
A fast natural Newton method

Nicolas Le Roux nicolas.le.roux@gmail.com
Andrew Fitzgibbon awf@microsoft.com

Microsoft Research, 7 JJ Thomson Avenue, Cambridge, CB3 0FB UK

Abstract

Nowadays, for many tasks such as object
recognition or language modeling, data is
plentiful. As such, an important challenge
has become to find learning algorithms which
can make use of all the available data. In this
setting, called “large-scale learning” by Bot-
tou & Bousquet (2008), learning and opti-
mization become different and powerful opti-
mization algorithms are suboptimal learning
algorithms. While most efforts are focused on
adapting optimization algorithms for learn-
ing by efficiently using the information con-
tained in the Hessian, Le Roux et al. (2008)
exploited the special structure of the learn-
ing problem to achieve faster convergence. In
this paper, we investigate a natural way of
combining these two directions to yield fast
and robust learning algorithms.

1. Introduction

Machine learning often looks like optimization: write
down the likelihood of some training data under some
model and find the model parameters which maximize
that likelihood, or which minimize some divergence be-
tween the model and the data. In this context, con-
ventional wisdom is that one should find in the opti-
mization literature the state of the art optimizer for
one’s problem and use it.

Furthermore, many machine learning objective func-
tions are smooth in the optimization sense, so second-
order optimizers are the tools of choice. And indeed,
comparing second order methods to first order ones
shows significant improvements in learning speed.

However, recent research (Le Roux et al., 2008) has
shown that, by paying attention to the special struc-

Appearing in Proceedings of the 27 th International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s)/owner(s).

ture of machine learning problems (viewing the gradi-
ent obtained as a noisy estimate of the true gradient of
the function we are really interested in), one could ob-
tain faster convergence speeds than first order gradient
descent methods without using the Hessian. We in-
vestigate whether this improvement is due to the sim-
ilarity of these methods to approximate second-order
methods or, if this is not the case, if we can combine
these improvements with the ones obtained when using
the information contained in the Hessian.

The paper is organized as follows: section 2 explores
the differences between the optimization and the learn-
ing frameworks, section 3 describes our proposed algo-
rithm combining Newton method and natural gradi-
ent, which is the basis for the experiments in section 4.

2. Optimization versus learning

2.1. Optimization methods

The goal of optimization is to minimize a func-
tion f , which we will assume to be twice differen-
tiable and defined from a space E to R, over E.
This is a problem with a considerable literature (No-
cedal & Wright, 2006). It is well known that sec-
ond order descent methods, which rely on the Hes-
sian of f (or approximations thereof), enjoy much
faster theoretical convergence than first order meth-
ods (quadratic versus linear), even when accounting
for the potential complexity of computing and invert-
ing the Hessian. Such methods include the Newton
method, Gauss-Newton, Levenberg-Marquardt and
Quasi-Newton methods such as BFGS.

2.2. Online learning

The learning framework differs slightly from the op-
timization one. The function f we wish to minimize
(which we call the “cost function”) is defined as the
expected value of a function L under a distribution p,
that is

f(θ) =

∫
x

L(θ, x)p(x) dx (1)



A fast natural Newton method

and we have access only to samples xi drawn from p.
If we have n samples, we can define a new function

f̂(θ) =
1

n

∑
i

L(θ, xi) . (2)

Let us call f the test cost, and f̂ the training cost.
The xi are the training data. As n goes to infinity, the
difference between f and f̂ vanishes.

Bottou & Bousquet (2008) study the case where one
has access to a potentially infinite amount of train-
ing data but only a finite amount of time. This set-
ting, which they dub large-scale learning, calls for
a tradeoff between the quality of the optimization for
each datapoint and the number of datapoints treated.
They showed that:

1. good optimization algorithms may be poor learn-
ing algorithms

2. stochastic gradient descent enjoys a faster conver-
gence rate than batch gradient descent

3. introducing second order information can win us
a constant factor (the condition parameter).

Therefore, the choice lies between first and second or-
der stochastic gradient descent, depending on the addi-
tional cost of taking second order information into ac-
count and the condition parameter. Recently, several
authors have developed algorithms allowing for effi-
cient use of this second order information in a stochas-
tic setting (Schraudolph et al., 2007; Bordes et al.,
2009). However, we argue, all of these methods are de-
rived from optimization methods without taking into
account the particular nature of the learning problem.

