
Learning Markov Logic Networks Using Structural Motifs

Stanley Kok koks@cs.washington.edu
Pedro Domingos pedrod@cs.washington.edu

Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

Markov logic networks (MLNs) use first-
order formulas to define features of Markov
networks. Current MLN structure learn-
ers can only learn short clauses (4-5 liter-
als) due to extreme computational costs, and
thus are unable to represent complex regu-
larities in data. To address this problem, we
present LSM, the first MLN structure learner
capable of efficiently and accurately learn-
ing long clauses. LSM is based on the ob-
servation that relational data typically con-
tains patterns that are variations of the same
structural motifs. By constraining the search
for clauses to occur within motifs, LSM can
greatly speed up the search and thereby re-
duce the cost of finding long clauses. LSM
uses random walks to identify densely con-
nected objects in data, and groups them
and their associated relations into a motif.
Our experiments on three real-world datasets
show that our approach is 2-5 orders of mag-
nitude faster than the state-of-the-art ones,
while achieving the same or better predictive
performance.

1. Introduction

Markov logic networks (MLNs; Domingos & Lowd,
2009) have gained traction in the AI community in
recent years because of their ability to combine the
expressiveness of first-order logic with the robust-
ness of probabilistic representations. An MLN is a
set of weighted first-order formulas, and learning its
structure consists of learning both formulas and their
weights. Learning MLN structure from data is an im-
portant task because it allows us to discover novel
knowledge, but it is also a challenging one because of

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

its super-exponential search space. Hence only a few
practical approaches have been proposed to date (Kok
& Domingos, 2005; Mihalkova & Mooney, 2007; Biba
et al., 2008b; Kok & Domingos, 2009; etc.).

These approaches can be categorized according to their
search strategies: top-down versus bottom-up. Top-
down approaches (e.g., Kok & Domingos, 2005) sys-
tematically enumerate formulas and greedily select
those with good empirical fit to data. Such approaches
are susceptible to local optima, and their search over
the large space of formulas is computationally expen-
sive. To overcome these drawbacks, bottom-up ap-
proaches (e.g., Mihalkova and Mooney, 2007) use the
data to constrain the space of formulas. They find
paths of true atoms that are linked via their argu-
ments, and generalize them into first-order formulas.
Each path thus corresponds to a conjunction that is
true at least once in the data, and since most con-
junctions are false, this focuses the search on regions
with promising formulas. However, such approaches
amount to intractable search over an exponential num-
ber of paths. In short, none of the approaches can
tractably learn long formulas.

Learning long formulas is important for two reasons.
First, long formulas can capture more complex depen-
dencies in data than short ones. Second, when we lack
domain knowledge, we typically want to set the max-
imum formula length to a large value so as not to a
priori preclude any good rule.

In this paper, we present Learning using Structural
Motifs (LSM), an approach that can find long formulas
(i.e., formulas with more than 4 or 5 literals). Its key
insight is that relational data usually contains recur-
ring patterns, which we term structural motifs. These
motifs confer three benefits. First, by confining its
search to occur within motifs, LSM need not waste
time following spurious paths between motifs. Second,
LSM only searches in each unique motif once, rather
than in all its occurrences in the data. Third, by cre-
ating various motifs over a set of objects, LSM can
capture different interactions among them. A struc-

Learning Markov Logic Networks Using Structural Motifs

tural motif is frequently characterized by objects that
are densely connected via many paths, allowing us to
identify motifs using the concept of truncated hitting
time in random walks. This concept has been used in
many applications, and we are the first to successfully
apply it to learning MLN formulas.

The remainder of the paper is organized as follows.
We begin by reviewing some background in Section 2.
Then we describe LSM in detail (Section 3) and report
our experiments (Section 4). Next we discuss related
work (Section 5). Finally, we conclude with future
work (Section 6).

2. Background

We review the building blocks of our algorithm:
Markov logic, random walks, truncated hitting times
and the LHL system (Kok & Domingos, 2009).

2.1. Markov Logic

In first-order logic (Genesereth & Nilsson, 1987), for-
mulas are constructed using four types of symbols:
constants, variables, functions and predicates. Con-
stants represent objects in a domain of discourse (e.g.,
people: Anna). Variables (e.g., x) range over the ob-
jects in the domain. Predicates represent relations
among objects (e.g., Friends) or attributes of objects
(e.g., Tall). Variables and constants may be typed.
An atom is a predicate symbol applied to a list of
arguments, which may be variables or constants. A
positive literal is an atom, and a negative literal is a
negated atom. A ground atom is an atom all of whose
arguments are constants. A clause is a disjunction of
positive/negative literals. A world is an assignment of
truth values to all possible ground atoms. A database
is a partial specification of a world; each atom in it is
true, false or (implicitly) unknown.

