limited number of samples. We address
this shortcoming using L1 regularization in
approximate linear programming. Because
the proposed method can automatically se-
lect the appropriate richness of features, its
performance does not degrade with an in-
creasing number of features. These results
rely on new and stronger sampling bounds
for regularized approximate linear programs.
We also propose a computationally efficient
homotopy method. The empirical evalua-
tion of the approach shows that the proposed
method performs well on simple MDPs and
standard benchmark problems.

1. Introduction

Solving large Markov Decision Processes (MDPs) is
a very useful, but computationally challenging prob-
lem addressed widely by reinforcement learning. It
is widely accepted that large MDPs can only be
solved approximately. This approximation is com-
monly done by relying on linear value function approx-
imation, in which the value function is chosen from a
small-dimensional vector space of features. While this
framework offers computational benefits and protec-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

tion from the overfitting in the training data, selecting
an effective, small set of features is difficult and re-
quires a deep understanding of the domain. Feature
selection, therefore, seeks to automate this process in
a way that may preserve the computational simplicity
of linear approximation (Parr et al., 2007; Mahadevan,
2008). We show in this paper that L1-regularized ap-
proximate linear programs (RALP) can be used with
very rich feature spaces.

RALP relies, like other value function approximation
methods, on samples of the state space. The value
function error on states that are not sampled is known
as the sampling error. This paper shows that regular-
ization in RALP can guarantee small sampling error.
The bounds on the sampling error require somewhat
limiting assumptions on the structure of the MDPs, as
any guarantees must, but this framework can be used
to derive tighter bounds for specific problems in the
future. The relatively simple bounds can be used to
determine automatically the regularization coefficient
to balance the expressivity of the features with the
sampling error.

We derive the approach with the L1 norm, but it could
be used with other regularizations with small modifi-
cations. The L1 norm is advantageous for two main
reasons. First, the L1 norm encourages the sparse so-
lutions, which can reduce the computational require-
ments. Second, the L1 norm preserves the linearity
of RALPs; the L2 norm would require quadratic opti-
mization.

Regularization using the L1 norm has been widely
used in regression problems by methods such as
LASSO (Tibshirani, 1996) and Dantzig selector (Can-
des & Tao, 2007). The value-function approxima-
tion setting is, however, quite different and the re-
gression methods are not directly applicable. Regu-

Feature Selection Using Regularization

larization has been previously used in value function
approximation (Taylor & Parr, 2009; Farahmand et al.,
2008; Kolter & Ng, 2009). In comparison with LARS-
TD (Kolter & Ng, 2009), an L1 regularized value func-
tion approximation method, we explicitly show the in-
fluence of regularization on the sampling error, pro-
vide a well-founded method for selecting the regu-
larization parameter, and solve the full control prob-
lem. In comparison with existing sampling bounds for
ALP (de Farias & Van Roy, 2001), we do not assume
that the optimal policy is available, make more general
assumptions, and derive bounds that are independent
of the number of features.

Our approach is based on approximate linear program-
ming (ALP), which offers stronger theoretical guaran-
tees than some other value function approximation al-
gorithms. We describe ALP in Section 3 and RALP
and its basic properties in Section 4. RALP, unlike
ordinary ALPs, is guaranteed to compute bounded so-
lutions. We also briefly describe a homotopy algorithm
for solving RALP, which exhibits anytime behavior
by gradually increasing the norm of feature weights.
To develop methods that automatically select features
with generalization guarantees, we propose general
sampling bounds in Section 5. These sampling bounds,
coupled with the homotopy method, can automatically
choose the complexity of the features to minimize over-
fitting. Our experimental results in Section 6 show
that the proposed approach with large feature sets
is competitive with LSPI when performed even with
small feature spaces hand selected for standard bench-
mark problems. Section 7 concludes with future work
and a more detailed relationship with other methods.

2. Framework and Notation

In this section, we formally define Markov decision
processes and linear value function approximation.
A Markov Decision Process is a tuple (S,A, P, r, γ),
where S is the possibly infinite set of states, and A
is the finite set of actions. P : S × S × A 7→ [0, 1] is
the transition function, where P (s′, s, a) represents the
probability of transiting to state s′ from state s, given
action a. The function r : S × A 7→ R is the reward
function, and γ is the discount factor. Pa and ra are
used to denote the probabilistic transition matrix and
reward vector for action a.