2.3. Taking uncertainty into account

To our knowledge, the first paper explicitly accounting
for the uncertainty of the gradient computed on the
training set is (Le Roux et al., 2008). The argument

is as follows. With f and f̂ as above, we write the
gradient of f as

g =
df

dθ
=

∫
x

∂L(θ, x)
∂θ

p(x) dx (3)

and the gradient of f̂ as

ĝ =
df̂

dθ
=

1

n

∑
i

∂L(θ, xi)

∂θ
(4)

where the dependence of g and ĝ on θ has been omitted
to keep the notation uncluttered. We may think of g

as the “true” gradient of f , and of ĝ as an “empirical”
gradient of f , which we view as the mean of a set of
samples drawn from a distribution with true mean g.
If the training samples are iid, and given the “large-
scale” assumption of large n, we can use the central-
limit theorem, which yields

ĝ | g ∼ N
(
g,

C

n

)
(5)

where

C =

∫
x

(
∂L(θ, x)

∂θ
− g

)(
∂L(θ, x)

∂θ
− g

)T

p(x) dx

(6)
is the true covariance matrix of the gradients. Relax-
ing eq. 5 to finite n and defining an isotropic Gaussian
prior over g:

g ∼ N (0, σ2I), (7)

yields the following posterior distribution over the true
gradient:

g | ĝ ∼ N

([
I +

C

nσ2

]−1

ĝ,
[
nC−1 + σ−2I

]−1

)
. (8)

Replacing the true covariance C by the empirical co-
variance Ĉ defined as:

Ĉ =
1

n

∑
i

(
∂L(θ, xi)

∂θ
− ĝ

)(
∂L(θ, xi)

∂θ
− ĝ

)T

, (9)

the direction of maximum expected gain becomes

∆θ ∝

[
I +

Ĉ

nσ2

]−1

ĝ, (10)

reminiscent of the natural gradient (Amari, 1998),
with two differences:

• Ĉ is here the centered covariance matrix,
whereas (Amari, 1998) uses the uncentered one;

• when the number of datapoints n goes to infinity,
the effect of the covariance matrix vanishes. This
is understandable as, in that case, f and f̂ are
equal, and so are g and ĝ.

Le Roux et al. (2008) report large speedups on various
neural network problems. Intuitively, one can under-
stand why using the covariance may be beneficial. In-
deed, it seems wasteful to compute the gradient over
many data points and only keep their mean. While
this allows for greater accuracy, one would think that
more could (and should) be kept from these computa-
tions.



A fast natural Newton method

2.4. Natural gradient is not an approximation
to Newton

Before moving on to the core of the paper, we clar-
ify the links between natural gradient and Newton
method as this should help the reader understand the
advantage one can gain from using both.

2.4.1. Similarities

Maximum likelihood: Let us assume that we are
training a density model by minimizing the negative
log-likelihood. The cost function fnll is defined by

fnll(θ) = −
∫
x

log[L(θ, x)]p(x) dx. (11)

Note that this L is not the same as the L used in
sections 2.2 and 2.3. Let us assume that there is a
set of parameters θ such that our model is perfect
and that we are at this θ. Then the covariance matrix
of the gradients at that point is equal to the Hessian
of fnll. In the general case, this equality does not hold.

Gauss-Newton: Gauss-Newton is an approxima-
tion to the Newton method when f can be written
as a sum of residuals:

f(θ) =
1

2

∑
i

fi(θ)
2. (12)

Computing the Hessian of f yields

∂2f(θ)

∂θ2
=
∑
i

fi(θ)
∂2fi
∂θ2

+
∑
i

∂fi
∂θ

∂fi
∂θ

T

. (13)

If the fi get close to 0 (relative to their gradient), the
first term may be ignored, yielding the following ap-
proximation to the Hessian:

H ≈
∑
i

∂fi
∂θ

∂fi
∂θ

T

. (14)

One, however, must be aware that:

• this approximation is only interesting when the fi
are residuals (that is, when the approximation is
valid close to the optimum)

• the gradients involved are those of fi and not of f2
i

• the term on the right-hand side is the uncen-
tered covariance of these gradients.