Markov logic is a probabilistic extension of first-order
logic. A Markov logic network (MLN) is a set of
weighted first-order formulas. Together with a set of
constants, it defines a Markov network (Pearl, 1988)
with one node per ground atom and one feature per
ground formula. The weight of a feature is the weight
of the first-order formula that originated it. The prob-
ability distribution over possible worlds x specified by
the ground Markov network is

P (X=x) =
1
Z

exp

∑
i∈F

∑
j∈Gi

wigj(x)

 (1)

where Z is a normalization constant, F is the set of
first-order formulas in the MLN, Gi and wi are re-
spectively the set of groundings and weight of the ith

first-order formula, and gj(x) = 1 if the jth ground
formula is true and gj(x)=0 otherwise.

2.2. Random Walks and Hitting Times

Random walks and truncated hitting times are defined
in terms of hypergraphs. A hypergraph is a straight-
forward generalization of a graph in which an edge can
link any number of nodes, rather than just two. For-
mally, a hypergraph G is a pair (V,E) where V is a set
of nodes, and E is a set of labeled non-empty subsets
of V called hyperedges. A path of length t between
nodes u and u′ is a sequence of nodes and hyperedges
(v0, e0, v1, e1, . . . , et−1, vt) such that u = v0, u′ = vt,
ei ∈ E, vi ∈ ei and vi+1 ∈ ei for i ∈ {0, . . . , t − 1}. u
is said to be reachable from u′ iff there is a path from
u to u′. G is connected iff all its nodes are reachable
from each other. pvs denotes a path from s to v.

In a random walk (Lovász, 1996), we travel from node
to node via hyperedges. Suppose that at some time
step we are at node i. In the next step, we move
to one of its neighbors j by first randomly choosing
a hyperedge e from the set Ei of hyperedges that
are incident to i, and then randomly choosing j from
among the nodes that are connected by e (exclud-
ing i). The probability of moving from i to j is
called the transition probability pij , and is given by
pij =

∑
e∈Ei∩Ej

1
|Ei|

1
|e|−1 . The truncated hitting time

hTij (Sarkar et al., 2008) from node i to j is defined
as the average number of steps required to reach j for
the first time starting from i in a random walk lim-
ited to at most T steps. The larger the number of
paths between i and j, and the shorter the paths, the
smaller hTij . Thus, truncated hitting time is useful for
capturing the notion of ‘closeness’ between nodes. It
is recursively defined as hTij = 1 +

∑
k pikh

T−1
kj . hTij=0

if i= j or T = 0, and hTij = T if j is not reached in T

steps. Sarkar et al. showed that hTij can be approx-
imated accurately with high probability by sampling.
They run W independent length-T random walks from
node i. In w of these runs, node j is visited for the first
time at time steps t1j , . . . , t

w
j . The estimated truncated

hitting time is given by

ĥTij = (1/W)
w∑
k=1

tkj + (1− w/W)T. (2)

2.3. Learning via Hypergraph Lifting (LHL)

LHL is a state-of-the-art algorithm for learning MLNs.
It consists of three components: LiftGraph, Find-
Paths, and CreateMLN. LSM uses the last two.

In LiftGraph, LHL represents a database as a hyper-
graph with constants as nodes and true ground atoms

Learning Markov Logic Networks Using Structural Motifs

as hyperedges. LHL defines a model in Markov logic
and finds a single maximum a posteriori (MAP) clus-
tering of nodes and hyperedges. The resulting hyper-
graph has fewer nodes and hyperedges, and therefore
fewer paths, ameliorating the cost of finding paths in
the next component. In LHL, two nodes are clustered
together if they are related to many common nodes.
Thus, intuitively, LHL is making use of length-2 paths
to determine the similarity of nodes. In contrast, LSM
uses longer paths, and thus more information, to find
clusterings of nodes (motifs). In addition, LSM finds
various clusterings rather than just a single one. Also
note that spurious edges are removed from LSM’s mo-
tifs but retained in LHL’s clustered hypergraph.

In FindPaths, LHL uses a variant of relational
pathfinding (Richards & Mooney, 1992). LHL iter-
ates over the hyperedges in the clustered hypergraph.
For each hyperedge, it begins by adding it to an empty
path, and then recursively adds hyperedges linked to
nodes already present in the path. Its search termi-
nates when the path reaches a length limit or when
no new hyperedge can be added. Note that each path
corresponds to a conjunction of ground atoms.

In CreateMLN, LHL creates a clause from each path
by replacing each unique node with a variable, and
converting each hyperedge into a negative literal1. In
addition, LHL adds clauses with the signs of up to
n literals flipped. Each clause is then evaluated us-
ing weighted pseudo-log-likelihood (WPLL; Kok and
Domingos, 2005). WPLL estimates the log-likelihood
as a sum over the conditional log-likelihood of every
ground atom given its Markov blanket (weighting all
first-order predicates equally). Rather than summing
over all atoms, LHL estimates the WPLL by sampling
θatoms of them. The WPLL score of a clause is penal-
ized with a length penalty −πd where d is the number
of atoms in a clause. LHL iterates over the clauses
from shortest to longest. For each clause, LHL com-
pares its WPLL against those of its sub-clauses (con-
sidered separately) that have already been retained. If
it scores higher than all of these, it is retained. Finally,
LHL greedily adds the retained clauses to an MLN.

