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Abstract

In Sparse Coding (SC), input vectors are re-
constructed using a sparse linear combination
of basis vectors. SC has become a popu-
lar method for extracting features from data.
For a given input, SC minimizes a quadratic
reconstruction error with an L1 penalty term
on the code. The process is often too slow for
applications such as real-time pattern recog-
nition. We proposed two versions of a very
fast algorithm that produces approximate es-
timates of the sparse code that can be used to
compute good visual features, or to initialize
exact iterative algorithms. The main idea is
to train a non-linear, feed-forward predictor
with a specific architecture and a fixed depth
to produce the best possible approximation
of the sparse code. A version of the method,
which can be seen as a trainable version of
Li and Osher’s coordinate descent method, is
shown to produce approximate solutions with
10 times less computation than Li and Os-
her’s for the same approximation error. Un-
like previous proposals for sparse code pre-
dictors, the system allows a kind of approxi-
mate “explaining away” to take place during
inference. The resulting predictor is differ-
entiable and can be included into globally-
trained recognition systems.

1. Introduction

Sparse coding is the problem of reconstructing in-
put vectors using a linear combination of an over-
complete family basis vectors with sparse coeffi-
cients (Olshausen & Field, 1996; Chen et al., 2001;
Donoho & Elad, 2003). This paper introduces a very
efficient method for computing good approximations
of optimal sparse codes.

Sparse coding has become extremely popular for ex-
tracting features from raw data, particularly when the
dictionary of basis vectors is learned from unlabeled
data. Several such unsupervised learning methods
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have been proposed to learn the dictionary. There have
been applications of sparse coding in many fields in-
cluding visual neuroscience (Olshausen & Field, 1996;
Hoyer, 2004; Lee et al., 2007) and image restora-
tion (Elad & Aharon, 2006; Ranzato et al., 2007b;
Mairal et al., 2008). Recently, these methods have
been the focus of a considerable amount of re-
search for extracting visual features for object recogni-
tion (Ranzato et al., 2007a; Kavukcuoglu et al., 2008;
Lee et al., 2009; Yang et al., 2009; Jarrett et al., 2009;
Yu et al., 2009). A major problem with sparse cod-
ing for applications such as object recognition is that
the inference algorithm is somewhat expensive, pro-
hibiting real-time applications. Given an input image
the inference algorithm must compute a sparse vector
for each and every patch in the image (or for all lo-
cal collections of low-level features, if sparse coding is
used as a second stage of transformation (Yang et al.,
2009)). Consequently, a large amount of research
has been devoted to seeking efficient optimiza-
tion algorithms for sparse coding (Daubechies et al.,
2004; Lee et al., 2006; Wu & Lange, 2008; Li & Osher,
2009; Mairal et al., 2009; Beck & Teboulle, 2009;
Hale et al., 2008; Vonesch & Unser, 2007).

The main contribution of this paper is a highly effi-
cient learning-based method that computes good ap-
proximations of optimal sparse codes in a fixed amount
of time. Assuming that the basis vectors of a sparse
coder have been trained and are being kept fixed,
the main idea of the method is to train a parameter-
ized non-linear “encoder” function to predict the op-
timal sparse code, by presenting it with examples of
input vectors paired with their corresponding optimal
sparse codes obtained through conventional optimiza-
tion methods. After training, the encoder function has
a pre-determined complexity (though it is adjustable
before training), and can be used to predict approxi-
mate sparse codes with a fixed computational cost and
a prescribed expected error.