We are concerned with finding a value function v
that maps each state s ∈ S to the expected total γ-
discounted reward for the process. Value functions can
be useful in creating or analyzing a policy π : S×A →
[0, 1] such that for all s ∈ S,

∑
a∈A π(s, a) = 1. The

transition and reward functions for a given policy are

denoted by Pπ and rπ. The value function update for
a policy π is denoted by Lπ, and the Bellman operator
is denoted by L. That is:

Lπv = γPπv + rπ Lv = max
π∈Π

Lπv.

The optimal value function v∗ satisfies Lv∗ = v∗.

We focus on linear value function approximation for
discounted infinite-horizon problems, in which the
value function is represented as a linear combination
of nonlinear basis functions (vectors). For each state
s, we define a vector φ(s) of features. The rows of the
basis matrix Φ correspond to φ(s), and the approxima-
tion space is generated by the columns of the matrix.
That is, the basis matrix Φ, and the value function v
are represented as:

Φ =

(
— φ(s1)T —

...

)
v = Φw.

This form of linear representation allows for the cal-
culation of an approximate value function in a lower-
dimensional space, which provides significant compu-
tational benefits over using a complete basis; if the
number of features is small, this framework can also
guard against overfitting noise in the samples.

Definition 1. A value function, v, is representable if
v ∈ M ⊆ R|S|, where M = colspan (Φ). The set of
ε-transitive-feasible value functions is defined for ε ≥ 0
as follows: K(ε) = {v ∈ R|S| v ≥ Lv − ε1. Here 1
is a vector of all ones. A value function is transitive-
feasible when v ≥ Lv and the set of transitive-feasible
functions is defined as K = K(0).

Notice that the optimal value function v∗ is transitive-
feasible, and that M is a linear space.

3. Approximate Linear Programming

The approximate linear programming (ALP) frame-
work is an approach for calculating a value function
approximation for large MDP with a set of features Φ
that define a linear spaceM (Schweitzer & Seidmann,
1985; de Farias & Van Roy, 2003). The ALP takes the
following form:

min
v∈M

∑
s∈S

ρ(s)v(s)

s.t. r(s, a) + γ
∑
s′∈S

P (s′, s, a)v(s′) ≤ v(s)

where ρ is a distribution over the initial states and
the constraints are for all (s, a) ∈ (S,A); that is∑
s∈S ρ(s) = 1. To ensure feasibility, one of the fea-

tures is assumed to be constant. Therefore, in the re-
mainder of the paper, we make the following standard

Feature Selection Using Regularization

assumption (Schweitzer & Seidmann, 1985), which can
be satisfied by setting the first column of M to 1.

Assumption 2. For all k ∈ R, we have that k·1 ∈M,
where 1 is a vector of all ones.

For simplicity and generality of notation, we use L to
denote the ALP constraint matrix, so Lv ≤ v is equal
to the set of constraints {Lav ≤ v : ∀a ∈ A}. Then,
we can rewrite the ALP as follows:

min
v

ρTv

s.t. Lv ≤ v v ∈M
(1)

Notice that the constraints in the ALP correspond to
the definition of transitive-feasible functions in Defi-
nition 1. A succinct notation of the ALP constraints
can then use the set of transitive-feasible functions as
v ∈M∩K.

The constraint v ∈M implies that v = Φw and there-
fore the number of variables in (1) corresponds to the
number of features. Typically, this is a small num-
ber. However, the number of required constraints in
ALP is |S| × |A|, which is oftentimes impractically
large or infinite. The standard solution is to sample a
small set of constraints according to a given distribu-
tion (de Farias & Van Roy, 2003). It is then possible
to bound the probability of violating a randomly cho-
sen constraint. There are, however, a few difficulties
with this approach. First, leaving constraints out can
lead to an unbounded linear program. Second, in prac-
tice the distribution over the constraints can be very
different from the distribution assumed by the theory.
Finally, the bound provides no guarantees on the so-
lution quality.