3. Learning Using Structural Motifs

We call our algorithm Learning using Structural Mo-
tifs (LSM; Algorithm 1). The crux of LSM is that
relational data frequently contains recurring patterns
of densely connected objects, and by limiting our
search to within these patterns, we can find good rules

1In Markov logic, a conjunction of positive literals is
equivalent to a disjunction of negative literals with its
weight negated.

Algorithm 1 LSM
Input: G = (V,E), a ground hypergraph representing a database
Output: MLN , a set of weighted clauses

1 Motifs← ∅
2 For each s∈V
3 Run Nwalks random walks of length T from s to estimate

hT
sv for all v∈V

4 Create Vs to contain nodes whose hT
sv < θhit

5 Create Es to contain hyperedges that only connect to Vs

6 Partition Vs into {A1, . . . Al} where ∀v∈Aj , ∃v′∈Aj :

|hT
sv − h

T
sv′ | < θsym

7 Vs ← ∅
8 For each Ai∈{A1, . . . Al}
9 Partition Ai into H={H1, . . . , Hm} so that symmetrical

nodes in Ai belong to the same Hj ∈H
10 Add H1, . . . , Hm to Vs

11 Create Es ={E1, . . . , Ek} where hyperedges in E with
the same label, and that connect to the same sets in Vs

belong to the same Ej ∈Es.
12 Let lifted hypergraph L=(Vs, Es)
13 Create Motif(L) using DFS, add it to Motifs
14 For each m ∈Motifs
15 Let nm be the number of unique true groundings

returned by DFS for m
16 If nm < θmotif , remove m from Motifs
17Paths← FindPaths(Motifs)
18MLN ← CreateMLN(Paths)
19 Return MLN

quickly. We call such patterns structural motifs.

A structural motif is a set of literals, which defines a
set of clauses that can be created by forming disjunc-
tions over the negations/non-negations of one or more
of the literals. Thus, it defines a subspace within the
space of all clauses. LSM discovers subspaces where
literals are densely connected and groups them into a
motif. To do so, LSM views a database as a hyper-
graph with constants as nodes and true ground atoms
as hyperedges. Each hyperedge is labeled with a pred-
icate symbol. LSM groups nodes that are densely con-
nected by many paths and the hyperedges connecting
the nodes into a motif. Then it compresses the motif
by clustering the nodes into high-level concepts, re-
ducing the search space of clauses in the motif. Next
it quickly estimates whether the motif appears often
enough in the data to be retained. Finally, LSM runs
relational pathfinding on each motif to find candidate
rules, and retains the good ones in an MLN.

Figure 1 provides an example of a graph created from a
university database describing two departments. The
bottom motifs are extracted from the top graph. Note
that the motifs have gotten rid of the spurious link be-
tween departments, preventing us from tracing paths
straddling departments that do not translate to good
rules. Also note that by searching only once in each
unique motif, we avoid duplicating the search in all its
occurrences in the graph. Observe that both motifs are
created from each department’s subgraph. In the left
motif, individual students and books are clustered into
high-level concepts Student and Book because they are

Learning Markov Logic Networks Using Structural Motifs

Figure 1. Motifs extracted from a ground hypergraph.

indistinguishable with respect to professor P1 (they
have symmetrical paths from P1). Note that the spu-
rious link is removed because P1 is more densely con-
nected to nodes in the physics department than those
in the history department. In the right motif, the clus-
tering is done with respect to book B1. LSM’s ability
to create different motifs over a set of objects allows
it to capture various interactions among the objects,
and thus to potentially discover more good rules.

3.1. Preliminaries

We define some terms and state a proposition2 that
are used by our algorithm. A ground hypergraph
G = (V,E) has constants as nodes and true ground
atoms as hyperedges. An r-hyperedge is a hyperedge
labeled with predicate symbol r. There cannot be two
or more r-hyperedges connected to a set of nodes be-
cause they correspond to the same ground atom. σ(p)
refers to the string that is created by replacing nodes
in path p with integers indicating the order in which
the nodes are first visited, and replacing hyperedges
with their predicate symbols. Nodes which are visited
simultaneously via a hyperedge have their order deter-
mined by their argument positions in the hyperedge.
Two paths p and p′ are symmetrical iff σ(p) = σ(p′).
Nodes v and v′ are symmetrical relative to s, denoted
as Syms(v, v′), iff there is a bijective mapping be-
tween the set of all paths from s to v and the set of
all paths from s to v′ such that each pair of mapped
paths are symmetrical. Node sets V ={v1, . . . , vn} and
V ′ = {v′1, . . . , v′n} are symmetrical iff Syms(vi, v′i) for
i = 1, . . . , n. Note that Syms is reflexive, symmetric
and transitive. Note that symmetrical nodes v and v′

