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Abstract

We consider a sequential decision prob-
lem where the rewards are generated by a
piecewise-stationary distribution. However,
the different reward distributions are un-
known and may change at unknown instants.
Our approach uses a limited number of side
observations on past rewards, but does not
require prior knowledge of the frequency of
changes. In spite of the adversarial nature
of the reward process, we provide an algo-
rithm whose regret, with respect to the base-
line with perfect knowledge of the distribu-
tions and the changes, is O(k log(T )), where
k is the number of changes up to time T . This
is in contrast to the case where side observa-
tions are not available, and where the regret
is at least Ω(

√
T ).

1. Introduction

In some learning scenarios, the agent is confronted
with an adversarial opponent that can be very gen-
eral and difficult to model, and is therefore modelled
as an arbitrary non-stochastic process. In other sce-
narios, the opponent is stochastic, which may be char-
acterized and adapted to. What about opponents that
fall between these two extremes? An instance of the
adversarial scenario is the expert problem (Littlestone
& Warmuth, 1994), where the agent observes sequen-
tially the performance of a number of experts, and
(choosing one expert at each time step) tries to match
the performance of the best expert in retrospect. An
instance of the stochastic scenario is the multi-armed
bandit problem (Lai & Robbins, 1985), where each of
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n arms has a fixed reward distribution, and where the
agent tries to obtain the performance of the best arm
by picking and observing one arm each time step—
without observing the reward of any other arm.

We consider a model that combines the bandit and
expert models, and shall refer to the arms of the ban-
dit and the experts interchangeably. The reward pro-
cess of the arms is non-stationary on the whole, but
stationary on intervals. This piecewise-stationary re-
ward process is similar to that of the non-stationary
bandit problem of (Hartland et al., 2006; Garivier &
Moulines, 2008), or that of the multiple change-point
detection problem of (Akakpo, 2008).

In our variant of the non-stationary bandit problem,
the agent has the benefit of querying and observing
some of the past outcomes of arms that have not
been picked. This is the same benefit available to the
agent in the expert problem (cf. Herbster & Warmuth,
1998). The following examples motivate our model.

Example 1.1 (Investment options). Consider the
problem of choosing every day one of n investment
options, say mutual funds. Our model assumes that
the outcomes of these investments undergo changes
reflecting changes in market conditions. Otherwise,
the outcomes remains stationary over the periods be-
tween two changes, e.g., they follow bearish or bullish
trends. Suppose that the outcomes of the previous
day’s investment options are revealed today, e.g., in
the newspaper. Suppose that observing the outcome
of each option requires a query (looking up a price
history), which incur a querying cost. By limiting the
number of queries allowed at each step, we can model
the trade-off between the cost of observations and the
regret due to insufficient observations.

Example 1.2 (Dynamic pricing with feedback). As
a second example, we consider a vendor whose task
is to sell commodity X. Potential customers arrive se-
quentially, one after the other, and the demand for
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commodity X (for various prices) is modelled as a sta-
tionary process that may nonetheless change abruptly
at unknown instants. To each customer, the vendor of-
fers one of n possible prices. If the customer accepts,
a corresponding profit is made. Bargaining is not an
option, but after each transaction, the vendor has the
leisure to ask the customer is the outcome would have
been different had a different price been offered (e.g.,
through a short survey). A partial goal is to achieve as
much profit as if the distribution of the demand were
known at all times (even though unknown changes oc-
cur at unknown instants). A second goal is to mini-
mize the cost associated with conducting surveys for
feedback. A similar problem of dynamic pricing with
partial-monitoring is also described in (Cesa-Bianchi
& Lugosi, 2006).

We present the setting in Section 2, followed by a sur-
vey of related works in Section 3. We present a solution
and its guarantee in Section 4. In Section 5, we com-
pare our solution with other solutions via simulation.
In Section 6, we conclude with a discussion.

2. Setting

We consider the following sequential decision prob-
lem. Let {A1, . . . , An} denote the n arms of a multi-
armed bandit—or n experts of an online learning prob-
lem. Let b1, b2, . . . be a sequence of reward vectors
in R

n. The element bt(i) of bt, for i = 1, . . . , n and
t = 1, 2, . . ., represents the reward associated with the
i-th arm Ai at time t. With an abuse of notation, we
shall write bt(Ai) interchangeably with bt(i). We as-
sume that the rewards take values in the unit interval
[0, 1], i.e., bt(i) ∈ [0, 1] for all i and t.