ALP has often under-performed ADP methods in
practice; this issue has been recently studied and
partially remedied (Petrik & Zilberstein, 2009; Desai
et al., 2009). Because these methods are independent
of the proposed modifications, we only focus on stan-
dard approximate linear programs.

We show next that RALP with sampled constraints
not only guarantees that the solution is bounded and
provides worst-case error bounds on the value function,
but also is independent of the number of features. As
a result, the ALP formulation does not require a small
number of features to be selected in advance.

4. Regularized Approximate Linear
Programming

In this section, we introduce L1-regularized ALP
(RALP) as an approach to automate feature selection
and alleviate the need for all constraints in standard

ALP. Adding L1 regularization to ALP permits the
user to supply an arbitrarily rich set of features with-
out the risk of overfitting.

The RALP for basis Φ and L1 constraint ψ is defined
as follows:

min
w

ρTΦw

s.t. LΦw ≤ Φw ‖w‖1,e ≤ ψ,
(2)

where ‖w‖1,e =
∑
i e(i)w(i). Note that RALP is a

generalization of ALP; when ψ approaches infinity, the
RALP solution approaches the ALP solution. The ob-
jective value of (2) as a function of ψ is denoted as
θ(ψ).

We generally use e = 1−1, which is a vector of all ones
except the first position, which is 0; because the first
feature is the constant feature, we do not include it
in the regularization. The main reasons for excluding
the constant feature are that the policy is independent
of the constant shifts, and the homotopy method we
propose requires that the linear program is easy to
solve when ψ = 0.

Alternatively, we can formulate RALP in (2) as a mi-
nor modification of ALP in equation (1). This is by
modifying M to satisfy the L1 norm as:

M(ψ) = {Φw ‖w‖1,e ≤ ψ}.

Notice that RALP introduces an additional parameter
ψ over ALP. As with L1 regularization for regression,
this raises some concerns about a method for choosing
the regularization parameter. Practical methods, such
as cross-validation may be used to address this issue.
We also propose an automated method for choosing
ψ in Section 5 based on the problem and sampling
parameters.

5. Sampling Bounds

The purpose of this section is to show that RALP of-
fers two main benefits over ALP. First, even when the
constraints are sampled and incomplete, it is guar-
anteed to provide a feasible solution. Since feasibil-
ity does not imply that the solution is close to op-
timal, we then show that under specific assumptions
— such as smooth reward and transition functions —
RALP guarantees that the error due to the missing
constraints is small.

To bound the error from sampling, we must formally
define the samples and how they are used to construct
ALPs. We consider the following two types of samples
Σ̃ and Σ̄ defined as follows.

Feature Selection Using Regularization

Definition 3. One-step simple samples are defined as
follows: Σ̃ ⊆ {(s, a, (s1 . . . sn), r(s, a)) s ∈ S, a ∈ A},
where s1 . . . sn are selected i.i.d. from the distribu-
tion P (s, a, ·). One-step samples with expectation are
defined as follows: Σ̄ ⊆ {(s, a, P (s, a, ·), r(s, a)) s ∈
S, a ∈ A}.

Often the samples only include state transitions, as Σ̃
defines. The more informative samples Σ̄ include the
probability distribution of the states that follow the
given state and action, as follows:

L̄(v)(s̄) = r(s̄, a) + γ
∑
s′∈S

P (s̄, a, s′)v(s′), (3)

where (s̄, a, P (s̄, a, ·), r(s̄, a)) ∈ Σ̄. The less-
informative Σ̃ can be used as follows:

L̃(v)(s̃) = r(s̃, a) + γ
1

n

n∑
i=1

v(si), (4)

where (s̃, a, (s1 . . . sn), r(s̃, a)) ∈ Σ̃. The corresponding
transitive-feasible sets K̄ and K̃ are defined similarly.
The ALPs can be constructed based on samples as
Figure 1 shows. Full ALP corresponds to the RALP
formulation in (2), when M is constricted with L1

regularization. In comparison, sampled ALP is missing
some of the constraints while estimated ALP is both
missing some constraints, and the included constraints
may be estimated imprecisely.