The basic idea of using encoders for sparse code
prediction has been proposed by others. Partic-
ularly relevant to our approach is the “predictive
sparse decomposition” method (Kavukcuoglu et al.,
2008; Jarrett et al., 2009), but their predictor is very
simplistic and produces crude approximations to the
sparse codes. Our contribution is to propose a par-
ticular form and particular parameterization of the
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Figure 1. Top: block diagram of the ISTA algorithm for
sparse coding. The optimal sparse code is the fixed point
of Z(k + 1) = hα(WeX − SZ(k)) where X is the input,
hα is a coordinate-wise shrinking function with threshold
α, We is the transpose of the dictionary matrix Wd (whose
columns are the basis vectors), and S is W T

d Wd. Bottom:
The proposed approximator “Learned ISTA”, uses a time-
unfolded version of the ISTA block diagram, truncated to
a fixed number of iterations (3 here). The matrices We and
S, are learned, so as to minimize the approximation error
to the optimal sparse code on a given dataset. The method
allows us to impose restrictions on S so as to further re-
duce the computational burden (e.g. keeping many terms
at 0, or using a low-rank factorized form). Another simi-
lar trainable encoder architecture based on the Coordinate
Descent algorithm is also proposed.

encoder which, unlike previous proposals, implements
an approximate “explaining away” (or competition)
between code components, so that if two sets of ba-
sis vectors could reconstruct the input equally well,
one set will be picked by the algorithm, while the
other one will be suppressed. Our first encoder ar-
chitecture essentially implements a truncated form of
the Iterative Shrinkage and Thresholding Algorithm
(ISTA) (Daubechies et al., 2004; Rozell et al., 2008;
Beck & Teboulle, 2009). While ISTA uses two ma-
trices that are computed from the basis vectors, our
method, dubbed LISTA (Learned ISTA) learns those
two matrices so as to produce the lowest possible error
in a given number of iterations. Our second encoder
architecture is based on a truncated form of the Coor-
dinate Descent algorithm (CoD) (Li & Osher, 2009),
again with learned matrices instead of pre-computed
ones.

1.1. Sparse Coding

In the most popular form of sparse coding, the infer-
ence problem is, for a given input vector X ∈ Rn,
to find the optimal sparse code vector Z∗ ∈ Rm that
minimizes an energy function that combines the square
reconstruction error and an L1 sparsity penalty on the
code:

EWd
(X, Z) =

1
2
||X −WdZ||22 + α||Z||1 (1)

Algorithm 1 ISTA
function ISTA(X, Z, Wd, α, L)

Require: L > largest eigenvalue of WT
d Wd.

Initialize: Z = 0,
repeat

Z = h(α/L)(Z − 1
LWT

d (WdZ −X))
until change in Z below a threshold

end function

where Wd is an n×m dictionary matrix whose columns
are the (normalized) basis vectors, α is a coefficient
controlling the sparsity penalty. The overcomplete
case corresponds to m > n. The optimal code for
a given X is defined as Z∗ = argminZE(X, Z).

The dictionary matrix is often learned by mini-
mizing the average of minz EWd

(X, Z) over a set
of training samples using a stochastic gradient
method (Olshausen & Field, 1996). Training such a
system on natural image patches produces Gabor-like
filters covering the space of locations, frequencies, and
orientations. Experiments reported in this paper are
conducted on datasets of natural image patches and
handwritten digits.

2. Iterative Shrinkage Algorithms

This section describes baseline iterative shrinkage al-
gorithms for finding sparse codes. The ISTA and
FISTA methods (Beck & Teboulle, 2009) update the
whole code vector in parallel, while the more effi-
cient Coordinate Descent method (CoD) (Li & Osher,
2009) updates the components one at a time and care-
fully selects which component to update at each step.
Both methods refine the initial guess through a form
of mutual inhibition between code component, and
component-wise shrinkage.

2.1. ISTA and Fast ISTA

A popular algorithm for sparse code inference is the It-
erative Shrinkage and Thresholding Algorithm (see for
example (Daubechies et al., 2004; Beck & Teboulle,
2009), and (Rozell et al., 2008) for a continuous-time,
biologically relevant form of ISTA). The method is
given in Algorithm 1, and the block diagram of the
method is represented in figure 1(a). Given an input
vector X, ISTA iterates the following recursive equa-
tion to convergence:

Z(k + 1) = hθ (WeX + SZ(k)) Z(0) = 0 (2)