In order to compare the result of eq. 14 to the natural
gradient, we will assume that the sum in eq. 12 is over
datapoints, that is

f(θ) =
1

2

∑
i

fi(θ)
2 =

1

N

∑
i

L(θ, xi) (15)

with the cost for each datapoint being

L(θ, xi) =
N

2
fi(θ)

2. (16)

The gradient of this cost with respect to θ is

gi =
∂L(θ, xi)

∂θ
= Nfi(θ)

∂fi(θ)

∂θ
. (17)

At the optimum (where the average of the gradients is
zero and the centered and uncentered covariance ma-
trices are equal), the covariance matrix of the gi’s is

C =
∑
i

gig
T
i = N2

∑
i

fi(θ)
2 ∂fi
∂θ

∂fi
∂θ

T

, (18)

which is a weighted sum of the terms involved in eq. 14.
Thus the natural gradient and the Gauss-Newton ap-
proximation, while related, are different quantities,
and (as we show) have very different properties.

2.4.2. Differences

Remember what the Hessian is: a measure of the
change in gradient when we move in parameter
space. In other words, the Hessian helps to answer
the question: if I were at a slightly different position
in parameter space, how different would the gradient
be? It is a quantity defined for any (twice differen-
tiable) function.

On the other hand, the covariance matrix of the gra-
dients captures the uncertainty around this particular
choice of training data, i.e. the change in gradient
when we move in input space. In other words, the
covariance helps us to answer the question: If I had
slightly different training data, how different would the
gradient be? This quantity only makes sense when
there are training data.

Whereas the Hessian seems naturally suited to opti-
mization problem (it allows us to be less short-sighted
when minimizing a function), the covariance matrix
unleashes its power in the learning setting, where we
are only given a subset of the data. From this observa-
tion, it seems natural to combine these two matrices.

3. Combining Newton method and
natural gradient

Building upon (Le Roux et al., 2008), we now show
how to use Hessian information within the natural
gradient. The Newton method assumes that the cost
function is locally quadratic, i.e:

f(θ) =
1

2
(θ − θ∗)TH(θ − θ∗) (19)



A fast natural Newton method

for some value of θ∗. In the case of a learning problem,
this would translate to

f(θ) =

∫
x

L(θ, x)p(x) dx =

∫
x

1

2
(θ−x)TH(θ−x)p(x) dx

(20)
with θ∗ =

∫
x
xp(x) dx. Here we make the assumption

that H depend only weakly on x, a common assump-
tion in online second-order methods. The derivative of
this cost is:

g(θ) =

∫
x

∂L(θ, x)
∂θ

p(x) dx = H(θ − θ∗). (21)

We can see that, in the context of a quadratic function,
the isotropic prior over g proposed in eq. 7 is erroneous
as g is clearly influenced by H. We shall rather con-
sider an isotropic Gaussian prior on the quantity θ−θ∗
as we do not have any information about the position
of θ relative to θ∗. The resulting prior distribution
over g is

g ∼ N
(
0, σ2H2

)
(22)

where we omitted the dependence on θ to keep the no-
tation uncluttered. In a similar fashion to section 2.3,
we will suppose that we are only given a finite training
set composed of n datapoints xi with associated gra-
dients gi. The empirical gradient ĝ is the mean of the
gi’s. Using the central-limit theorem, we again have

ĝ | g ∼ N
(
g,

C

n

)
(23)

where C is the true covariance of the gradients, i.e.

C =

∫
x

(
∂L(θ, x)

∂θ
− g

)(
∂L(θ, x)

∂θ
− g

)T

p(x) dx.

(24)
Therefore, the posterior distribution over g is

g | ĝ ∼ N

([
I +

CH−2

nσ2

]
ĝ,

[
H−2

σ2
+ nC−1

]−1
)
(25)

Since the function is locally quadratic, we wish to move
in the direction H−1g. This direction follows a Gaus-
sian distribution with mean[

I +
H−1CH−1

nσ2

]−1

H−1ĝ (26)

and covariance [
I

σ2
+ nHC−1H

]−1

. (27)

Once again, we shall replace the true covariance matrix
C of the gradients by its empirical counterpart, Ĉ.

Since eq. 26 appears complicated, we shall explain it.
Let us define by di the Newton directions:

di = H−1gi. (28)

Since Ĉ is the covariance matrix of the gradients gi,
H−1ĈH−1 = D̂ is the covariance matrix of the di’s.
We can therefore rewrite

H−1g | ĝ ∼ N

[I + D̂

nσ2

]−1

d̂,

[
I

σ2
+ nD̂−1

]−1

(29)

where d̂ is the average of the Newton directions, i.e.
d̂ = H−1ĝ. The direction which maximizes the ex-
pected gain is thus

δθ ∝ −

[
I +

D̂

nσ2

]−1

d̂ . (30)

This formula is exactly the (regularized) natural gra-
dient, but on the Newton directions. This is good
news as it means that one may choose his favorite
second-order gradient descent method (for instance,
SGD-QN (Bordes et al., 2009)) to compute the Newton
directions, and then his favorite natural gradient algo-
rithm (for instance, TONGA (Le Roux et al., 2008))
to apply to these Newton directions, to yield an algo-
rithm combining the advantages of both methods.