The following two assumptions quantify the behavior
of the ALP with respect to missing and imprecise con-
straints respectively. The first assumption limits the
error due to missing transitions in the sampled Bell-
man operator L̄.

Assumption 4 (Constraint Sampling Behavior). The
representable value functions satisfy that:

K ∩M(ψ) ⊆ K̄ ∩M(ψ) ⊆ K(εp) ∩M(ψ),

and that for all representable value functions v ∈
M(ψ) we have that |(ρ− ρ̄)Tv| ≤ εc(ψ).

The constant εp bounds the potential violation of the
ALP constraints on states that are not provided as a
part of the sample. In addition, all value functions that
are transitive-feasible for the full Bellman operator are
transitive-feasible in the sampled version; the sampling
only removes constraints on the set. The constant εc
essentially represents the maximal error in estimating
the objective value of ALP for any representable value
function.

The next assumption quantifies the error on the es-
timation of the transitions of the estimated Bellman
operator L̃.

Assumption 5 (Constraint Estimation Behavior).
The representable value functions satisfy that:

K̄(−εs) ∩M(ψ) ⊆ K̃ ∩M(ψ) ⊆ K̄(εs) ∩M(ψ),

where Σ̄ and Σ̃ (and therefore K̄ and K̃) are defined
for identical sets of states.

These assumptions are quite generic in order to apply
in a wide range of scenarios. The main idea behind
the assumptions is to bound by how much a feasible
solution in the sampled or estimated ALP can violate
the true ALP constraints. These assumptions may be
easily satisfied, for example, by making the following
Lipschitz continuity assumptions.

Assumption 6. Let k : S → Rn be a map of the
state-space to a normed vector space. Then for all
x, y, z ∈ S and all features (columns) φi ∈ Φ, we define
Kr, KP , and Kφ such that

|r(x)− r(y)| ≤ Kr‖k(x)− k(y)‖
|p(z|x, a)− p(z|y, a)| ≤ KP ‖k(x)− k(y)‖

|φi(x)− φi(y)| ≤ Kφ‖k(x)− k(y)‖

Proposition 7. Assume Assumption 6 and that for
any s ∈ S there exists a state s̄ ∈ Σ̄ such that ‖s̄−s‖ ≤
c. Then Assumption 4 and Assumption 5 hold with
εp(ψ) = cKr + cψ(Kφ + γKP)

Because of the technical nature of the proof, it is omit-
ted and can be found in (Petrik et al., 2010).

The importance of this bound is that the violation on
constraints that were not sampled grows linearly with
the increasing coefficient ψ. As we show below, this
fact can be used to determine the optimal value of ψ.
For the sake of brevity, we do not discuss the estima-
tion error bounds εs in more detail, which can be eas-
ily derived from existing results (Petrik & Zilberstein,
2009).

We are now ready to state the following general bounds
on the approximation error of a RALP.

Theorem 8 (Offline Error Bound). Assume Assump-
tions 2, 4, and 5. Let v̂, v̄, ṽ be the optimal solutions
of (5), (6), and (7), respectively (see Figure 1). Let
ε = 2

1−γ minv∈M(ψ) ‖v − v∗‖∞ Then, the following in-
equalities hold:

‖v̂ − v∗‖1,ρ ≤ ε

‖v̄ − v∗‖1,ρ ≤ ε+ 2εc(ψ) + 2
εp(ψ)

1− γ

‖ṽ − v∗‖1,ρ ≤ ε+ 2εc(ψ) +
3εs(ψ) + 2εp(ψ)

1− γ

Feature Selection Using Regularization

Full ALP

ρ =
1

|S|
∑
s∈S

φ(s)

min
v

ρTv

s.t. v ∈ K v ∈ M(ψ)
(5)

Sampled ALP

ρ̄ =
1

|Σ̄|
∑

(s,...)∈Σ̄

φ(s)

min
v

ρ̄Tv

s.t. v ∈ K̄ v ∈ M(ψ)
(6)

Estimated ALP

ρ̄ =
1

|Σ̃|

∑
(s,...)∈Σ̃

φ(s)

min
v

ρ̄Tv

s.t. v ∈ K̃ v ∈ M(ψ)
(7)

Figure 1. Constructing ALP From Samples

Because of the technical nature of the proof, it is omit-
ted and can be found in (Petrik et al., 2010).

