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Abstract

The principle of maximum entropy provides
a powerful framework for statistical models
of joint, conditional, and marginal distribu-
tions. However, there are many important
distributions with elements of interaction and
feedback where its applicability has not been
established. This work presents the principle
of maximum causal entropy—an approach
based on causally conditioned probabilities
that can appropriately model the availabil-
ity and influence of sequentially revealed side
information. Using this principle, we de-
rive models for sequential data with revealed
information, interaction, and feedback, and
demonstrate their applicability for statisti-
cally framing inverse optimal control and de-
cision prediction tasks.

1. Introduction

The principle of maximum entropy (Jaynes, 1957)
serves a foundational role in the theory and practice
of constructing statistical models, with applicability
to statistical mechanics, natural language processing,
econometrics, and ecology (Dud́ık & Schapire, 2006).
Conditional extensions of the principle that consider a
sequence of side information (i.e., additional variables
that are not predicted, but are related to variables
that are predicted), and specifically conditional ran-
dom fields (Lafferty et al., 2001), have been applied
with remarkable success in recognition, segmentation,
and classification tasks, and are a preferred tool in
natural language processing, and activity recognition.

This work extends the maximum entropy approach
to conditional probability distributions in settings
characterized by interaction with stochastic processes
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where side information is dynamic, i.e., revealed over
time. For example, consider an agent interacting with
a stochastic environment. The agent may have a model
for the distribution of future states given its current
state and possible actions, but, due to stochasticity,
it does not know what value a future state will take
until after selecting the sequence of actions temporally
preceding it. Thus, future states have no causal influ-
ence over earlier actions. Conditional maximum en-
tropy approaches are ill-suited for this setting as they
assume all side information is available a priori.

Building on the recent advance of the Marko-Massey
theory of directed information (Massey, 1990), we
present the principle of maximum causal entropy
(MaxCausalEnt). It prescribes a probability distribu-
tion by maximizing the entropy of a sequence of vari-
ables conditioned on the side information available at
each time step. This contribution extends the max-
imum entropy framework for statistical modeling to
processes with information revelation, feedback, and
interaction. We motivate and apply this approach on
decision prediction tasks, where actions stochastically
influence revealed side information (the state of the
world) with examples from inverse optimal control,
multi-player dynamic games, and interaction with par-
tially observable systems.

Though we focus on the connection to decision making
and control in this work, it is important to note that
the principle of maximum causal entropy is not specific
to those domains. It is a general approach that is ap-
plicable to any sequential data where future side infor-
mation’s assumed lack of causal influence over earlier
variables is reasonable.

2. Maximum Causal Entropy

Motivated by the task of modeling decisions with ele-
ments of sequential interaction, we introduce the prin-
ciple of maximum causal entropy, describe its core the-
oretical properties, and provide efficient algorithms for
inference and learning.
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2.1. Preliminaries

When faced with an ill-posed problem, the principle
of maximum entropy (Jaynes, 1957) prescribes the use
of “the least committed” probability distribution that
is consistent with known problem constraints. This
criterion is formally measured by Shannon’s informa-
tion entropy, EY [− logP (Y )], and many of the funda-
mental building blocks of statistics, including Gaussian
and Markov random field distributions, maximize this
entropy subject to moment constraints.

In the presence of side information, X, that we do not
desire to model, the standard prescription is to max-
imize the conditional entropy, EY,X[− logP (Y|X)],
yielding, for example, the conditional random field
(CRF) (Lafferty et al., 2001). Though our intention
is to similarly model conditional probability distribu-
tions, CRFs assume a knowledge of future side in-
formation, Xt+1:T , for each Yt that does not match
settings with dynamically revealed information. De-
spite not being originally formulated for such uses,
marginalizing over the CRF’s joint distribution is pos-
sible:

P (Yt|X1:t,Y1:t−1) ∝ (1)∑
Xt+1:T ,Yt+1:T

eθ
>F (X,Y)P (Xt+1:T |X1:t,Y1:t−1),

in what we refer to as a latent CRF model. However,
we argue that entropy-based approaches like this that
do not address the causal influence of side information
are inadequate for interactive settings.