As a side note, one can see that, as the number n of
data points used to compute the mean increases, the
prior vanishes and the posterior distribution concen-
trates around the empirical Newton direction.

As mentioned in section 2.2, online methods are faster
than batch methods. Thus, we will update the pa-
rameters of our model after each datapoint, replacing
the empirical mean d̂ and covariance D̂ in eq. 30 by
running averages, as detailed in section 3.2.

We shall now analyze several components of this
method.

3.1. Setting a zero-centered prior at each
timestep

Eq. 29 has been obtained using the zero-centered
Gaussian prior defined in eq. 22. Except for the first
update, one may wonder why we would use such a dis-
tribution rather than the posterior distribution at the
previous timestep as our prior. The reason is that,
whenever we update the parameters of our model, the
distribution over the gradients changes. If the func-
tion to optimize were truly quadratic, we could ex-
actly quantify the change in gradient using our ap-
proximation of the Hessian. Unfortunately, this is not



A fast natural Newton method

the case. Thus, while acknowledging that using the
prior of eq. 22 at every timestep is a suboptimal strat-
egy, we believe there is still something to be gained
while retaining the simplicity of the algorithm.

3.2. Exponentially moving covariance matrix

Since efficiency is our main goal, we need a fast way
to update the covariance matrix of the data points
which progressively “forgets” about older data. For
that purpose, we shall use exponentially moving mean
and covariance, namely:

γn =
n∑

i=1

γn−i (31)

µn =

∑n
i=1 γ

n−idi
γn

(32)

=
(γn − 1)µn−1 + dn

γn
(33)

D̂n =

∑n
i=1 γ

n−i(di − µn)(di − µn)
T

γn −
∑n

i=1 γ−2i

γn

(34)

where di is the Newton direction obtained at timestep i
and γ is the discount factor. The closer γ is to 1, the
longer examples will influence the means and covari-
ance.

Introducing Un, the uncentered covariance matrix at
timestep n, we can easily update D̂n using:

Un =

∑n
i=1 γ

−idid
T
i

γn
(35)

=
(γn − 1)Un−1 + dnd

T
n

γn
(36)

D̂n = Un − µnµ
T
n (37)

Therefore, to update D̂n, one first computes the
new γn, then computes µn and Un which will be com-
bined to yield Cn.

If the number of parameters is large, computing a full
covariance matrix would be too costly. Le Roux et al.
(2008) propose an efficient way of computing a low-
rank approximation of the covariance matrix. Though
their method is for an uncentered covariance matrix, it
can be modified to accommodate centered covariance
matrices.

3.3. Frequency of updates

The covariance matrix of the gradients changes very
slowly. Therefore, one does not need to update it as
often as the Hessian approximation. In the SGD-QN
algorithm, the authors introduce a counter skip which

specifies how many gradient updates are done before
the approximation to the Hessian is updated. We in-
troduce an additional variable skipC which specifies
how many Hessian approximation updates are done
before updating the covariance approximation. The
total number of gradient updates between two covari-
ance approximation updates is therefore skip · skipC .

Experiments using the validation set showed that us-
ing values of skipC lower than 8 did not yield any
improvement while increasing the cost of each update.
We therefore used this value in all our experiments.
This allows us to use the information contained in the
covariance with very little computation overhead.

3.4. Limiting the influence of the covariance

Eq. 29 tells us that the direction to follow is[
I +

D̂

nσ2

]−1

d̂. (38)

The only unknown in this formula is σ2, which is the
variance of our Gaussian prior on θ − θ∗. To avoid
having to set this quantity by hand at every time step,
we will devise a heuristic to find a sensible value of
σ2. While this will lack the purity of a full Bayesian
treatment, it will allow us to reduce the number of
parameters to be set by hand, which we think is a
valuable feature of any gradient descent algorithm.

If we knew the distance from our position in parameter
space, θ, to the optimal solution, θ∗, then the optimal
value for σ2 would be ∥θ− θ∗∥2. Of course, this infor-
mation is not available to us. However, if the function
to optimize were truly quadratic, the squared norm of
the Newton direction would be exactly ∥θ − θ∗∥2. We
shall therefore replace σ2 by the squared norm of the
last computed Newton direction. Since this estimate
may be too noisy, we will replace it by the squared
norm of the running average of the Newton directions,
i.e. ∥µn∥2.