Notice that because the weight ρ is often chosen arbi-
trarily, the bounds may be simply derived for ‖ · ‖1,ρ̄.
In that case, εc = 0. Unlike most of the existing ALP
bounds, we focus on bounding the error of the value
function, instead of bounding the number of violated
constraints.

Consider the implications of these bounds combined
with the Lipschitz assumptions of Proposition 7. It is
clear that reducing ψ tightens Theorem 8, but causes
the set M(ψ) to shrink and become more restrictive;
this suggests a tradeoff to be considered when set-
ting the regularization parameter. The bound also
illustrates the importance of covering the space with
samples; as the distance between the samples c ap-
proaches zero, the bound tightens. In short, the Lip-
schitz assumptions limit how quickly the constraints
can change between sampled states. As sampled states
get closer or the reward, feature, and probability func-
tions become smoother, constraints between samples
become more and more restricted; however, smoother
basis functions may mean a less expressive space. Sim-
ilar tradeoffs are likely to appear however Assump-
tion 4 and Assumption 5 are fulfilled.

The offline error bounds in Theorem 8 can be used to
guarantee the performance of a RALP for a fixed num-
ber of samples and the regularization coefficient ψ. It
does not, however, prescribe how to choose the regu-
larization coefficient for a given set of samples. To do
that, we have to derive bounds for an actual value func-
tion v. When the samples are known, these bounds are
typically tighter than the offline error bound.

Theorem 9 (Online Error Bound). Assume Assump-
tion 2 and let v ∈ K̃ ∩M(ψ) be an arbitrary feasible
solution of the estimated ALP (7). Then:

‖v∗ − v‖1,ρ ≤ ρ̄Tv − ρTv∗ + εc(ψ) + 2
εs(ψ) + εp(ψ)

1− γ .

Because of the technical nature of the proof, it is omit-
ted and can be found in (Petrik et al., 2010).

0 5 10
0

2

4

6

ψ

E
rr

or
 B

ou
nd

Global minimum

v̂ − v∗

ṽ − v̂

ṽ − v∗

Figure 2. Sketch of error bounds as a function of the reg-
ularization coefficient. Here, v̂ is the value function of the
full ALP, ṽ is the value function of the estimated ALP, and
v∗ is the optimal value function.

Here we briefly introduce a homotopy method that not
only speeds the computation of the RALP solution,
but also can be used to find the optimal value of ψ.
Because the homotopy method only relies on standard
linear programming analysis and is somewhat tech-
nical, the detailed description is provided in (Petrik
et al., 2010).

The main idea of the homotopy method is to first cal-
culate θ(0) and then trace the optimal solution for in-
creasing values of ψ. The optimal solution w(ψ) of
the RALP (2) is a piecewise linear function of ψ. At
any point in time, the algorithm keeps track of a set
of active – or non-zero – variables w and a set of ac-
tive constraints, which are satisfied with equality. In
the linear segments, the number of active constraints
and variables are identical, and the non-linearity arises
when variables and constraints become active or inac-
tive. Therefore, the linear segments are traced until
a variable becomes inactive or a constraint becomes
active. Then, the dual solution is traced until a con-
straint becomes inactive or a variable becomes active.

Since the homotopy algorithm solves for the optimal
value of the RALP (2) for all values of the regulariza-
tion coefficient ψ, it is possible to increase the coeffi-
cient ψ until the error increase between sampled con-
straints balances out the decrease in the error due to
the restricted feature space as defined in Theorem 8.

Feature Selection Using Regularization

That is, we can calculate the objective value of the
linear program (2) for any value of ψ.

It is easy to find ψ that minimizes the bounds in this
section. As the following corollary shows, to find the
global minimum of the bounds, it is sufficient to use
the homotopy method to trace θ(ψ) while its derivative
is less than the increase in the error due to the sam-
pling (‖v̂ − ṽ‖1,ρ). Let v(ψ) be an optimal solution of
(7) as a function of the regularization coefficient ψ.