In the context of this paper, we focus on modeling
the sequential actions of an agent interacting with a
stochastic environment. Thus, we replace the pre-
dicted variables, Y, and side information, X, with se-
quences of action variables, A, and state variables, S.

2.2. Directed Information and Causal Entropy

The causally conditioned probability (Kramer, 1998)
from the Marko-Massey theory of directed informa-
tion (Massey, 1990) is a natural extension of the con-
ditional probability, P (A|S), to the situation where
each At is conditioned on only a portion of the S vari-
ables, S1:t, rather than the entirety, S1:T . Following
the previously developed notation (Kramer, 1998), the
probability of A causally conditioned on S is

P (AT ||ST ) ,
T∏
t=1

P (At|S1:t,A1:t−1). (2)

The subtle, but significant difference from conditional
probability, P (A|S) =

∏T
t=1 P (At|S1:T ,A1:t−1),

serves as the underlying basis for our approach.

Causal entropy (Kramer, 1998; Permuter et al., 2008),

H(AT ||ST ) , EA,S[− logP (AT ||ST )] (3)

=
T∑
t=1

H(At|S1:t,A1:t−1),

measures the uncertainty present in the causally con-
ditioned distribution. It upper bounds the condi-
tional entropy; intuitively this reflects the fact that
additionally conditioning on information from the fu-
ture (i.e., acausally) only decreases uncertainty. The
causal entropy has previously found applicability in
the analysis of communication channels with feedback
(Kramer, 1998), decentralized control (Tatikonda &
Mitter, 2004), sequential investment and online com-
pression with side information (Permuter et al., 2008).

Using this notation, any joint distribution can be
expressed as P (A,S) = P (AT ||ST )P (ST ||AT−1).
Our approach estimates a policy—the factors,
P (At|S1:t,A1:t−1), of P (AT ||ST )—based on a pro-
vided (explicitly or implicitly) distribution of side in-
formation P (ST ||AT−1) =

∏
t P (St|A1:t−1,S1:t−1).

2.3. Maximum Causal Entropy Optimization

With the causal entropy (Equation 3) as our objec-
tive function, we now pose and solve the maximum
causal entropy optimization problem. We constrain
our distribution to match expected feature functions,
F(S,A) with empirical expectations of those same
functions, ẼS,A[F(S,A)], yielding the following opti-
mization problem:

argmax
{P (At|S1:t,A1:t−1)}

H(AT ||ST ) (4)

such that: ES,A[F(S,A)] = ẼS,A[F(S,A)]

and ∀S1:t,A1:t−1

∑
At

P (At|S1:t,A1:t−1) = 1,

and given: P (ST ||AT−1).

We assume for explanatory simplicity that fea-
ture functions factor as: F(S,A) =

∑
t F (St, At),

and that state dynamics are first-order Markovian,
P (ST ||AT−1) =

∏
t P (St|At−1, St−1).

Theorem 1. The distribution satisfying the maximum
causal entropy constrained optimization (Equation 4)
has a form defined recursively as:

Pθ(At|St) =
ZAt|St,θ
ZSt,θ

(5)

logZAt|St,θ = θ>F (St, At) +
X
St+1

P (St+1|St, At) logZSt+1,θ

logZSt,θ = log
X
At

ZAt|St,θ = softmax
At

logZAt|St,θ
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where softmaxx f(x) , log
∑
x e

f(x).

Proof (sketch). The (negated) primal objective func-
tion (Equation 4) is convex in the variables P (A||S)
and subject to linear constraints on feature function
expectation matching, valid probability distributions,
and the non-causal influence of future side informa-
tion. Differentiating the Lagrangian of the maximum
causal entropy optimization (Equation 4), and equat-
ing to zero, we obtain the general form:

Pθ(At|St) ∝ exp
n
θ>ES,A[F(S,A)|St, At]

−
X
τ>t

ES,A[logPθ(Aτ |Sτ )|St, At]
o
. (6)

Substituting the more operational recurrence of Equa-
tion 5 into Equation 6 verifies the theorem.