2The proofs of all propositions and the DFS
pseudocode are given in an online appendix at
http://alchemy.cs.washington.edu/papers/kok10/.

have identical truncated hitting times from s. Also
note that symmetrical paths pvs and pv

′

s have the same
probability of being sampled respectively from the set
of all paths from s to v and the set of all paths from
s to v′. LG,s is the ‘lifted’ hypergraph that is cre-
ated as follows from a ground hypergraph G= (V,E)
whose nodes are all reachable from a node s. Partition
V into disjoint subsets V = {V1, . . . , Vk} such that all
nodes with symmetrical paths from s are in the same
Vi. Partition E into disjoint subsets E = {E1, . . . , El}
such that all r-hyperedges that connect nodes from
the same Vi’s are grouped into the same Ej , which
is also labeled r. LG,s = (V, E) intuitively represents
a high-level concept with each Vi, and an interaction
between the concepts with each Ej . Note that LG,s is
connected since no hyperedge in E is removed during
its construction. Also note that s is in its own Vs ∈ V
since no other node has the empty path to it.

Proposition 1 Let v, v′ and s be nodes in a ground
hypergraph whose nodes are all reachable from s, and
Syms(v, v′). If an r-hyperedge connects v to a node
set W , then an r-hyperedge connects v′ to a node set
W ′ that is symmetrical to W .

We create a structural motif Motif(LG,s) from LG,s=
(V, E) as follows. We run depth-first search (DFS) on
LG,s but treat hyperedges as nodes and vice versa (a
straightforward modification), allowing DFS to visit
each hyperedge in E exactly once. Whenever it vis-
its a hyperedge Ej ∈ E , DFS selects an ej ∈ Ej that
is connected to a ground node vi ∈ V that is linked
to the ei selected in the previous step (ej exists by
Proposition 1). When several ej ’s are connected to vi,
it selects the one connected to the smallest number
of unique nodes. The selected ej ’s are then variabi-
lized and added as literals to the set Motif(LG,s). Let
Conj(m) denote the conjunction formed by conjoining
the (positive) literals in motif m. Note that the se-
lected ej ’s are connected and form a true grounding of
Conj(Motif(LG,s)). The true grounding will be used
later to estimate the total number of true groundings
of Conj(Motif(LG,s)) in the data.

3.2. Motif Identification

LSM begins by creating a ground hypergraph from a
database. Then it iterates over the nodes. For each
node i, LSM finds nodes that are symmetrical relative
to i. To do so, it has to compare all paths from i to all
other nodes, which is intractable. Thus LSM uses an
approximation. It runs Nwalks random walks of length
T from i (line 3 of Algorithm 1). In each random walk,
when a node is visited, the node stores the path p to
it as σ(p) (up to a maximum of Maxpaths paths), and
records the number of times σ(p) is seen. After run-

Learning Markov Logic Networks Using Structural Motifs

ning all random walks, LSM estimates the truncated
hitting time hTiv from i to each node v that is visited
at least once using Equation 2. (Nodes not visited
have hTiv = T .) Nodes whose hTiv’s exceed a threshold
θhit < T are discarded (these are ‘too loosely’ con-
nected to i). The remaining nodes and the hyperedges
that only connect to them constitute a ground hyper-
graph G (lines 4-5). LSM groups together nodes in G
whose hTiv’s are less than θsym apart as potential sym-
metrical nodes (line 6). (In a group, a node only needs
to have similar hTiv with at least one other node.)

Within each group, LSM uses greedy agglomerative
clustering to cluster symmetrical nodes together (lines
8-11). Two nodes are approximated as symmetrical if
their distributions of stored paths are similar. Since
the most frequently appearing paths are more repre-
sentative of a distribution, we only use the top Ntop
paths in each node. Path similarity is measured us-
ing Jensen-Shannon divergence (Fugledge & Topsoe,
2004; a symmetric version of the Kullback-Leibler di-
vergence). Each node starts in its own cluster. At each
step, LSM merges the pair of clusters whose path dis-
tributions are most similar. When there is more than
one node in a cluster, its path distribution is the aver-
age over those of its nodes. The clustering stops when
no pair of clusters have divergence less than θjs. Once
the clusters of symmetrical nodes are identified, LSM
creates lifted hypergraph LG,s and motif Motif(LG,s)
using DFS as described earlier (lines 12-13). Then
LSM repeats the process for the next node i+ 1.

After iterating over all nodes, LSM will have created
a set of motifs. It then estimates how often a motif m
appears in the data by computing a lower bound nm
on the number of true groundings of Conj(m). It sets
nm to the number of unique true groundings of m that
are returned by DFS. If nm is less than a threshold
θmotif , the motif is discarded (lines 14-16).