Corollary 10. Assume that εc(ψ), εp(ψ), and εs(ψ)
are convex functions of ψ. Then, the error bound
‖v(ψ)− v∗‖1,ρ ≤ f(ψ) for any v(ψ) is:

f(ψ) = θ(ψ)− ρTv∗ + εc(ψ) + 2
εs(ψ) + εp(ψ)

1− γ .

The function f(ψ) is convex and its sub-differential1

∇ψf is independent of v∗. Therefore, a global mini-
mum ψ∗ of f is attained when 0 ∈ ∇ψf(ψ∗) or when
ψ∗ = 0.

The corollary follows directly from Theorem 9 and the
convexity of the optimal objective value of (2) as a
function ψ. Figure 2 illustrates the functions in the
corollary. Notice that Proposition 7 is sufficient to
satisfy the conditions of this corollary. In particular,
the functions εs(ψ), εp(ψ), εc(ψ) are linear in ψ.

6. Experimental Results

In this section, we present results indicating that
RALP effectively selects from rich feature spaces to
outperform ALP and other common algorithms, such
as LSPI, on several example problems, including the
balanced pendulum and the bicycle problems. We also
demonstrate the speed and effectiveness of the homo-
topy method in choosing a value of ψ.

Benefits of Regularization First, we demonstrate
and analyze the properties of RALP on a simple chain
problem with 200 states, in which the transitions move
to the right by one step with a centered Gaussian noise
with standard deviation 3. The reward for reach-
ing the right-most state was +1 and the reward in
the 20th state was -3. This problem is small to en-
able calculation of the optimal value function and to
control sampling. We uniformly selected every fourth
state on the chain and estimated the sampling bound
εp(ψ) = 0.05ψ. The approximation basis in this prob-
lem is represented by piecewise linear features, of the
form φ(si) = [i− c]+, for c from 1 to 200; these fea-
tures were chosen due to their strong guarantees for

1Function f may be non-differentiable

the sampling bounds. The experimental results were
obtained using the proposed homotopy algorithm.

Figure 3 demonstrates the solution quality of RALP
on the chain problem as a function of the regulariza-
tion coefficient ψ. The figure shows that although the
objective of RALP keeps decreasing as ψ increases,
the sampling error overtakes that reduction. It is clear
that a proper selection of ψ improves the quality of the
resulting approximation. To demonstrate the benefits
of regularization as it relates to overfitting, we com-
pare the performance of ALP and RALP as a func-
tion of the number of available features in Figure 5.
While ALP performance improves initially, it degrades
severely with more features. The value ψ in RALP is
selected automatically using Corollary 10 and the sam-
pling bound of εp(ψ) = 0.05ψ. Figure 4 demonstrates
that RALP may also overfit, or perform poorly when
the regularization coefficient ψ is not selected properly.

To find the proper value of ψ, as described in Corol-
lary 10, the problem needs to be solved using the ho-
motopy method. We show that the homotopy method
performs significantly faster than a commercially avail-
able linear program solver Mosek. Figure 6 com-
pares the computational time of homotopy method
and Mosek, when solving the problem for multiple val-
ues of ψ in increments of 0.5 on the standard mountain
car problem (Barto & Sutton, 1998) with 901 piece-
wise linear features and 6000 samples. Even for any
single value ψ, the homotopy method solves the linear
program about 3 times faster than Mosek. The next
two experiments, however, do not use the homotopy
method. In practice, RALP often works much better
than what is suggested by our bounds, which can be
loose for sparsely sampled large state spaces. In the
following experiments, we determined ψ empirically by
solving the RALP for several different values of ψ and
selecting the one that produced the best policy. This
was practical because we could solve the large RALPs
in just a few minutes using constraint generation.