We note that Theorem 1 relies on strong duality to
identify the form of this probability distribution; the
sharp version of Slater’s condition (Boyd & Vanden-
berghe, 2004) using the existence of a feasible point in
the relative interior ensures this but requires that (1)
prescribed feature constraints are achievable, and (2)
the distribution has full support. The first naturally
follows if both model and empirical expectations are
taken with respect to the provided model of side infor-
mation, P (ST ||AT−1). For technical simplicity in this
work, we will further assume full support for the mod-
eled distribution, although relatively simple modifica-
tions (e.g., constraints hold within a small deviation
ε) ensure the correctness of this form in all cases.
Theorem 2. The gradient of the dual with respect to
θ is

(
ẼS,A[F(S,A)]−ES,A[F(S,A)]

)
, which is the dif-

ference between the empirical feature vector given the
complete policy, {P (At|St)}, and the expected feature
vector under the probabilistic model.

In many instances, the statistics of interest(
ẼS,A[F(S,A)]) for the gradient (Theorem 2)

are only known approximately as they are obtained
from small sample sets. We note that this uncertainty
can be rigorously addressed by extending the duality
analysis of Dud́ık & Schapire (2006), leading to pa-
rameter regularization that may be naturally adopted
in the causal setting as well.
Theorem 3. The maximum causal entropy distribu-
tion minimizes the worst case prediction log-loss, i.e.,

inf
P (A||S)

sup
P̃ (AT ||ST )

∑
A,S

P̃ (A,S) logP (AT ||ST ),

given P̃ (A,S) = P̃ (AT ||ST )P (ST ||AT−1) and feature
expectations EP̃ (S,A)[F(S,A)] when S is sequentially
revealed from a known distribution and actions are se-
quentially predicted using only previously revealed vari-
ables.

Theorem 3 follows naturally from Grünwald & Dawid
(2003) and extends their “robust Bayes” results to the
interactive setting as one justification for the maxi-
mum causal entropy approach. The theorem can be
understood by viewing maximum causal entropy as a
maximin game where nature chooses a distribution to
maximize a predictor’s perplexity while the predictor
tries to minimize it. By duality, the minimax view of
the theorem is equivalent. This strong result is not
shared when maximizing alternate entropy measures
(e.g., conditional or joint entropy) and marginalizing
out future side information (as in Equation 1).

2.4. Inference and Learning Algorithms

The procedure for inferring decision probabilities in
the MaxCausalEnt model based on Theorem 1 is illus-
trated by Algorithm 1.

Algorithm 1 MaxCausalEnt Inference Procedure
1: for t = T to 1 do
2: if t = T then
3: ∀At,St logZAt|St,θ ← θ>F (At, St)
4: else
5: ∀At,St logZAt|St,θ ← θ>F (At, St) +

ESt+1 [logZSt+1,θ|St, At]
6: end if
7: ∀St logZSt,θ ← softmaxAt logZAt|St

8: ∀At,StP (At|St)←
ZAt|St,θ
ZSt,θ

9: end for

Using the resulting action distributions and empirical
feature functions, Ẽ(F), the gradient is obtained by
employing Algorithm 2.

Algorithm 2 MaxCausalEnt Gradient Calculation
1: for t = 1 to T do
2: if t = 1 then
3: ∀St,AtDSt,At ← P (St)P (At|St)
4: else
5: ∀St,AtDSt,At ←P

St−1,At−1
DSt−1,At−1 P (At|St−1, At−1)P (At|St)

6: end if
7: E[F ]← E[F ] +

P
St,At

DSt,AtF (At, St)
8: end for
9: ∇θ logP (Ã||S̃)← Ẽ[F ]− E[F ]

As a consequence of convexity, standard gradient-
based optimization techniques converge to the max-
imum likelihood estimate of feature weights, θ̂.

2.5. Graphical Representation

We extend the influence diagram graphical framework
(Howard & Matheson, 1984) as a convenient repre-
sentation for the MaxCausalEnt variables and their
relationships. The structural elements of the repre-
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Table 1. Graphical representation structural elements.