The elements of the equation are described below.
First, we define a constant L which must be an up-
per bound on the largest eigenvalue of WT

d Wd. The
“backtracking” form of ISTA (not described here) au-
tomatically adjusts this constant as part of the algo-
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Algorithm 2 Coordinate Descent (Li & Osher, 2009)
function CoD(X,Z, Wd, S, α)

Require: S = I −WT
d Wd

Initialize: Z = 0; B = WT
d X

repeat
Z̄ = hα(B)
k = index of largest component of |Z − Z̄|
∀j ∈ [1,m] : Bj = Bj + Sjk(Z̄k − Zk)
Zk = Z̄k

until change in Z is below a threshold
Z = hα(B)

end function

rithm. The other elements in eq. 2 are:

filter matrix: We =
1
L

WT
d

mutual inhibition matrix: S = I − 1
L

WT
d Wd

shrinkage function: [hθ(V )]i = sign(Vi)(|Vi| − θi)+
(3)

The function hθ(V ) is a component-wise vector shrink-
age function with a vector of thresholds θ. In standard
ISTA, all the thresholds are set to θi = α/L.

Depending on the overcompleteness and hardware im-
plementation, one can use either factorized form shown
in Algorithm 1 with computational complexity O(mn),
pre-computed matrix S with complexity O(m2) or pre-
computed matrix S where only nonzero coefficients
of the code vector are propagated, with complexity
O(mk) where k is the sparsity averaged over iterations
and samples.

FISTA (Beck & Teboulle, 2009) is a version of this
algorithm that converges more rapidly, both in the-
ory and in practice. The main difference is the in-
troduction of a “momentum” term in the dynamics.
The new code vector is equal to the shrinkage func-
tion applied to the previous code vector, plus a coef-
ficient times the difference of the last two outputs of
the shrinkage function (akin to a momentum effect).
See (Beck & Teboulle, 2009) for details. While it is
fast by most standards, FISTA may require several
dozen iterations to produce accurate sparse codes.

2.2. Coordinate Descent (CoD)

In (F)ISTA all the code components are updated si-
multaneously, which requires O(mn), O(m2) or O(mk)
operations per iteration, as discussed. The idea of
the Coordinate Descent algorithm (CoD) is to change
only one carefully chosen coordinate at a time, a step
which takes O(m) operations. Repeating this O(m)
or O(n) times produces a better approximation than
updating all the coordinates at the same time for the
same amount of computation. The algorithm is as

follows. At any given step, pick a code component,
and minimize the energy with respect to that compo-
nent, keeping all other components constant. Repeat
until convergence. The code component being cho-
sen at any given point is the one that will be subject
to the largest modification through this update. The
steps are detailed in Algorithm 2. Since only one com-
ponent is modified, only one column of S is used to
propagate the changes for the next shrinkage opera-
tion, and the cost is O(m). The max operation re-
quired to pick the next best component is also O(m).
With infinitely many iterations it converges to the op-
timal sparse code, but consistently produces better ap-
proximations with considerably fewer operations than
FISTA.

This algorithm can also be interpreted in the frame-
work of the Figure 1. Similarly to ISTA, we set
We = WT

d and θi = α. The feedback mechanism is
slightly more complicated than in ISTA, but can be
expressed as a linear operation with a very sparse,
iteration-dependent matrix, which takes only O(m)
operations.

The common wisdom is that CoD is the fastest algo-
rithm in existence for sparse code inference (or at least,
it is in the leading pack).

3. Trainable Sparse Code Predictors

We now come to the main focus of the paper, which is
to propose fast encoders that can be trained to com-
pute approximate sparse codes. An important desired
characteristic of encoders is that they must be con-
tinuous and almost-everywhere differentiable functions
with respect to their parameters and with respect to
their input. Differentiability with respect to the pa-
rameters will ensure that we can use gradient-based
learning methods to train them, while differentiabil-
ity with respect to the input will ensure that gradi-
ents can be back-propagated through them, enabling
their use as components of larger globally-trainable
systems (Jarrett et al., 2009).