Inverted Pendulum We now offer experimental re-
sults demonstrating RALP’s ability to create effective
value functions in balancing an inverted pendulum, a
standard benchmark problem in reinforcement learn-
ing (Wang et al., 1996; Lagoudakis & Parr, 2003).
Samples of the form (s, a, r, s′) were drawn from every
action on states drawn from random trajectories with
the pendulum starting in an upright state, referred to
as episodes. Features were kernels on 650 states ran-
domly selected from the training data, consisting of
Gaussian kernels of standard deviation 0.5, 1, and 1.5,
and a 6th degree polynomial kernel. ψ was 1.4, and an
average of 25 features had non-zero weights.

Feature Selection Using Regularization

0 1 2 3

0

5

10

Regularization Coefficient ψ

L 1 E
rr

or

True Error
RALP Objective

Figure 3. Comparison of the ob-
jective value of RALP with the
true error.

0 50 100 150 200
0

2

4

6

8

10

Features

T
ru

e
L 1 E

rr
or

RALP: ψ = 0.1
RALP: ψ = 3
RALP: Adaptive ψ

Figure 4. Comparison of the per-
formance RALP with two values
of ψ and the one chosen adap-
tively (Corollary 10).

0 10 20 30 40 50
0

10

20

30

Features

T
ru

e
L 1 E

rr
or

ALP
RALP

Figure 5. Average of 45 runs of
ALP and RALP as a function of
the number of features. Coeffi-
cient ψ was selected using Corol-
lary 10.

0 2 4 6
10

−2

10
0

10
2

Regularization: ψ

T
im

e
(s

)

Mosek(R) Solver
Homotopy

Figure 6. Comparison of perfor-
mance of homotopy method ver-
sus Mosek as a function of ψ in
the mountain car domain.

0 100 200 300 400 500
0

1000

2000

3000

Episodes

S
te

ps
 B

al
an

ce
d

Figure 7. RALP performance on
pendulum as a function on the
number of episodes.

0 500 1000 1500 2000
0

50

100

Episodes

%
 R

ea
ch

ed
 G

oa
l

Figure 8. RALP performance on
bicycle as a function on the num-
ber of episodes.

The constraints in the RALP were based on a single
sample for each state and action pair. The policy was
evaluated based on the number of steps it could bal-
ance the pendulum, with an upper limit of 3000. This
served to evaluate the policy resulting from the ap-
proximate value function. We plot the average num-
ber of steps the pendulum was balanced as a func-
tion of the number of training episodes in Figure 7,
as an average of 100 runs. It is clear the controller
produced by RALP was effective for small amounts of
data, balancing the pendulum for the maximum num-
ber of steps nearly all of the time, even with only 50
training episodes. Similarly, it was able to leverage
the larger number of available features to construct an
effective controller with fewer trajectories than LSPI,
which needed 450 training episodes before achieving
an average of 2500 balanced steps (Lagoudakis & Parr,
2003).

Bicycle Balancing and Riding We also present
experimental results for the bicycle problem, in which
the goal is to learn to balance and ride a bicycle to a
target position (Randløv & Alstrøm, 1998; Lagoudakis
& Parr, 2003). This is a challenging benchmark do-
main in reinforcement learning. Training data con-
sisted of samples for every action on states drawn from
trajectories resulting from random actions up to 35

states long, similar to the inverted pendulum domain.
The feature set consisted of monomials up to degree
4 on the individual dimensions and products of mono-
mials up to degree 3, for a total of 159 features. ψ
was 0.03, and an average of 34 features had nonzero
weights. We plot the number of runs out of 100 in
which the bicycle reached the goal region as a function
of number of training episodes in Figure 8. Again, a
high percentage of runs were successful, even with only
500 training episodes. In comparison, LSPI required
1500 training episodes to pass 80% success. It is worth
pointing out that due to sampling every action at each
state, RALP is using more samples than LSPI, but far
fewer trajectories.

7. Conclusion and Related Work

In this paper, we introduced L1-regularized Approxi-
mate Linear Programming and demonstrated its prop-
erties for combined feature selection and value func-
tion approximation in reinforcement learning. RALP
simultaneously addresses the feature selection, value
function approximation, and policy determination
problems; our experimental results demonstrate that
it addresses these issues effectively for several sample
problems, while our bounds explain the effects of sam-
pling on the resulting approximation.