Type Symbol Parent relationship

Decision Specifies observed vari-
ables when A is selected

Uncertainty Specifies conditional
probability, P (S|par(S))

Utility Specifies feature func-
tions, θ>F (par(U))→ <

sentation are outlined in Table 1. We constrain the
graph to possess perfect recall1. Every graphical rep-
resentation can then be reduced to the earlier causal
entropy form (Equation 4) by marginalizing over each
decision’s non-parent uncertainty nodes to obtain side
information transition dynamics and expected feature
functions. Whereas in traditional influence diagrams,
the parent-dependent values for decisions nodes that
provide the highest expected utility are inferred, in
the MaxCausalEnt setting, utilities should be inter-
preted as potentials for inferring a probability distri-
bution over decisions.

3. Applications

We now present a series of applications with increasing
complexity of interaction: (1) control with stochastic
dynamics; (2) multiple agent interaction; and (3) in-
teraction with a partially observable system.

3.1. Inverse Optimal Stochastic Control

Optimal control frameworks, such as Markov deci-
sion processes (MDPs) and linear-quadratic regula-
tors (LQRs), provide rich representations of interac-
tions with stochastic systems. Inverse optimal control
(IOC) is the problem of recovering a cost function that
makes a particular controller or policy (nearly) opti-
mal (Kalman, 1964; Boyd et al., 1994). Recent work
has demonstrated that IOC is a powerful technique
for modeling the decision-making behavior of intelli-
gent agents in problems as diverse as robotics (Ratliff
et al., 2009), personal navigation (Ziebart et al., 2008),
and cognitive science (Ullman et al., 2009).

Many IOC approaches (Abbeel & Ng, 2004; Ziebart
et al., 2008) consider cost functions linear in a set
of features and attempt to find behaviors that induce
the same feature counts as the policy to be mimicked
(E[
∑
t fSt ] = Ẽ[

∑
t fSt ]); by linearity such behaviors

achieve the same expected value. For settings with
vectors of continuous states and actions, matching

1Variables observed during previous decisions are either
observed in future decisions or irrelevant (i.e., d-separated
from future value nodes by observed variables).

quadratic moments, e.g., E[
∑
t sts

>
t ] = Ẽ[

∑
t st, s

>
t ],

guarantees equivalent performance under quadratic
cost functions, e.g.,

∑
t s
>
t Qst for unknown Q.

Unfortunately, matching feature counts is fundamen-
tally ill-posed—usually no truly optimal policy will
achieve those feature counts, but many stochastic poli-
cies (and policy mixtures) will satisfy the constraint.
Ziebart et al. (2008) resolve this ambiguity by us-
ing the classical maximum entropy criteria to select
a single policy from all the distributions over deci-
sions that match feature counts. However, for inverse
optimal stochastic control (IOSC)—characterized by
stochastic state dynamics—their proposed approach is
to marginalize over future state variables (Equation 1).
For IOSC, the maximum causal entropy approach pro-
vides prediction guarantees (Theorem 3) and a soft-
ened interpretation of optimal decision theory, while
the latent CRF approach provides neither.

3.1.1. MDP and LQR Formulations

In the IOSC problem, side information (states) and
decisions (actions) are inter-dependent with the dis-
tribution of side information provided by the known
dynamics, P (ST ||AT−1) =

∏
t P (St|St−1, At−1). We

employ the MaxCausalEnt framework to model this
setting, as shown in Figure 1.

Figure 1. The graphical representation for MaxCausalEnt
inverse optimal control. For MDPs: Ut(St, At) = θ>fSt ,
and for LQRs: Ut(st,at) = s>t Qst + a>t Rat.

Using the action-based cost-to-go (Q) and state-based
value (V ) notation, the inference procedure for MDP
MaxCausalEnt IOC reduces to:

Qsoft
θ (At, St) = ESt+1 [V soft

θ (St+1)|St, At] (7)

V soft
θ (St) = softmax

At
Qsoft
θ (At, St) + θ>fSt ,

and for the continuous, quadratic-reward setting to

Qsoft
θ (at, st) = Est+1 [V soft

θ (st+1)|st,at] + a>t Rat (8)

V soft
θ (st) = softmax

at
Qsoft
θ (at, st) + s>t Qst.

Note that by replacing the softmax 2 function with the
maximum, this algorithm becomes equivalent to the

2The continuous version of the softened maximum is
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(stochastic) value iteration algorithm (Bellman, 1957)
for finding the optimal control policy. The relative
magnitudes of the action values in the MaxCausalEnt
model control the amount of stochasticity in the re-
sulting action policy, πθ(a|s) ∝ eQ

soft
θ (a,s).