Our algorithm can be viewed as a search for motifs that
maximizes an upper bound on the log posterior of the
data, logP (W,C|X) ∝ logP (X|W,C)+logP (W |C)+
logP (C) where X is a database of ground atoms, C
is the set of rules in an MLN, W is their correspond-
ing weights, and P (X|W,C) is given by Equation 1.
We define P (C)=exp(−|C|). To constrain our search
space, we restrict C to be conjunctions of positive
literals (without loss of generality (Wexler & Meek,
2008)). We also impose a zero-mean Gaussian prior
on each weight, so logP (W |C) is concave. Since both
logP (X|W,C) and logP (W |C) are concave, their sum
is also concave and hence has a global maximum. Let
LW,C(X)=logP (X|W,C)+logP (W |C).

Proposition 2 The maximum value of LW,C(X) is

attained at W = W0 and C = C0 where C0 is the set
of all possible conjunctions of positive ground literals
that are true in X, and W0 is the set containing the
globally optimal weights of the conjunctions.

Let C ′ be the set of ground conjunctions obtained
by replacing the true groundings in C0 of a first-
order conjunction c with c. Let W ′ be the optimal
weights of C ′. The difference in log posterior for
(W ′, C ′) and (W0, C0) is given by ∆ = LW ′,C′(X) −
LW0,C0(X) + logP (C ′) − logP (C0). Using Proposi-
tion 2, we know that LW ′,C′(X) − LW0,C0(X) ≤ 0.
Thus, ∆ ≤ logP (C ′)− logP (C0)=nc − 1, where nc is
the number of true groundings of c. Since ∆ is upper-
bounded by nc−1, we want to find motifs with large nc.
We do so by requiring the motifs to have nc ≥ θmotif .

3.3. PathFinding and MLN Creation

LSM finds paths in each identified motif in the same
manner as LHL’s FindPath. The paths are limited to a
user-specified maximum length. After that, LSM cre-
ates candidate clauses from each path in a similar way
as LHL’s CreateMLN, with some modifications. At the
start of CreateMLN, LSM counts the true groundings
of all possible unit and binary clauses (i.e., clauses with
one and two literals) to find those that are always true
in the data. (Since the number of predicates is usually
small, this is not a computational burden.) It then re-
moves every candidate clause that contains such unit
or binary sub-clauses becauses they are always satis-
fied. This change speeds up CreateMLN by reducing
the number of candidates. At the end of CreateMLN,
rather than adding clauses greedily to an empty MLN
(which is susceptible to local optima), LSM adds all
clauses to the MLN, finds their optimal weights, and
removes those whose weights are less than θwt. (We
use a zero-mean Gaussian prior on each weight. In
our experiments, we use this modified version for LHL
too.) LSM also adds a heuristic to speed up Cre-
ateMLN. Before evaluating the WPLLs of candidate
clauses against the data, it evaluates them against the
ground hypergraphs that originated the motifs where
the candidates are found. Since such ground hyper-
graphs contain fewer atoms, it is faster to evaluate
against them to prune bad candidates.

4. Experiments

4.1. Datasets

Our experiments used three publicly available
datasets3 (Table 1) as in Kok & Domingos (2009).
The IMDB dataset (Mihalkova & Mooney, 2007)

3Available at http://alchemy.cs.washington.edu.

Learning Markov Logic Networks Using Structural Motifs

Table 1. Details of datasets.
Const- Predi- True Total

Dataset Types ants cates Atoms Atoms
IMDB 4 316 6 1224 17,793

UW-CSE 9 929 12 2112 260,254
Cora 5 3079 10 42,558 687,422

is created from the IMDB.com database, and
describes relationships among movies, actors
and directors (e.g, WorkedIn(person, movie)).
The UW-CSE dataset (Richardson & Domingos,
2006) describes an academic department (e.g.,
TaughtBy(course, person, quarter)). The Cora
dataset is a collection of citations to computer science
papers, created by Andrew McCallum, and later
processed by Singla and Domingos (2006) for the task
of deduplicating the citations, and their title, author,
and venue fields.

4.2. Systems

We compared LSM to three state-of-the-art systems:
LHL, BUSL and MSL. We implemented LHL and used
the BUSL and MSL implementations in the Alchemy
software package (Kok et al., 2010).

Bottom-up Structure Learner (BUSL).
BUSL (Mihalkova & Mooney, 2007) finds paths
of ground atoms in training data but restricts itself
to very short paths (length 2) for tractability reasons.
It variabilizes each ground atom in the path and
constructs a Markov network whose nodes are the
paths viewed as Boolean variables (conjunctions of
atoms). For each node, BUSL finds nodes connected
to it by greedily adding and removing nodes from its
Markov blanket using the χ2 measure of dependence.
From the maximal cliques thus created in the Markov
network, BUSL creates clauses. For each clique, it
forms disjunctions of the atoms in the clique’s nodes
and creates clauses with all possible negation/non-
negation combinations of the atoms. BUSL computes
the WPLL of the clauses and greedily adds them one
at a time to an MLN. This makes BUSL susceptible
to local optima. Thus we modified BUSL to use
LSM’s CreateMLN algorithm to add clauses to the
MLN. (Empirically, the modification allowed more
good clauses to be included in the MLN.) Note that
a maximal clique created in BUSL can be viewed
as a form of structural motif. However, the motif is
impoverished because each of its node corresponds to
a path of very short length, and thus it is unable to
capture complex dependencies among many objects.