The basic idea is to design a non-linear, parameter-
ized, feed-forward architecture with a fixed depth that
can be trained to approximate the optimal sparse
code. The architecture of our encoders will de denoted
Z = fe(X,W ), where W collectively designates all the
trainable parameters in the encoder. Training the en-
coder will be performed using stochastic gradient de-
scent to minimize a loss function L(W ), defined as the
squared error between the predicted code and the op-
timal code averaged over a training set (X1, . . . , Xp):

L(W ) =
1
P

(P−1)∑
p=0

L(W,Xp) with (4)

L(W,Xp) =
1
2
||Z∗p − fe(W,Xp)||2 (5)
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where Z∗p = argminzEWd
(Xp, Z) is the optimal code

for sample Xp, as obtained with the CoD method. The
learning algorithm is a simple stochastic gradient de-
scent:

W (j + 1) = W (j)− η(j)
dL(W,X(j mod P ))

dW
(6)

where η(j) decays as 1/j to ensure convergence.

3.1. Baseline Encoder Architecture

As a baseline of comparison, we now discuss a simple
class of encoder architectures of the form

Z = g(WeX) (7)

where We is an m × n trainable matrix, g
is a coordinate-wise non-linearity, as proposed
by (Kavukcuoglu et al., 2008). They proposed to use
a non-linearity of the form g = D tanh where D is
a trainable diagonal matrix (gain). This architecture
has two major shortcomings. First, it makes it very
difficult for the system to produce code values close
to 0, since tanh has a high derivative near 0. Second,
this single-layer feed-forward architecture cannot pos-
sibly exhibit any kind of competition between different
subsets of code components whose corresponding ba-
sis functions could reconstruct the input equally well.
We address the first shortcoming, and will address the
second in detail in the next section.

The first shortcoming is addressed by using a shrink-
age function similar to the one used in ISTA instead
of tanh. Three different such non-linearities have been
tested. The first one is simply hθ, where the vec-
tor of thresholds θ is subject to training. One can
show that hα(x) is the best possible function in the
situation when the dimensionalities of the input and
code are both one, by solving (1). This function is
not differentiable at the points ±α. Furthermore, it
has a strictly zero region, and if a value falls there,
the gradient will be zero, causing no parameter up-
date. The second one is the so-called “double tanh”
g(X) = D(tanh(X + U) + tanh(X − U)), where U is
trainable vector, and D a trainable diagonal matrix.
This function has the advantage of being smooth and
differentiable unlike the shrinkage function (see Fig-
ure 2). Thirdly, the ideal form of non-linearity can
be obtained through learning: by using a flexible pa-
rameterization of the non-linear function training it.
We tested this in two ways. In the first case, the non-
linear function was parameterized as a weighted sum of
univariate Gaussian RBFs with trainable centers and
widths. In the second case, the function is piecewise
linear, with trainable control points spaced at regular
intervals. After training, we find that the learned non-
linearity is very similar to the shrinking function (3)
with slight roundings of the corners near α, similar to
that of D(tanh(X +U)+tanh(X−U)). The code pre-
diction error obtained by the trainable non-linearities

are only slightly better than with the shrinkage func-
tion. Hence, we decided to simply use the shrinkage
function hθ in all experiments.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

 

 
tanh(x)
(tanh(x+2)+tanh(x−2))/2
sh(x)/2

Figure 2. Non-linearities for the baseline encoder described
in section 7. The “double tanh” function and the shrinkage
function gθ give the best results. The shrinkage function is
used for most experiments described in the paper.

3.2. Mutual Inhibition and Explaining Away

In overcomplete situations, it is necessary for the infer-
ence algorithm to allow the code components to com-
pete to explain the input. The baseline encoders have
no such capability, which is the reason behind their
second shortcoming as mentioned above. To illustrate
the problem, imagine that two rows of We contain two
very similar filters, for example two oriented Gabors
filters with similar orientations. If the input image
contains an edge with an orientation very close to the
first filter, the input would be well reconstructed by
turning on the code component of the first filter and
turning off the second. Unfortunately, the simple en-
coder will activate both code components equally, and
will be incapable of explaining away the second compo-
nent with the first, because with the baseline encoder,
the activations of the two code components are inde-
pendent given the input.