For the special case where dynamics are linear
functions with Gaussian noise, the quadratic Max-
CausalEnt model permits a closed-form solution and,
given dynamics st+1 ∼ N(Ast + Bat,Σ), Equation 8
reduces to:

Qsoft
θ (at, st) =

[
at
st

]> [
B>DB + R A>DB

B>DA A>DA

] [
at
st

]
V soft
θ (st) = s>t (Cs,s +Q−C>a,sC

−1
a,aCa,s)st + const,

where C and D are recursively computed as:
Ca,a = B>DB; Cs,a = C>a,s = B>DA; Cs,s =
A>DA; and D = Cs,s + Q−C>C−1

a,aCa,s.

3.1.2. Inverse Helicopter Control

We demonstrate the MaxCausalEnt approach to IOSC
on the problem of building a controller for a heli-
copter with linearized stochastic dynamics. Existing
approaches to IOSC (Ratliff et al., 2006; Abbeel & Ng,
2004) have both practical and theoretical difficulties
in the presence of imperfect demonstrated behavior,
leading to unstable controllers due to large changes in
cost weights (Abbeel et al., 2007) or poor predictive
accuracy (Ratliff et al., 2006). To test the robust-
ness of our approach, we generated five 100 time step
sub-optimal training trajectories (Figure 2) by nois-
ily sampling actions from an optimal LQR controlled
designed for hovering using the linearized stochastic
helicopter simulator of Abbeel et al. (2007).

Figure 2. Left: An example sub-optimal helicopter trajec-
tory attempting to hover around the origin point. Right:
The average cost under the original cost function of: (1)
demonstrated trajectories; (2) the optimal controller us-
ing the inverse optimal control model; and (3) the optimal
controller using the maximum causal entropy model.

We contrast between the policies obtained from the
maximum margin planning (Ratliff et al., 2006) (la-

defined as: softmaxx f(x) , log
R
x
ef(x) dx.

beled InvOpt in Figure 2) and MaxCausalEnt mod-
els trained using demonstrated trajectories. Using the
true cost function, we measure the cost of trajectories
sampled from the optimal policy under the cost func-
tion learned by each model. The InvOpt model per-
forms poorly because there is no optimal trajectory for
any cost function that matches demonstrated features.
In contrast, by design the MaxCausalEnt model is
guaranteed to match the performance of demonstrated
behavior (Demo) in expectation even if that behavior
is sub-optimal. Additionally, because of the quadratic
cost function, the optimal controller using the Max-
CausalEnt cost function is always at least as good as
the demonstrated behavior on the original, unknown
cost function, and often better, as shown in Figure 2.
In this sense, MaxCausalEnt provides a rigorous ap-
proach to learning a cost function for such stochastic
optimal control problems: it is both predictive and can
guarantee good performance of the learned controller.

3.2. Inverse Dynamic Games

Modeling the interactions of multiple agents is an im-
portant task for uncovering the motives of negotiat-
ing parties, planning a robot’s movement in a crowded
environment, and assessing the perceived roles of in-
teracting agents (Ullman et al., 2009). While game
and decision theory can prescribe equilibria or optimal
policies when the utilities of agents are known, often
the utilities are not known and only observed behavior
is available for modeling tasks. We investigate recov-
ering the agents’ utilities from those observations.

3.2.1. Markov Game Formulation

We consider a Markov game where agents act in se-
quence, taking turns after observing the preceding
agents’ actions and the resulting stochastic outcome
sampled from known state dynamics, P (St+1|At, St).
Agents are assumed to act based on a utility function
that is linear in features associated with each state,
w>i fS and to know the other agents’ utilities and poli-
cies.

Learning a single agent’s MaxCausalEnt policy, πi,
given the others’ policies, π−i, reduces to an IOSC
problem where the entropy of the agent’s actions given
state is maximized while matching state features:

argmax
πi(A|S)

H(A(i)||S(i)) (9)

such that: E[
∑
t

fi(St)] = Ẽ[
∑
t

fi(St)]

and given: π−i(A|S) and P (S||A).