Feature Selection Using Regularization

There are many additional issues that need to be ad-
dressed. The first is the construction of better bounds
to guide the sampling. Our bounds explain the behav-
ior of RALP approximation as it relates to the trade-off
between the richness of the features with the number
of available samples, but these bounds may at times
be quite loose. Future work must identify conditions
that can provide stronger guarantees. Additionally,
a data-driven approach which can calculate a tighter
bound online would be valuable. Finally, our analy-
sis did not address the conditions that would guaran-
tee sparse RALP solutions and, therefore, allow more
computationally efficient solvers.

Acknowledgements

This work was supported in part by DARPA CSSG
HR0011-06-1-0027, by NSF IIS-0713435, by the Air
Force Office of Scientific Research under Grant No.
FA9550-08-1-0171, and by the Duke University Center
for Theoretical and Mathematical Sciences. We also
thank the anonymous reviewers for their useful com-
ments.

References

Barto, Andrew G. and Sutton, Richard S. Reinforce-
ment Learning: an Introduction. MIT Press, 1998.

Candes, Emmanuel and Tao, Terence. The Dantzig
selector:statistical estimation when p is much larger
than n. Annals of Statistics, 35:2313–2351, 2007.

de Farias, Daniela Pucci and Van Roy, Benjamin.
On constraint sampling for the linear programming
approach to approximate dynamic programming.
Math. of Operations Res, 2001.

de Farias, Daniela Pucci and Van Roy, Benjamin. The
Linear Programming Approach to Approximate Dy-
namic Programming. Operations Research, 2003.

Desai, Vijay, Farias, Vivek, and Moallemi, Ciamac. A
smoothed approximate linear program. In Advances
in Neural Information Processing Systems (NIPS),
pp. 459–467, 2009.

Farahmand, Amir Massoud, Ghavamzadeh, Moham-
mad, Szepesvari, Csaba, and Mannor, Shie. Regu-
larized policy iteration. In Advances in Neural Infor-
mation Processing Systems, volume 21, pp. 441–448,
2008.

Kolter, J. Zico and Ng, Andrew. Regularization and
feature selection in least-squares temporal difference
learning. In International Conference on Machine
Learning (ICML), pp. 521–528, 2009.

Lagoudakis, Michail G. and Parr, Ronald. Least-
Squares Policy Iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

Mahadevan, Sridhar. Learning representation and con-
trol in markov decision processes: New frontiers.
Foundations and Trends in Machine Learning, 1(4):
403–565, 2008.

Parr, Ronald, Painter-Wakefield, Christopher, Li, Li-
hong, and Littman, Michael. Analyzing feature gen-
eration for value-function approximation. In Inter-
national Conference on Machine Learning (ICML),
pp. 744–751, 2007.

Petrik, Marek and Zilberstein, Shlomo. Constraint Re-
laxation in Approximate Linear Programs. In Inter-
national Conference on Machine Learning (ICML),
pp. 809–816, 2009.

Petrik, Marek, Taylor, Gavin, Parr, Ron, and Zilber-
stein, Shlomo. Feature selection using regularization
in approximate linear programs for markov decision
processes. Technical report, arXiv, 2010.

Randløv, Jette and Alstrøm, Preben. Learning to drive
a bicycle using reinforcement learning and shaping.
In International Conference on Machine Learning,
pp. 463–471, 1998.

Schweitzer, Paul J. and Seidmann, Abraham. Gener-
alized polynomial approximations in Markovian de-
cision processes. Journal of mathematical analysis
and applications, 110(6):568–582, 1985.

Taylor, Gavin and Parr, Ronald. Kernelized Value
Function Approximation for Reinforcement Learn-
ing. In International Conference on Machine Learn-
ing, pp. 1017–1024, Montreal, Canada, June 2009.
Omnipress.

Tibshirani, Robert. Regression shrinkage and selection
via the LASSO. Journal of the Royal Statistical So-
ciety. Series B (Methodological), pp. 267–288, 1996.

Wang, Hua O., Tanaka, Kazuo, and Griffin, Michael F.
An approach to fuzzy control of nonlinear systems:
Stability and design issues. IEEE Transactions on
Fuzzy Systems, 4(1):14–23, 1996.