The following sections introduce two encoders that in-
clude interaction terms between code components, in-
spired by ISTA and CoD. The basic idea is to use feed-
forward networks whose structure correspond to a few
steps of ISTA, or a fixed number of steps of CoD. The
matrices We, S, and the vector θ, instead of being
computed from Wd and α will be trained so as to min-
imize the loss of Equation 4. The methods are dubbed
Learning ISTA (LISTA) and Learning CoD (LCOD).
Laying out the operations for a few iteration of the
ISTA algorithm results in the block diagram (or data
flow graph) of Figure 1(b). The encoder architecture
can be seen as a sort of time-unfolded recurrent neural
network.

Naturally, instead of using learning, we could simply
use the matrices and parameters specified by ISTA and
CoD and simply terminate the algorithm after a small
number of steps, but there is no guarantee that we will
obtain the best approximation for the given number
of operations. conversely, there will be no guarantee
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Algorithm 3 LISTA::fprop
LISTA :: fprop(X,Z, We, S, θ)
;; Arguments are passed by reference.
;; variables Z(t), C(t) and B are saved for bprop.
B = WeX; Z(0) = hθ(B)
for t = 1 to T do

C(t) = B + SZ(t− 1)
Z(t) = hθ(C(t))

end for
Z = Z(T )

Algorithm 4 LISTA::bprop
LISTA :: bprop(Z∗, X, Z, We, S, θ, δX, δWe, δS, δθ)
;; Arguments are passed by reference.
;; Variables Z(t), C(t), and B were saved in fprop.
Initialize: δB = 0; δS = 0; δθ = 0
δZ(T ) = (Z(T )− Z∗)
for t = T down to 1 do

δC(t) = h′θ(C(t)).δZ(t)
δθ = δθ − sign(C(t)).δC(t)
δB = δB + δC(t)
δS = δS + δC(t)Z(t− 1)T

δZ(t− 1) = ST δC(t)
end for
δB = δB + h′θ(B).δZ(0)
δθ = δθ − sign(B).h′θ(B)δZ(0)
δWe = δBXT ; δX = WT

e δB

that the encoders obtained with LISTA and LCoD will
converge to the true optimal code if one runs them for
more steps than they were trained for.

At first glance, hoping that LISTA and LCoD will beat
ISTA and CoD for a small number of steps seems like
wishful thinking. But one must keep in mind that we
are not seeking to produce approximate sparse code
for all possible input vectors, but only for input vec-
tors drawn from the same distribution as our training
samples. With learning we are carefully carving the
solution of a restricted problem of interest, not the
general problem. The next two sections describe the
LISTA and LCoD architectures and learning proce-
dures in detail.

3.3. Learned Iterative Shrinkage-Thresholding
Algorithm (LISTA)

The LISTA encoder takes the precise form of Equa-
tion 2 with a fixed number of steps T . The pseudo-
code for computing a sparse code using LISTA is given
in Algorithm 3, and the block diagram in Figure 1(b).

Learning the parameters W = (We, S, θ) is performed
by applying Equation 6 repetitively over the train-
ing samples. Computing the gradient dL(W,Xp)/dW
is achieved through the back-propagation procedure.

Algorithm 5 LCoD::fprop
LCoD :: fprop(X, Z,We, S, θ)
;; Arguments are passed by reference.
;; variables e(t), k(t), b(t) and B(T ) are saved
B = WeX; Z = 0;
for t = 1 to T − 1 do

Z̄ = hθ(B)
k = index of largest component of |Z − Z̄|
k(t) = k, b(t) = Bk; e(t) = Z̄k − Zk

∀j ∈ [1,m] : Bj = Bj + Sjke(t)
Zk = Z̄k

end for
B(T ) = B; Z = hθ(B)