The distribution of side information (i.e., the agent’s
next state, St+N given the agent’s previous state and
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action, St and At, is obtained by marginalizing over
the other agents’ states and actions:

P (St+N |At, St) = ESt+1:t+N−1,At+1:t+N−1

[
P (St+N |St+N−1, At+N−1)

∣∣∣St, At].
Difficulties arise, however, because the policies of
other agents are not known in our setting. Instead,
all of the agents’ utilities and policies are learned
from demonstrated trajectories. Maximizing the joint
causal entropy of all agents’ actions leads either to non-
convexity (multiplicative functions of agent policies in
the feature matching constraints) or an assumption
that agents share a common utility function.

We settle for potentially non-optimal solution policies
by employing a cyclic coordinate descent approach. It
iteratively maximizes the causal entropy of agent i’s
actions subject to constraints:

π̂i ← argmax
πi

Fp(πi|π̂−i),

where Fp is the Lagrangian primal of Equation 9.
However, instead of matching observed feature counts,
which may be infeasible given the estimate of π̂−i, the
expectation of agent i’s features given its empirical
actions under the current estimate of agent policies,
F̃(S,A) = EA,S[

∑
S∈S fS |π̂], is matched.

3.2.2. Pursuit-Evasion Modeling

We consider a generalization of the pursuit-evasion
multi-agent setting (Parsons, 1976) with three agents
operating in a four-by-four grid world (Figure 3). Each
agent has a mobility, mi ∈ [0.2, 1], which corresponds
to the probability of success when attempting to move
in one of the four cardinal directions, and a utility,
wi,j ∈ [−1, 1], for being co-located with each of the
other agents. Unlike traditional pursuer-evader, there
is no “capture” event in this game; agents continue to
act after being co-located. The mobilities of each agent
and a time sequence of their actions and locations are
provided and the task is to predict their future actions.

Figure 3. The pursuit-evasion grid with three agents and
their co-location utilities. Agent X has a mobility of mX

and a utility of wX,Y when co-located with agent Y .

We generate data for this setting using the following
procedure. First, mobilities and co-location utilities
are sampled (uniformly from their domain). Next, op-
timal policies3, πt∗i (A|S), for a range of time horizons
t ∈ {T0, ..., T0 + ∆T}, are computed with complete
knowledge of other agents’ utilities and future policies.
A stochastic policy, π̃i(A|S), is obtained by first sam-
pling a time horizon from P (t) = 1

∆T , and then sam-
pling an action from the optimal policy for that time
horizon. Lastly, starting from random initial locations,
trajectories of length 40 time steps (five for training
and one for testing) are sampled from the policy and
state dynamics for six different parameters. Despite
its simplicity, this setting produces surprisingly rich
behavior. For example, under certain optimal poli-
cies, a first evader will help its pursuer corner a more
desirable second evader so that the first evader will be
spared.
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Latent CRF perplexity

Figure 4. The average per-action perplexities of the latent
CRF model and the MaxCausalEnt model plotted against
each other for three agents from six different pursuit-
evasion settings. The MaxCausalEnt model outperforms
the latent CRF model in the region below the dotted line.

A comparison between the latent CRF model (Equa-
tion 1) trained to maximize data likelihood and the
maximum causal entropy model is shown in Figure 4
using perplexity, 1

T

∑
at,st

logP (at|st), as the evalua-
tion metric of predictive performance. MaxCausalEnt
consistently outperforms the latent CRF model. The
explanation for this is based on the observation that
under the latent CRF model, the action-value of Equa-
tion 7 is instead: Q(at, st) = softmaxst+1(V (st+1) +
logP (st+1|st, at)). This has a disconcerting interpre-
tation that the agent chooses the next state by “pay-
ing” an extra logP (st+1|st, at) penalty to ignore the
true stochasticity of the state transition dynamics, re-
sulting in an unrealistic probability distribution.

3“Ties” in action value lead to uniform distributions
over the corresponding actions.
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3.3. Inverse Diagnostics

Many important interaction tasks involve partial ob-
servability. In medical diagnosis, for example, se-
quences of symptoms, tests, and treatments are used to
identify (and mediate) unknown illnesses. Motivated
by the objective of learning diagnosis policies from ex-
perts, we investigate the inverse diagnostics problem of
modeling interaction with partially observed systems.