2.1. Reward Process

In our model, the source of rewards is piecewise-
stationary: i.e., it changes its distribution arbitrarily
and at arbitrary time instants, but otherwise remains
stationary. The reward process b1, b2, . . . is an inde-
pendent sequence of random variables that undergoes
abrupt changes in distribution at unknown time in-
stants ν1, ν2, . . ., which are called change-points. By
convention, we let ν1 = 1. Let ft denote the dis-
tribution (probability density function) of bt. Hence,
bν1 , . . . , bν2−1 are i.i.d. with common distribution fν1 ,
as is the case for stochastic learning problems (cf. Lai
& Robbins, 1985). Likewise, bνj

, bνj+1, . . . , bνj+1−1 are
i.i.d. with distribution fνj

, for j = 1, 2, . . .. The inter-
vals are illustrated as follows:

b1, b2, . . . , bν2−1︸ ︷︷ ︸
distribution fν1

, bν2 , . . . , bν3−1︸ ︷︷ ︸
distribution fν2

, . . . , bνj
, . . . , bνj+1−1︸ ︷︷ ︸

distribution fνj

. . . .

Similarly to adversarial learning problems (cf. (Cesa-
Bianchi & Lugosi, 2006)), both the change-points
ν1, ν2, . . . and the distributions fν1 , fν2 , . . . are un-
known. We can think of an opponent deciding the
time instants (and frequency) of the changes, as well
as the distribution after each change.

Remark 1. It is important that the changes occur at
arbitrary instants. Otherwise, we only need to reset
an algorithm for the multi-armed bandit problem at
the appropriate instants.

The model of piecewise-stationary rewards combines
two important models. If there are no changes, then we
recover the stochastic source of the multi-armed bandit
problem. If there is no constraint on the number of
changes, we obtain the source of rewards adopted by
the adversarial model of prediction with expert advice.
We consider the interesting case where the frequency
of changes is between these two extremes, i.e., where
the number of change-points

k(T ) ,

T−1∑

t=1

1[ft 6=ft+1]

up to time T increases with T . To simplify notation,
we shall simply write k in place of k(T ).

2.2. Decision-maker

At each time step t > 1, the agent picks an
arm at ∈ {A1, . . . , An} and makes ℓ (where 1 ≤
ℓ ≤ n) observations on the individual arm-rewards
bt−1(1), . . . , bt−1(n). This is captured in the following
assumption.

Assumption 2.1 (Partial observation). At time 1,
the agent chooses an action a1 and an ℓ-subset S1 of
the arms {A1, . . . , An}. At every time step t > 1, the
agent chooses (deterministically) an ℓ-subset St and
takes an action at that is a function of the reward
observations

{bj(i) | j = 1, . . . , t − 1, Ai ∈ Sj}.

Partial observation allows us to capture querying costs
associated with observations, and to quantify the total
query budget.

2.3. Notion of Regret

At each time instant t, the agent chooses and activates
an arm at ∈ {A1, . . . , An} and receives the correspond-
ing reward bt(at). Let βt denote the mean of the re-
ward vector bt. The agent’s baseline—or objective—is
the reward accumulated by picking at each instant t
an arm with the maximal expected reward. Letting k
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denote the number of changes in reward distribution
up to time T , the baseline is

T∑

t=1

max
i=1,...,n

βt(i) = max
σ1,...,σT : k changes

T∑

t=1

E[bt(σt)],

where the maximum is taken over sequences of arms
with only as many changes as change-points in the
reward sequence b1, . . . , bT , i.e., over the set

{σ1, . . . , σT | σνj
= . . . = σνj+1−1 for j = 1, . . . , k}.

Despite the appearance, this objective is reasonable
when the number of changes k is small; it is also
the same objective as in the classical stochastic multi-
armed bandit problems. Hence, for a given reward
process b1, b2, . . ., we define the expected regret of the
agent at time T as

RT ,

T∑

t=1

max
i=1,...,n

βt(i) −
T∑

t=1

E[bt(at)], (1)

where the expectation E is taken with respect to the
sequence b1, b2, . . ..

3. Related Works

In this section, we survey results concerning related
models. The different models are distinguished by the
source of the reward process, the observability of the
rewards, and the baseline for the notion of regret.