However, even then, we may still get undesirable vari-
ations. We shall therefore adopt a conservative strat-
egy: we will set an upper bound on the correction to
the Newton method brought by eq. 38. More precisely,

we will bound the eigenvalues of D̂
n∥µn∥2 by a positive

number B. The parameter update then becomes

θn − θn−1 = −
[
I +min

(
B,

Cd

n∥µn∥2

)]−1

H−1gn

(39)
where B is a hyperparameter and min(B,M) is defined
for symmetric matricesM with eigenvectors u1, . . . , un



A fast natural Newton method

and eigenvalues λ1, . . . , λn as

min(B,M) =

n∑
i=1

min(B, λi)uiu
T
i , (40)

(we bound each eigenvalue of M by B). If we set
B = 0, we recover the standard Newton method. This
modification transforms the algorithm in a conserva-
tive way, trading off potential gains brought by the
covariance matrix with guarantees that the parame-
ter update will not differ too much from the Newton
direction.

The pseudo-code for the algorithm is shown in Algo-
rithm 1.

4. Experiments

4.1. Algorithms chosen

Our algorithm requires two independent components:

1. an approximation to the Newton method, to get
the Newton directions

2. an approximation to the natural gradient to be
applied to the Newton directions.

In these experiments, the former was chosen to be
SGD-QN (Bordes et al., 2009), since it recently won
the Wild Track competition at the Pascal Large Scale
Learning Challenge. Since this method uses a diago-
nal approximation to the Hessian, we decided to use
a diagonal approximation to the covariance matrix.
Though this was not required and we could have used
a low-rank covariance matrix, using a diagonal ap-
proximation shows the improvements over the original
method one can obtain with little extra effort.

4.2. Experimental setup

Experiments have been led on datasets of the Pas-
cal Large Scale Learning Challenge, namely Alpha,
Gamma, Delta, Epsilon, Zeta and Face datasets. La-
bels were only available for the training examples of
the challenge. We therefore split these examples into
several sets:

• the first 100K (1M for the Face dataset) examples
constituted our training set

• the last 100K (1M for the Face dataset) examples
constituted our test set

The last 50K (500K for the Face dataset) examples of
the training set were used as validation examples to
tune the bound B defined in eq. 39. The same value
of B was used for TONGA.

Algorithm 1 Simplified pseudo-code of the Natural-
Newton algorithm

Require: : skip (number of gradient updates between
Hessian updates)

Require: : skipC (number of Hessian updates be-
tween covariance updates)

Require: : θ0 (the original set of parameters)
Require: : γ (the discount factor for the moving co-

variance)
Require: : T (the total number of epochs)
Require: : t0, λ (the weight decay)
1: t = 0, count = skip, countC = skipC
2: γ0 = 0, ζ0 = 0
3: H = λ−1 I, D = H
4: µ1 = 0 (the running mean vector ), C1 = 0 (the

running covariance matrix)
5: while t ̸= T do

6: gt ← ∂L(θt,xt,yt)
∂θt

7: θt+1 ← θt − (t+ t0)
−1Dgt

8: if count == 0 then
9: count ← skip

10: Update H, the approximation to the Hessian,
according to the SGD-QN algorithm

11: if countC == 0 then
12: countC ← skipC
13: γt+1 ← γt ∗ γ + 1
14: ζt+1 ← ζt ∗ γ2 + 1

15: µt+1 ← (γt+1−1)µt+dt

γt+1

16: Ct+1 ← (γt+1−1)Ct+dtd
T
t

γt+1

17: N ← 1− ζt+1

γ2
t+1

18: D =
(
I +

Ct+1−µt+1µ
T
t+1

N ·∥µt+1∥2

)−1

19: else
20: countC ← countC - 1
21: end if
22: else
23: count ← count - 1
24: end if
25: end while

4.3. Parameter tuning

In all the experiments, γ has been set to 0.995, fol-
lowing (Le Roux et al., 2008). To test the sensitivity
of the algorithm to this parameter, we tried other val-
ues (0.999, 0.992, 0.99 and 0.9) without noticing any
significant difference in validation errors.

We optimized the bound on the covariance (§3.4) on
the validation set. The best value was chosen for the
test set, but we found that a value of 2 yielded near-
optimal results on all datasets, the difference between
B = 1, B = 2 and B = 5 being minimal, as shown in



A fast natural Newton method

figure 1 in the case of the Alpha dataset.