Markov Logic Structure Learner (MSL). We
used the beam search version of MSL (Kok & Domin-
gos, 2005) in Alchemy. MSL maintains a set of n
clauses that give the best score improvement over
the current MLN. MSL creates all possible clauses of

length two and adds the n highest-scoring clauses to
the set. It then repeatedly adds literals to the clauses
in the set, and evaluates the WPLL of the newly
formed clauses, always maintaining the n highest-
scoring ones in the set. When none can be added to
the set, it adds the best performing clause in the set
to the MLN. It then restarts the search from an empty
set. MSL terminates when it cannot find a clause that
improves upon the current MLN’s WPLL.

We ran each system with two limits on clause length.
The short limit is set to 5 (IMDB, UW-CSE) and 4
(Cora). The long limit is set to 10. Systems with the
short and long limits are respectively appended with
‘-S’ and ‘-L’. For the short limit, we allowed LSM,
LHL and BUSL to create more candidate clauses from
a candidate containing only negative literals by non-
negating the literals in all possible ways. For the long
limit, we permitted a maximum of two non-negations
to avoid generating too many candidates. Following
Kok & Domingos (2009), we disallowed clauses with
variables that only appeared once because these were
unlikely to be useful. To investigate the individual con-
tributions of our motif identification algorithm and the
heuristic in CreateMLN, we removed them to give the
systems LSM-NoMot and LSM-NoHeu. LSM-NoMot
found paths on the ground hypergraph created from a
database. Altogether, we compared twelve systems.

The LSM parameter values were: Nwalks = 15, 000,
T = 5, θhit = 4.9, θsym = 0.1, θjs = 1, Ntop = 3,
Maxpaths = 100, θmotif = 10, π = 0.1 (IMDB) and
0.01 (UW-CSE, Cora), θatoms = 0.5, θwt = 0.01. The
other systems had their corresponding parameters set
to the same values, and their other parameters set to
default values. The parameters were set in an ad-hoc
manner, and per-fold optimization using a validation
set could conceivably yield better results. All systems
were run on identical machines (2.3GHz, 16GB RAM,
4096KB CPU cache) for a maximum of 28 days.

4.3. Methodology

For each dataset, we performed cross-validation using
the five previously defined folds. For IMDB and UW-
CSE, we performed inference over the groundings of
each predicate to compute their probabilities of being
true, using the groundings of all other predicates as ev-
idence. For Cora, we ran inference over each of the four
predicates SameCitation, SameTitle, SameAuthor,
and SameVenue in turn, using the groundings of all
other predicates as evidence. We also ran inference
over all four predicates together, which is a more chal-
lenging task than inferring each individually. We de-
note this task as “Cora (Four Predicates)”. For this

Learning Markov Logic Networks Using Structural Motifs

task, we split each test fold into 5 sets by randomly
assigning each paper and its associated ground atoms
to a set. We had to run inference over each test
set separately in order for the inference algorithm to
work within the available memory. To obtain the best
possible results for an MLN, we relearned its clause
weights for each query predicate (or set of query pred-
icates in the case of Cora) before performing inference.
This accounts for the differences in our results from
those reported by Kok & Domingos (2009). We used
Alchemy’s Gibbs sampling for all systems. Each run
of the inference algorithms drew 1 million samples, or
ran for a maximum of 24 hours, whichever came ear-
lier. To evaluate the performance of the systems, we
measured the average conditional log-likelihood of the
test atoms (CLL) and the area under the precision-
recall curve (AUC).

4.4. Results

Tables 2 and 3 report AUCs, CLLs and runtimes. The
AUC and CLL results are averages over all atoms in
the test sets and their standard deviations. Runtimes
are averages over the five folds.

We first compare LSM to LHL. The results indicate
that LSM scales better than LHL, and that LSM
equals LHL’s predictive performance on small simple
domains, but surpasses LHL on large complex ones.
LSM-S is marginally slower than LHL-S on the small-
est dataset, but is faster on the two larger ones. The
scalability of LSM becomes clear when the systems
learn long clauses: LSM-L is consistently 100-100,000
times faster than LHL-L on all datasets.4 Note that
LSM-L performs better than LSM-S on AUC and CLL,
substantiating the importance of learning long rules.