One can view the architecture as a time-unfolded re-
current neural network, to which one can apply the
equivalent of back-propagation through time (BPTT).
More simply, it can be viewed as a feed-forward net-
work in which S is shared over layers. Comput-
ing the gradients consists in starting from the out-
put and back-propagating gradients down to the input
by multiplying by the Jacobian matrices of the tra-
versed modules, which is a simple application of chain
rule: dL/dZ(t) = dL/dZ(t + 1)dZ(t + 1)/dZ(t), and
dL/dS =

∑T
t=1 dL/dZ(t)dZ(t)/dS, since S is shared

across time steps. Similar formulas can be applied
to compute dL/dθ and dL/dWe. The complete back-
propagation pseudo-code is given in Algorithm 4. The
δ prefix denotes the gradient of L with respect to the
variable that follows it. Variables and their associated
gradients have the same dimensions. h′θ(t) denotes the
jacobian of h with respect to its input (a square binary
diagonal matrix).

3.4. Learned Coordinate Descent (LCoD)

The learned version of coordinate descent follows the
same procedure as that described in section 2.2, with
the same interpretation of the Figure 1, but with ma-
trices We, S and vector θ learned. The code prediction
portion of the pseudo-code is given in Algorithm 5.
The procedure is identical to algorithm 2, except that
some variables are saved in preparation for the subse-
quent back-propagation procedure. We also see how
the last line is useful: if the number of iterations is
zero, we get the baseline encoder described in the sub-
section 3.1. Adding iterations will improve the perfor-
mance from there.

The pseudo-code of the gradient back-propagation pro-
cedure through this LCoD encoder is given in Algo-
rithm 6. Note that what we will back-propagate are
technically sub-gradients, as the operation that finds
the index of the largest change in Z creates kinks
in the function (though the function is still continu-
ous, and the kinks have measure zero). Such kinks
have little negative effects on stochastic gradient pro-
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Algorithm 6 LCoD::bprop
LCoD :: bprop(Z∗, X, Z,We, S, θ, δX, δWe, δS, δθ)
;; Arguments are passed by reference.
;; Variables e(t), k(t), b(t) and B(T ) were saved
Initialize: δS = 0; δZ = 0
B = B(T ); δB = h′θ(B).(Z − Z∗)
for t = T − 1 down to 1 do

k = k(t); δe =
∑

j δBj .Sjk

∀j ∈ [1,m] : δSjk = δSjk + δBj .e(t)
δBk = δBk + h′θk

(b(t)) (δZk + δe)
δθk = δθk − sign(b(t))h′θk

(b(t)) (δZk + δe)
δZk = −δe

end for
δWe = δB.XT ; δX = WT

e .δB

cedures (though they sometimes are fatal to deter-
ministic gradients methods). Explicitly deriving the
back-propagation procedure is beyond the scope of this
short paper, but suffices to say that writing down the
block diagram of the fprop provides a mechanical way
to write down the bprop. One must emphasize that
each step in the bprop procedure requires only O(m)
operations. The amount of storage required for each
iteration is also O(m). Apart from B(T ), the other
saved variables are scalars.

4. Results

In the first set of experiments we compare the perfor-
mance of different methods on exact sparse code pre-
diction. The data-set consists of a quasi infinite supply
image patches of size 10×10 pixels, randomly selected
from the Berkeley image database. Each patch is pre-
processed to remove its mean and normalize its vari-
ance. The patches with small standard deviations were
discarded. A sparsity coefficient α = 0.5 was used in
Equation 1.

The dictionary of basis vectors Wd in (1) was trained
by iterating the following standard procedure: (1) get
an image patch from the training set Xp; (2) calcu-
late the optimal code Z∗p using the CoD Algorithm 2;
(3) update Wd with one step of stochastic gradient
Wd ← Wd − ηdEWd

E(Xp, Z∗p)/dWd; (4) renormalize
the column of Wd to unit norm; (5) iterate. The step
size was decreased with a 1/t schedule. The procedure
resulted in the usual gabor-like filters. We considered
two cases, one with m = 100 (complete code) and one
with m = 400 (4 times over-complete code).