3.3.1. Bayes Net Diagnosis Formulation

We consider a set of variables (distributed according
to a known dynamic Bayesian network) that evolve
over time based in part on employed actions, A1:T ,
as shown in Figure 5. Those actions are made with
only partial knowledge of the Bayes net variables, as
relayed through observation variables O1:T . Previous
actions determine what information from the hidden
variables is revealed in the next time step.

Figure 5. The MaxCausalEnt representation of the diag-
nostic problem with an abstract dynamic Bayesian network
represented as BN nodes. Perfect recall edges from all past
observations and actions to future actions are suppressed.

We assume that the utility for the state of the Bayes
net and actions invoked is an unknown linear func-
tion of known feature vectors, θ>fBNt,At . We for-
mulate the modeling problem as a maximum causal
entropy optimization by maximizing the causally
conditioned entropy of actions given observations,
H(AT ||OT ). We marginalize over the latent Bayes
net variables to obtain side information dynamics,
P (Ot+1|Ot, St) = EBN1:t [P (Ot+1|par(Ot+1|O1:t,A1:t]
and expected feature functions, E[ft|O1:t,A1:t] =
EBN1:t [FUt(par(Ut))|O1:t,A1:t] to estimate the full-
history policy, P (At|O1:t,A1:t) using Algorithm 1 and
Algorithm 2.

3.3.2. Vehicle Diagnosis Experiments

We apply our inverse diagnostics approach to the vehi-
cle fault detection Bayesian network (Heckerman et al.,
1994) shown in Figure 6 with fully specified condi-

Figure 6. The vehicle fault detection Bayesian network
with replaceable variables denoted with an asterisk. All
variables are binary (working or not) except Battery Age.

tional probability distributions. Apart from the re-
lationship between Battery Age and Battery (expo-
nentially increasing probability of failure with battery
age), the remaining conditional probability distribu-
tions are deterministic-or’s (i.e., failure in any parent
causes a failure in the child).

A mechanic can either test a component of the vehicle
(revealing its status) or repair a component (making it
and potentially its descendants operational). Replace-
ments and tests are both characterized by three action
features: (1) a cost to the vehicle owner; (2) a profit
for the mechanic; and (3) a time requirement. Ideally
the sequence of mechanic’s actions would minimize the
expected cost to the vehicle owner, but an over-booked
mechanic might instead choose to minimize the total
repair time, and a less ethical mechanic might seek to
optimize personal profit.

To generate a dataset of observations and replace-
ments, a stochastic policy is obtained by adding Gaus-
sian noise, εs,a, to each action’s future expected value,
Q∗(s, a), under the optimal policy for a fixed set of
feature weights and the highest noisy-valued action,
Q∗(s, a) + εs,a, is selected at each time step. Different
vehicle failure samples are generated from the Bayesian
network conditioned on the vehicle’s engine failing to
start, and the stochastic policy is sampled until the
vehicle is operational.

In Figure 7, we evaluate the prediction error rate and
perplexity of our model and a Markov model that ig-
nores the underlying mechanisms for decision making
and simply predicts behavior in proportion to the fre-
quency it has previously been observed (with small
pseudo-count priors). The MaxCausalEnt approach
consistently outperforms the Markov model even with
an order of magnitude less training data. The classifi-
cation error rate quickly reaches the limit implied by
the stochasticity of the data generation process.
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Figure 7. Error rate and perplexity of the MaxCausalEnt
model and Markov model for diagnosis action prediction
as training set size (log-scale) increases.

4. Conclusion and Future Work

We extended the principle of maximum entropy to set-
tings with sequentially revealed information in this
work. We demonstrated the applicability of the re-
sulting principle of maximum causal entropy for learn-
ing policies in stochastic control, multi-agent interac-
tion, and partially observable settings. In addition
to further investigating modeling applications, our fu-
ture work will investigate the applicability of Max-
CausalEnt on non-modeling tasks in dynamics set-
tings. For instance, we note that the proposed princi-
ple provides a natural criteria for efficiently identifying
a correlated equilibrium in dynamic Markov games,
generalizing the approach to normal-form games of Or-
tiz et al. (2007).
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