3.1. Stochastic Multi-armed Bandit

In stochastic multi-armed bandit problems (Lai &
Robbins, 1985; Auer et al., 2002a), the reward se-
quence b1, b2, . . . is a sequence of i.i.d. random vec-
tors from a common unknown distribution β1 = β2 =
. . .. The reward observations are limited to rewards
b1(a1), b2(a2), . . . corresponding to the arms chosen by
the agent. This invites the agent to trade-off explor-
ing the different arms to estimate their distributions
and exploiting the arms with the highest empirical re-
ward. The notion of regret is the same as ours (1).
However, the optimal reward of the baseline can be
obtained by a single fixed arm. In such problems, the
optimal expected regret is of the order of O(n log(T )),
which may be obtained by a number of algorithms,
e.g., (Lai & Robbins, 1985; Auer et al., 2002a; Kocsis
& Szepesvári, 2006).

3.2. Adversarial Expert Problem

Many learning problems take the adversarial setting,
e.g., prediction with expert advice, etc.—see (Cesa-
Bianchi & Lugosi, 2006) for a comprehensive review.

The sequence of rewards achieved by the experts is
arbitrary; i.e., no assumption is made regarding the
joint distribution of b1, b2, . . .. This approach essen-
tially makes provisions for the worst-case sequence of
reward. At time t, the past reward vectors b1, . . . , bt−1

are observable by the agent. In this case, the no-
tion of adversarial regret is adopted, whose baseline is
the reward accumulated by the best fixed expert, i.e.,
maxi=1,...,n

∑T
t=1 bt(i). For every sequence b1, b2, . . .,

the (expected) adversarial regret

max
i=1,...,n

T∑

t=1

bt(i) −
T∑

t=1

E[bt(at)]

is of the order of O(
√

T log(n))—see (Cesa-Bianchi &
Lugosi, 2006) for a detailed account. A similar bound
holds when the observations are limited to the chosen
arms: b1(a1), b2(a2), . . . (Auer et al., 2002b).

The baseline in the adversarial case is limited to a
single fixed expert, whereas our baseline in (1) is the
optimal expected reward. Our baseline, which con-
tains as many switches as changes in distribution, is
similar to the baseline defined by appropriately chosen
shifting policies in (Herbster & Warmuth, 1998). The
fixed-share algorithm or one of its variants (Herbster
& Warmuth, 1998; Auer et al., 2002b) can be applied
to our setting, if the number of changes k(T ) is given
in advance, yielding a regret of O(

√
nkT log(nT )) .

We present an algorithm with a regret of O(nk log(T ))
without prior knowledge of k(T ). It should be noted
that when k(T ) is of the same order as T , it is hope-
less to minimize the regret of (1): consider an adver-
sary that picks the new distribution after each change-
point.

3.3. Non-stationary Bandits

Our problem is reminiscent of the non-stationary ban-
dit problem of (Hartland et al., 2006; Garivier &
Moulines, 2008). The reward process and the no-
tion of regret are similarly defined, as in Section 2.
However, in those works, observation of the past re-
wards is limited to the chosen arms; hence, at time t,
the agent’s choice at is a function of b1(a1), b2(a2), . . ..
Using a statistical change detection test, Hartland et

al. present a partial solution for instances where the
best arm is not superseded by another arm following
a change. In the event that an oracle reveals a-priori
the number of changes k(T ) up to time T , Garivier
and Moulines provide solutions that achieve a regret
of O(n

√
kT log(T )); a lower-bound of Ω(

√
T ) is also

shown.

With respect to the above non-stationary bandit
model, the distinguishing feature of our model is that,
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in addition to activating an arm at each time instant,
the agent may query the past reward of one or more
arms. We show that with T queries in total, the regret
is bounded by O(nk log(T )). Hence, queries reduce
significantly the regret with respect to the results of
(Garivier & Moulines, 2008).

3.4. Change Detection

Another problem related to ours is that of fault
detection-isolation (Lai, 2001). In that problem, the
goal is to detect the change, and classify the post-
change distribution within a finite set of possibilities.
In our problem, the distribution after the change can
be arbitrarily different. Moreover, we do not clas-
sify; instead, we apply a minimum-regret learning al-
gorithm. In contrast to the change-detection litera-
ture, we consider a more complex setting, where the se-
quence b1, b2, . . . may have multiple (arbitrarily many)
changes. The problem of joint-detection of multiple
change-points is addressed in (Akakpo, 2008) and ref-
erences therein.