4.4. Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Training time (sec)

 

 
B = 1
B = 2
B = 5
B = 10

Figure 1. Validation error vs. time on the Alpha dataset,
for various values of B.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

 

 
SGD
TONGA
SGD−QN
Natural−Newton

Figure 2. Test error vs. time on the Alpha dataset

Several conclusions may be drawn from these experi-
ments:

• Natural-Newton never performs worse than SGD-
QN and always better than TONGA. Using a
large value of skipC ensures that the overhead of
using the covariance matrix is negligible

• on the Alpha dataset, using the information con-
tained in the covariance resulted in significantly
faster convergence, with or without second-order
information

• on the Epsilon, Zeta and Face datasets, using the
covariance information stabilizes the results while

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

 

 
SGD
TONGA
SGD−QN
Natural−Newton

Figure 3. Test error vs. time on the Gamma dataset

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

 

 
SGD
TONGA
SGD−QN
Natural−Newton

Figure 4. Test error vs. time on the Delta dataset

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

 

 
SGD
TONGA
SGD−QN
Natural−Newton

Figure 5. Test error vs. time on the Epsilon dataset



A fast natural Newton method

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

 

 
SGD
TONGA
SGD−QN
Natural−Newton

Figure 6. Test error vs. time on the Zeta dataset

0 0.5 1 1.5 2 2.5 3

0.28

0.3

0.32

0.34

0.36

0.38

0.4

 

 
SGD−QN
Natural−Newton

Figure 7. Test error vs. time on the Face dataset

yielding the same convergence speed. This is in
accordance with the use of the covariance, which
reduces the influence of directions where gradients
vary wildly

• on the Gamma and the Delta dataset, the covari-
ance information helped a lot when the Hessian
was not used, yielding no improvement otherwise.

5. Conclusion

A lot of effort has been put into designing efficient on-
line optimization algorithms, with great results. Most
of these algorithms rely on some approximation to the
Hessian or to the covariance matrix of the gradients.
While the latter is commonly believed to be an approx-
imation of the former, we proved that they encode very
different kinds of information. Based on this, we pro-
posed a way of combining information contained in the

Hessian and in the covariance matrix of the gradients.

Experiments showed that, on most datasets, our
method offered either faster convergence or increased
robustness compared to the original algorithm. Fur-
thermore, our algorithm never performed worse than
the Newton algorithm is was built upon.

Moreover, our algorithm is able to use any existing
second-order algorithm as base method. Therefore,
while we used SGD-QN for our experiments, one may
pick any algorithm best suited for a given task.

We hope to have shown two things. Firstly, the covari-
ance matrix of the gradients is usefully viewed, not as
an approximation to the Hessian, but as a source of
additional information about the problem, for typical
“machine learning” objective functions. Secondly, it is
possible with little extra effort to use this information
in addition to that provided by the Hessian matrix,
yielding faster or more robust convergence.

Despite all these successes, we believe that our algo-
rithm may be improved in several ways, whether it
is by retaining some of the information contained in
the posterior distribution between timesteps or in the
selection of the parameter σ2.

References

Amari, Shun-ichi. Natural gradient works efficiently in
learning. Neural Computation, 10(2):251–276, 1998.

Bordes, Antoine, Bottou, Léon, and Gallinari, Patrick.
SGD-QN: Careful quasi-newton stochastic gradient
descent. Journal of Machine Learning Research, 10:
1737–1754, July 2009.

Bottou, Léon and Bousquet, Olivier. The tradeoffs
of large scale learning. In Platt, J.C., Koller, D.,
Singer, Y., and Roweis, S. (eds.), Advances in Neu-
ral Information Processing Systems, volume 20, pp.
161–168. 2008.

Le Roux, Nicolas, Manzagol, Pierre-Antoine, and Ben-
gio, Yoshua. Topmoumoute online natural gradient
algorithm. In Advances in Neural Information Pro-
cessing Systems 20, pp. 849–856. MIT Press, Cam-
bridge, MA, 2008.

Nocedal, J. and Wright, S. J. Numerical Optimization,
Second Edition. Springer Verlag, New York, 2006.

Schraudolph, Nicol N., Yu, Jin, and Günter, Simon.
A stochastic quasi-newton method for online con-
vex optimization. In Proceedings of AISTATS 2007,
Puerto Rico. 2007.