We next compare LSM to MSL and BUSL. LSM con-
sistently outperforms MSL on AUC and CLL for both
short and long rules; and draws with BUSL on UW-
CSE, but does better on IMDB and Cora. In terms
of runtime, the results are mixed. Observe that BUSL
and MSL have similar runtimes when learning both
short and long rules (with the exception of MSL on
UW-CSE). Tracing the steps taken by BUSL and MSL,
we found that the systems took the same greedy search
steps when learning both short and long rules, thus re-
sulting in the same locally optimal MLNs containing
only short rules. In contrast, LSM-L found longer rules
than LSM-S for all datasets, even though these were
only retained by CreateMLN for Cora.

4LHL-L on UW-CSE and Cora, and LSM-NoMot-L ex-
ceeded the time bound of 28 days. We estimated their
runtimes by extrapolating from the number of atoms they
had initiated their search from.

Table 3. System runtimes. The times for Cora (Four Pred-
icates) are the same as for Cora.

System IMDB (hr) UW-CSE (hr) Cora (hr)
LSM-S 0.21±0.02 1.38±0.3 1.33±0.03
LSM-L 0.31±0.04 4.52±2.35 20.57±7.29
LSM-NoHeu-S 0.13±0.03 10.01±5.06 1.70±0.05
LSM-NoHeu-L 0.29±0.09 13.40±6.11 48.56±16.06
LSM-NoMot-S 1.09±0.22 50.83±18.33 332.82±60.54
LSM-NoMot-L 160,000±12,000 280,000±35,000 5,700,000±105

LHL-S 0.18±0.02 5.29±0.81 1.92±0.02
LHL-L 73.45±11.71 120,000±13,000 230,000±7000
BUSL-S 0.03±0.01 2.77±1.06 1.83±0.04
BUSL-L 0.03±0.01 2.77±1.06 1.83±0.04
MSL-S 0.02±0.01 1.07±0.21 9.96±1.59
MSL-L 0.02±0.01 26.22±26.14 9.81±1.50

Comparing LSM to LSM-NoHeu, we see that LSM’s
heuristic is effective in speeding it up. An exception is
LSM-NoHeu on IMDB. This is not surprising because
the small size of IMDB allows candidate clauses to be
evaluated quickly against the database, obviating the
need for heuristics. This suggests that the heuristic
should only be employed on large datasets. Note that
even though removing the heuristic improved LSM-S’s
performance on Cora (Four Predicates) by 1% on AUC
and by 7% on CLL, the improvements are achieved at
a great cost of 28% increase in runtime. Comparing
LSM to LSM-NoMot, we see the importance of motifs
in making LSM tractable.

Our runtimes are faster than those reported by Kok
& Domingos (2009) because of our modifications to
CreateMLN, and our machines are better configured
(4 times more RAM, 8 times more CPU cache).

We provide examples of long clauses learned by LSM
in the online appendix.

5. Related Work

Huynh and Mooney (2008), and Biba et al. (2008a)
proposed discriminative structure learning algorithms
for MLNs. These algorithms learn clauses that predict
a single target predicate, unlike LSM, which models
the full joint distribution of the predicates. Relational
association rule mining systems (e.g., De Raedt & De-
haspe, 1997) differ from LSM in that they learn clauses
without first learning motifs and are not as robust to
noise (since they do not involve statistical models).

Random walks and hitting times have been success-
fully applied to a variety of applications, e.g., social
network analysis (Liben-Nowell & Kleinberg, 2003),
word dependency estimation (Toutanova et al., 2004),
collaborative filtering (Brand, 2005), search engine
query expansion (Mei et al., 2008), and paraphrase
learning (Kok & Brockett, 2010).

Learning Markov Logic Networks Using Structural Motifs

Table 2. Area under precision-recall curve (AUC) and conditional log-likelihood (CLL) of test atoms.
IMDB UW-CSE Cora Cora (Four Predicates)

System AUC CLL AUC CLL AUC CLL AUC CLL
LSM-S 0.71±0.01 −0.06±0.00 0.22±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.92±0.00 −0.42±0.00
LSM-L 0.71±0.01 −0.06±0.00 0.22±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.97±0.00 −0.23±0.00
LSM-NoHeu-S 0.71±0.01 −0.06±0.00 0.22±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.93±0.00 −0.39±0.00
LSM-NoHeu-L 0.71±0.01 −0.06±0.00 0.22±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.97±0.00 −0.23±0.00
LSM-NoMot-S 0.71±0.01 −0.06±0.00 0.23±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.93±0.00 −0.38±0.00
LSM-NoMot-L 0.34±0.01 −0.18±0.00 0.13±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
LHL-S 0.71±0.01 −0.06±0.00 0.21±0.01 −0.03±0.00 0.95±0.00 −0.04±0.00 0.76±0.00 −0.88±0.00
LHL-L 0.71±0.01 −0.06±0.00 0.13±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
BUSL-S 0.48±0.01 −0.11±0.00 0.22±0.01 −0.03±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
BUSL-L 0.48±0.01 −0.11±0.00 0.22±0.01 −0.03±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
MSL-S 0.38±0.01 −0.17±0.00 0.19±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
MSL-L 0.38±0.01 −0.17±0.00 0.18±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00

6. Conclusion and Future Work

We presented LSM, the first MLN structure learner
that is able to learn long clauses. LSM tractably
learns long clauses by finding motifs of densely con-
nected objects in data and restricting its search for
clauses to within the motifs. Our empirical com-
parisons with three state-of-the-art systems on three
datasets demonstrate the effectiveness of LSM.