4. Multi-armed Bandits with Queries

In this section, we present an algorithm for our set-
ting and provide its performance guarantee. We begin
with two assumptions. We shall use as a component
of our solution a typical multi-armed bandit algorithm
described in the first assumption. The second assump-
tion describes a limitation of our algorithm.

Assumption 4.1 (MAB algorithm for k = 1). Con-
sider a multi-armed bandit where there are no distri-
bution changes (except at time 1). Let the i.i.d. reward
sequence b1, b2, . . . have distribution β. Let Ai(1) and
Ai(2) denote, respectively, the arm with the highest
and second-highest mean. Let ∆ denote their mean
difference:

∆ = β(i(1)) − β(i(2)).

Let A be an algorithm that guarantees a regret of
at most Cn log(T )/∆, for some constant C. At each
step t > 1, algorithm A receives as input the reward
bt−1(at−1) obtained in the previous step, and outputs a
new arm choice at. Examples of candidate algorithms
include those of (Lai & Robbins, 1985; Auer et al.,
2002a).

In this paper, we are concerned with detecting abrupt
changes bounded from below by some threshold; we
exclude infinitesimal changes in the following assump-
tion.

Assumption 4.2. Recall that βνj
(i) and βνj+1 (i) de-

note the pre-change and post-change distributions of

the arm Ai at the change-point νj+1. There exists a
known value ǫ > 0 such that, for each j = 1, 2, . . .,
there exists an arm Ai such that

∣∣βνj
(i) − βνj+1(i)

∣∣ > 2ǫ.

4.1. The WMD Algorithm

Our algorithm (Figure 1) detects changes in the mean
of a process, in the spirit of statistical methods for
detecting an abrupt change of distribution in an oth-
erwise i.i.d. sequence of random variables (see (Lai,
2001) for a survey). The algorithm partitions the time
horizon into intervals of equal length τ . Hence, for
m = 1, 2, . . ., the m-th interval is comprised of the
time instants (m− 1)τ + 1, (m− 1)τ + 2, . . . , mτ . The
algorithm computes iteratively empirical mean vectors
b̂1, b̂2, . . . over intervals (windows) of length τ , in the
following fashion:

b1, b2, . . . , bτ︸ ︷︷ ︸
bb1

, bτ+1, . . . , b2τ︸ ︷︷ ︸
bb2

, . . . , b(m−1)τ+1, . . . , bmτ︸ ︷︷ ︸
bbm

. . . .

The algorithm follows a multi-armed bandit algorithm
A with a regret guarantee in the absence of changes
(Assumption 4.1). When it detects a mean shift with
respect to a threshold given by Assumption 4.2, it reset
the sub-algorithm A.

4.2. WMD Regret

The following theorem bounds the expected regret of
the WMD algorithm.

Theorem 4.1 (WMD regret). Suppose that Assump-

tion 2.1 holds. Suppose that the agent employs the

WMD algorithm with a sub-algorithm satisfying As-

sumption 4.1, a threshold ǫ satisfying Assumption 4.2,

and intervals of length τ = ⌊n
ℓ ⌋ · ⌊

log(T )
2ǫ2 ⌋. Then, for

every sequence of change-points ν1, ν2, . . . and every

choice of post-change distributions fν1 , fν2 , . . ., the ex-

pected regret is bounded as follows:

RT ≤ 7

ǫ2
kn

ℓ
log(T ) +

C

∆
kn log(T ) +

6C

∆
n2, (2)

where C is the constant of Assumption 4.1.

Remark 2. The WMD algorithm does not require prior
knowledge of the number of distribution changes k(T ).

Remark 3 (Query-regret trade-off). The bound of
Theorem 4.1 indicates a way to trade-off the num-
ber of queries ℓ per step and the expected regret per
step. Suppose that an increasing function CQ assigns
a cost, in the same unit as the rewards and the re-
gret, to the rate of queries ℓ. The corresponding new
objective thus becomes the sum of two components:
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Input: interval length τ > 0, threshold ǫ > 0, and ℓ queries per step. Initialize r := 1.
At each step t:

1. (Follow A.) Follow the action of an algorithm A satisfying Assumption 4.1.