Once Wd was trained, the LISTA and LCoD encoders
were trained as follows: (1) get an image patch from
the training set Xp; (2) calculate the optimal code Z∗p
using the CoD Algorithm 2; (3) perform fprop through
the encoder using either Algorithm 3 or 5 to predict
a code; (4) perform bprop through the encoder using
Algorithms 4 or 6; (5) update the encoder parameters

Table 1. Prediction error (squared error between the op-
timal code and the predicted codes) for different non-
linearities of the baseline encoder (7), and for LISTA and
FISTA. LISTA produces a much better estimate after one
iteration than FISTA.

Non-linearity 100 units 400 units

D tanh(x) 8.6 10.7
D(tanh(x + u) + tanh(x− u)) 3.33 4.62
hα(x) 3.29 4.82

LISTA 1 iteration 1.50 2.45
LISTA 3 iterations 0.98 2.12
LISTA 7 iterations 0.52 1.62

FISTA 1 iteration 21. 22.

using the gradient thereby obtained with equation 6;
(6) iterate.

We compare the various encoders by measuring the
squared error between the code predicted by the en-
coders and the optimal code Z∗. The code predic-
tion error for different non-linearities with the baseline
encoder 7 is shown in Table 1. The shrinkage func-
tion and the “double tanh” perform similarly, and are
both considerably better than the D tanh non-linearity
of (Kavukcuoglu et al., 2008). Interestingly, they are
also much better than FISTA with 1 iteration, even
though the computation is considerably less.

LISTA The prediction error for LISTA are shown in
Table 1 and Figure 3 for a varying depth. We see
that the higher the depth, the better the prediction
error. A single iteration of LISTA reduces the error by
almost a factor of 2 over a simple shrinkage encoder.
More interestingly LISTA is stupendously better than
FISTA: It takes 18 iterations of FISTA to reach the
same error obtained with 1 iteration of LISTA for m =
100, and 35 iteration for m = 400.

One problem with LISTA is that the multiplication
by S matrix takes O(m2) or O(mk), as opposed to
O(mn) for FISTA. To reduce the computational bur-
den at the expense of accuracy we experimented with
reduced forms for S with two methods. In the first
method, we express S as S = UT

1 U2, where U1 and
U2 are q ×m matrices, U1 with normalized rows. The
amount of operations is thus reduced by cf = 2q/m.
We attempted to enforce U2 = UT

1 but the results
were worse. In the second method, we simply con-
strain a fraction of elements of S to remain zero dur-
ing training. The elements that are suppressed are
the elements with the smallest absolute value in the
FISTA S-matrix I − WT

d Wd. The results are shown
in Figure 4. We see that it is more efficient to remove
elements than to reduce the rank. Removing about
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LISTA H4xL
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Figure 3. Code prediction error as a function of number of
iterations for FISTA (crosses) and for LISTA (dots), for
m = 100 (red) and m = 400 (blue). Note the logarithmic
scales. iter = 0 corresponds to the baseline trainable en-
coder with the shrinkage function. It takes 18 iterations of
FISTA to reach the error fo LISTA with just one iteration
for m = 100, and 35 iteration for m = 400. Hence one can
say that LISTA is roughly 20 times faster than FISTA for
approximate solutions.

80% of connections (cf = 0.2) causes a relatively small
increase in prediction error from about 1.6 to about
2.0. Removing connections also allows efficient com-
putation of the S matrix multiplication when only the
nonzero code units are used.

dim reduction H4xL

elements removal H4xL

dim reduction H1xL

elements removal H1xL

0.01 0.02 0.05 0.1 0.2 0.5 1
cf

1.5

2

2.5

3

3.5

4

error

Figure 4. Prediction error for LISTA with one iteration as
a function of fraction of operations cf required relative to
a full S matrix. The matrix is reduced using a low rang
factorization, or by removing small elements.