As future work, we want to apply LSM to larger, richer
domains; discover motifs at multiple granularities; in-
corporate bottom-up (Muggleton & Feng, 1990) and
hybrid top-down/bottom-up techniques (Muggleton,
1995) into LSM; etc.

Acknowledgments: This research was partly funded by
ARO grant W911NF-08-1-0242, AFRL contract FA8750-
09-C-0181, DARPA contracts FA8750-05-2-0283, FA8750-
07-D-0185, HR0011-06-C-0025, HR0011-07-C-0060 and
NBCH-D030010, NSF grants IIS-0534881 and IIS-0803481,
and ONR grant N00014-08-1-0670. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of ARO,
DARPA, NSF, ONR, or the United States Government.

References
Biba, M., Ferilli, S., and Esposito, F. Discriminative struc-

ture learning of Markov logic networks. In Proc. ILP’08,
pp. 59–76, 2008a.

Biba, M., Ferilli, S., and Esposito, F. Structure learning of
Markov logic networks through iterated local search. In
Proc. ECAI’08, pp. 361–365, 2008b.

Brand, M. A random walks perspective on maximizing
satisfaction and profit. In Proc. of the 8th SIAM Conf.
on Opt., 2005.

De Raedt, L. and Dehaspe, L. Clausal discovery. Machine
Learning, 26:99–146, 1997.

Domingos, P. and Lowd, D. Markov Logic: An Interface
Layer for AI. Morgan & Claypool, 2009.

Fugledge, B. and Topsoe, F. Jensen-Shannon divergence
and Hilbert space embedding. In IEEE Int. Sym Info.
Theory, 2004.

Genesereth, M. R. and Nilsson, N. J. Logical Foundations
of Artificial Intelligence. Morgan Kaufmann, 1987.

Huynh, T. N. and Mooney, R. J. Discriminative structure
and parameter learning for Markov logic networks. In

Proc. ICML’08, pp. 416–423, 2008.
Kok, S. and Brockett, C. Hitting the right paraphrases in

good time. In Proc. NAACL’2010, 2010.
Kok, S. and Domingos, P. Learning the structure of

Markov logic networks. In Proc. ICML’05, 2005.
Kok, S. and Domingos, P. Learning Markov logic network

structure via hypergraph lifting. In Proc. ICML’09, pp.
505–512, 2009.

Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H.,
Lowd, D., Wang, J., and Domingos, P. The Alchemy
system for statistical relational AI. Technical report,
Dept. of Comp. Sci. & Eng., Univ. of Washington, 2010.
http://alchemy.cs.washington.edu.

Liben-Nowell, D. and Kleinberg, J. The link prediction
problem for social networks. In Proc. of the 12th Int.
Conf. on Info. and Know., pp. 556–559, 2003.

Lovász, L. Random walks on graphs: A survey. In Com-
binatorics, Paul Erdős is Eighty, Vol. 2, pp. 353–398.
1996.

Mei, Q., Zhou, D., and Church, K. Query suggestion using
hitting time. In Proc CIKM’08, pp. 469–478, 2008.

Mihalkova, L. and Mooney, R. J. Bottom-up learning of
Markov logic network structure. In Proc. ICML’07, pp.
625–632, 2007.

Muggleton, S. Inverse entailment and Progol. New Gener-
ation Computing Journal, 13:245–286, 1995.

Muggleton, S. and Feng, C. Efficient induction of logic
programs. In Proc. of 1st Conference on Algorithmic
Learning Theory, 1990.

Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann,
1988.

Richards, B. L. and Mooney, R. J. Learning relations by
pathfinding. In Proc. AAAI’92, pp. 50–55, 1992.

Richardson, M. and Domingos, P. Markov logic networks.
Machine Learning, 62:107–136, 2006.

Sarkar, P., Moore, A. W., and Prakash, A. Fast incremen-
tal proximity search in large graphs. In Proc. ICML’08,
2008.

Singla, P. and Domingos, P. Entity resolution with Markov
logic. In Proc. ICDM’06, pp. 572–582, 2006.

Toutanova, K., Manning, C. D., and Ng, A. Y. Learn-
ing random walk models for inducing word dependency
distributions. In Proc. ICML’04, pp. 103–110, 2004.

Wexler, Y. and Meek, C. Inference for multiplicative mod-
els. In Proc. UAI’08, 2008.