2. (Querying policy.) If t belongs to the m-th interval except its first step, i.e., if t ∈
[(m− 1)τ + 2, . . . , mτ ], let Σt−1(i) denote the number of queries arm Ai has received
since the start of the m-th interval until step t − 1. Order the arms {A1, . . . , An}
according to Σt−1(1), . . . , Σt−1(n). Query the set St of arms that received the fewest

queries. Update the following elements of the empirical mean b̂m:

b̂m(i) :=
Σt−1(i) b̂m(i) + bt−1(i)

Σt−1(i) + 1
, for every i ∈ St.

3. (Detect change.) At the start of the m-th interval, i.e., if t = (m − 1)τ + 1 for some

m = 3, 4, . . .. If
∥∥b̂m − b̂r

∥∥
∞

> ǫ, reset (i.e., re-instantiate) algorithm A and set
r := m. The index r denotes the last interval at which the algorithm A was reset.

Figure 1. Windowed mean-shift detection (WMD) algorithm

query cost and regret. This overall expected cost-
per-step at time T is CQ(ℓ) + RT /T . With the im-
plicit assumption that the bound (2) is tight in the
duration T , the number of changes k, and the query
rate ℓ, this cost can be optimized with respect to
ℓ. If each query is assigned a constant cost cq, i.e.,
CQ(ℓ) = cq · ℓ, then the (non-discrete) optimal query

rate is ℓ∗ =
√

(7kn/CQ) log(T )/T . This is the type of
optimization problem that has to be resolved in Ex-
ample 1.2.

Proof of Theorem 4.1. The proof is composed of five
steps. In the first step, we identify the components
of the regret. In the second step, we analyze the em-
pirical means computed by the WMD algorithm. In
the successive steps, we bound the components of the
regret. The components are combined in the final step.

Step 1. Let L(T ) denote the expected number of in-
tervals after a change-point νj occurs before it is de-
tected by the WMD algorithm (i.e., algorithm A is
reset). Let N(T ) be the expected number of false de-
tections up to T , i.e., instances when the algorithm
A resets when no change-point has occurred since the
last time A was reset. Observe that the total number
of times the algorithm resets is bounded from above by
k + N(T ). Hence, over a T -step horizon, there are at
most k+N(T ) interval-periods during which the algo-
rithm resets once and the source distribution does not
change. By Assumption 4.1, during each such period,
the expected regret is of the order of Cn log(Γ)/∆,
where Γ is the length of the period. Since log is a con-
cave function and Γ ≤ T , the expected regret over all
such periods is at most (Cn/∆)(k + N(T )) log(T ).

The algorithm may also incur regret during the delay
between distribution change and its detection. Since
there are k distribution changes, each ocurring at most
⌈L(T )⌉τ time steps before the algorithm A resets.
Hence, the total regret of this algorithm is at most

k(L(T ) + 1)τ +
Cn

∆
(k + N(T )) log(T ). (3)

Next, we bound N(T ) and L(T ), starting with N(T ).
Observe that the term kτ accounts for the regret
within intervals during which a change occurs. Hence,
for the remainder of the proof, we consider only the
intervals that do not contain a distribution change.

Step 2 (Empirical means). Consider the empirical
mean over each interval that does not contain a change.

Let γ = τ/⌊n
ℓ ⌋ = ⌊ log(T )

2ǫ2 ⌋. Observe that by the con-
struction of the WMD algorithm, after the end of
the m-th interval, spanning time steps (m − 1)τ +
1, . . . , mτ , every arm is queried either γ or γ +1 times.
In the former case, the empirical mean for an arm Ai

is the mean of γ i.i.d. random variables

b̂m(i) =
1

γ

mτ∑

t=(m−1)τ+1

bt(i) · 1[i∈St].

The expression for the latter case (of γ + 1 queries) is
similar, and is omitted in this proof.