LCoD: The prediction results for the learned CoD
are shown in the Figure 5. Each iteration costs O(m)
operations as opposed to LISTA’s O(m2) or O(mk).
The cost of the initial operation WeX is O(nm). It
is remarkable that with only 20 iterations, which adds
a tiny additional cost to the initial calculation WeX,
and much smaller than a single iteration of FISTA or
LISTA, the error is already below 2. It takes 100 itera-
tions of CoD to reach the same error as 5 iterations of

LCoD. For a large number of iterations, LCoD loses to
CoD when the matrices are initialized randomly, but
initializing the matrices with their CoD-prescribed val-
ues improves the performance significantly (open cir-
cles).
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Figure 5. Code prediction errors for CoD and LCoD for
varying numbers of iterations. LCoD is about 20 times
faster than CoD for small numbers of iterations. Initial-
izing the matrices with their LCoD values before training
(open circles) improve the performance in the high itera-
tion regime, but seems to degrade it in the low iteration
regime (data not shown).

In the second set of experiments we investigated
whether the improvement in prediction error leads to
a better recognition performance using the MNIST
dataset. In the first experiment, the CoD and LCoD
methods with codes of size 784 were trained on the
whole 28× 28 = 784 pixel images. In the second one,
the CoD and LCoD methods with 256 dimensional
codes were trained on 16× 16 pixel patches extracted
from the MNIST digits. A complete feature vector
consisted of 25 concatenated such vectors, extracted
from all 16× 16 patches shifted by 3 pixels on the in-
put. The features were extracted for all digits using
CoD with exact inference, CoD with a fixed number of
iterations, and LCoD. Additionally a version of CoD
(denoted CoD’) used inference with a fixed number
of iterations during training of the filters, and used
the same number of iterations during test (same com-
plexity as LCoD). A logistic regression classifier was
trained on the features thereby obtained.

Classification errors on the test set are shown in Ta-
bles 2 and 3. While the error rate decreases with the
number of iterations for all methods, the error rate
of LCoD with 10 iterations is very close to the opti-
mal (differences in error rates of less than 0.1% are
insignificant on MNIST)1.

1cpu times assume efficient implementation of the WeX
that is not available for the argmax of (L)CoD: 1.6x speed
up for Table 2 (vector) and 5x for Table 3 (batch).
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Table 2. MNIST results with 784-D sparse codes.
Pred. Error Classification Error

iter cpu CoD LCoD CoD CoD’ LCoD
0 1 2143 1.07 6.74 - 2.65
1 1.02 370 0.99 5.53 - 2.55
5 1.05 31.7 0.78 6.71 5.04 2.33
10 1.10 12.0 0.66 5.24 4.82 2.32
20 1.21 5.81 0.55 3.77 4.17 2.39
50 1.50 2.14 0.51 2.57 3.54 2.29
conv 4.56 0 - 2.15 2.15 -

Table 3. MNIST results with 25 256-D sparse codes ex-
tracted from 16× 16 patches every 3 pixels.

Pred. Error Classification Error
iter cpu CoD LCoD CoD CoD’ LCoD
0 1 273 0.70 2.24 - 1.66
1 1.15 80.5 0.58 2.3 - 1.60
5 1.55 5.58 0.34 1.82 2.18 1.47
10 2.10 2.75 0.22 1.58 1.99 1.42
20 2.95 1.44 0.14 1.55 1.55 1.42
50 5.45 0.44 0.07 1.46 1.48 1.39
conv 37.25 0 - 1.33 1.33 -

5. Conclusions

We have shown that learning the filters and the mutual
inhibition matrices of truncated versions of FISTA and
CoD leads to dramatic reduction in the number of iter-
ations to reach a given code prediction error, roughly
by a factor of 20 for the low iteration regime. It seems
that a small amount of data-specific mutual inhibition
is all that is needed to explain away unnecessary com-
ponents of the code vector. Even if accurate codes are
needed, LCoD can be used advantageously to initial-
ize CoD. The method opens the door to the use of
sparse feature extraction in real-time vision and pat-
tern recognition systems. In future work, the method
will be applied to image restoration and object recog-
nition tasks.
Acknowledgments: this work was supported in part by
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