Step 3 (Number of false detections). Suppose that in
the opponent action sequences during the m-th and r-
th intervals are generated from the same distribution
with expected value denoted, with an abuse of nota-
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tion, by βm. Observe that

N(T ) ≤ ⌈T/τ⌉P
(∥∥∥b̂m − b̂r

∥∥∥
∞

> ǫ
)

≤ n⌈T/τ⌉ min
i=1,...,n

P
(∣∣∣̂bm(i) − b̂r(i)

∣∣∣ > ǫ
)

,

since there are at most ⌈T/τ⌉ intervals. Observe that,
for every i = 1, . . . , n,

P
(∣∣∣̂bm(i) − b̂r(i)

∣∣∣ > ǫ
)

= P
(∣∣∣̂bm(i) − b̂r(i)

∣∣∣ > ǫ,
∣∣∣̂bm(i) − βm(i)

∣∣∣ ≤ ǫ
)

+ P
(∣∣∣̂bm(i) − b̂r(i)

∣∣∣ > ǫ,
∣∣∣̂bm(i) − βm(i)

∣∣∣ > ǫ
)

≤ P
(∣∣∣̂bm(i) − b̂r(i)

∣∣∣ > ǫ |
∣∣∣̂bm(i) − βm(i)

∣∣∣ ≤ ǫ
)

+ P
(∣∣∣̂bm(i) − βm(i)

∣∣∣ > ǫ
)

≤ P
(∣∣∣̂br(i) − βm(i)

∣∣∣ > 2ǫ
)

+ P
(∣∣∣̂bm(i) − βm(i)

∣∣∣ > ǫ
)

(4)

≤ exp
(
−8γǫ2

)
+ exp

(
−2γǫ2

)
,

where the last inequality follows by Step 2 and Hoeffd-
ing’s Inequality (recall that b̂r(i) and b̂m(i) have the
same distribution). Hence, we have

N(T ) ≤ 2n exp
(
−2γǫ2

)
(T/τ + 1). (5)

Step 4 (Delay in change detection). Next, we bound
L(T ). Suppose that there is a reset at the s-th inter-
val. The WMD algorithm compares successively the
empirical means b̂s+1, b̂s+2, . . . to b̂s. Suppose that the
following change occurs during the (m−1)-th interval.
Let βm and βs denote the expected reward vectors dur-
ing m-th and s-th intervals, respectively. By the same
argument as the first occurrence of an event in an i.i.d.
random sequence, we have

L(T ) ≤ 1
/

P
(∥∥∥b̂m − b̂s

∥∥∥
∞

> ǫ
)

. (6)

Observe that, for every i = 1, . . . , n,

P
(∥∥∥b̂m − b̂s

∥∥∥
∞

> ǫ
)

≥ P
(∣∣∣̂bm(i) − b̂s(i)

∣∣∣ > ǫ
)

≥ P
(∣∣∣̂bs(i) − βm(i)

∣∣∣ > 3ǫ/2,
∣∣∣̂bm(i) − βm(i)

∣∣∣ ≤ ǫ/2
)

= P

(∣∣∣̂bs(i) − βm(i)
∣∣∣ >

3ǫ

2

)
P

(∣∣∣̂bm(i) − βm(i)
∣∣∣ ≤ ǫ

2

)

≥ P

(∣∣∣̂bs(i) − βm(i)
∣∣∣ >

3ǫ

2

) (
1 − e−γǫ2/2

)
, (7)

where the equality is due to independence, and the fi-
nal inequality follows by Hoeffding’s Inequality. Next,

we bound the first term of (7). Suppose, without
loss of generality, that βs(i) > βm(i); let δ denote
βs(i) − βm(i); we obtain, for some i:

P
(∣∣∣̂bs(i) − βm(i)

∣∣∣ > 3ǫ/2
)

= P
(∣∣∣̂bs(i) − βs(i) + δ

∣∣∣ > 3ǫ/2
)

= 1 − P
(
δ − 3ǫ/2 ≤ b̂s(i) − βs(i) ≤ δ + 3ǫ/2

)

≥ 1 − P
(
δ − 3ǫ/2 ≤ b̂s(i) − βs(i)

)

≥ 1 − exp(−2γ(δ − 3ǫ/2)2) ≥ 1 − exp(−γǫ2/2), (8)

where the last two inequalities follows from the fact
that δ = βs(i) − βm(i) > 2ǫ for some i by Assump-
tion 4.2. Hence, (7), (8) and (6) give

L(T ) ≤ 2
/ (

1 − exp
(
−γǫ2/2

))
. (9)

Step 5 (Tying up). By combining (3) with (5) and (9),
we find that expected regret is at most:

2kτ

(1 − exp(−γǫ2/2))
+ kτ

+
Cn

∆

(
k + 2n exp

(
−2γǫ2

)
(T/τ + 1)

)
log(T ),

from which (2) follows by substituting the values τ =

⌊n
ℓ ⌋ · ⌊

log(T )
2ǫ2 ⌋ and γ = ⌊ log(T )

2ǫ2 ⌋.

5. Simulations

In this section, we present an empirical comparison of
the WMD algorithm with other algorithms for multi-
armed bandit problems. As reference, we consider
two algorithms based on upper confidence bounds:
the UCB1 algorithm of (Auer et al., 2002a), and the
Discounted-UCB algorithm of (Kocsis & Szepesvári,
2006; Garivier & Moulines, 2008). For comparison
purpose, we employ the UCB1 algorithm as the com-
ponent A of the WMD algorithm. The resulting com-
bination is referred to as the WMD-UCB algorithm.

For our setting, we take a bandit with 4 arms, whose
rewards are piecewise-stationary with Bernoulli distri-
butions. The sequence of expected rewards βt(i) for
each arm Ai is illustrated in Figure 2. The Discounted-
UCB algorithm is provided with prior knowledge of the
number k of changes to come in the reward sequence,
and its parameters are accordingly set to optimal val-
ues (Garivier & Moulines, 2008). Neither the UCB1,
nor the WMD-UCB algorithm require this prior infor-
mation. However, the WMD-UCB algorithm has the
privilege to query the previous rewards of some of the
arms.
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Figure 3. Average expected regret of UCB, Discounted-UCB, and WMD-UCB against the bandit of Figure 2. The WMD-
UCB uses the threshold ǫ = 0.3 and makes 1 query per step. Changes in the reward sequence distribution are indicated
by vertical lines, whereas instants at which the WMD-UCB algorithm resets are indicated by diamonds. The baseline of
our notion of regret (1) is also plotted.

0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Arm 1

Arm 2

Arm 3

Arm 4

Time

E
x
p
ec

te
d

re
w

a
rd

Figure 2. Expected reward of the arms of a 4-armed bandit.

Figure 3 shows the evolution of the average reward of
the three algorithms. In this experiment, the WMD-
UCB algorithm queries only one arm per step; its av-
erage reward is close to optimal with respect to the
baseline of (1). Figure 4 illustrates the benefit of in-
creasing the number of queries per step of the WMD-
UCB algorithm (with the interval length τ held fixed).
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Figure 4. Average expected regret of the WMD-UCB algo-
rithm with 1, 2, and 3 queries per step against a 4-armed
bandit. The threshold parameter ǫ is 0.2.

6. Discussions

The WMD algorithm uses a very simple scheme to
detect changes in the mean. In its place, we may
employ more sophisticated change-detection schemes,
e.g., CUSUM (Page, 1954) and the Shiryayev-Roberts
rule (Shiryayev, 1963). Modifications are nonetheless
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required to make them applicable to our problem: the
reward distributions must be parametrized; and the
pre-change distribution is unknown and must be esti-
mated (cf. Mei, 2006). There also exist schemes that
detect changes when the reward process follows one of
many Markovian processes (Fuh, 2004), as is the case
for restless bandit problems. Despite the drawback of
complexity, these schemes detect changes with opti-
mal delay, and do not require prior knowledge of the
parameter ǫ of Assumption 4.2. Yet, they also incur
a regret of the order of log(T ) due to an inevitable
logarithmic delay to detection (Lorden, 1971; Pollak,
1987). This provides, in our model, a lower-bound on
the regret of Ω(k log(T )) for every algorithm that de-
tect the unknown changes and react thereafter.

The side information obtained through queries can
be applied to two purposes: detecting changes and
improving the performance of the multi-armed ban-
dit algorithm of Assumption 4.1. In this paper, the
queries serve only the purpose of change detection.
Because of the aforementioned lower regret-bound in-
trinsic to change detection schemes, we have neglected
the question of accelerating the exploration of the sub-
algorithm of Assumption 4.1. The action elimination
method of (Even-Dar et al., 2006) presents another
possible improvement to the sub-algorithm of Assump-
tion 4.1. As a further improvement to the detection
component of the WMD algorithm, it is sufficient,
when the distribution changes are not adversarial, to
limit detections to changes where the current best arm
is no longer the best. Finally, it would be interesting to
consider different models of querying for side informa-
tion. For instance, the case when queries may succeed
or fail according to an i.i.d. random sequence, or the
case where the agent queries two arms and then picks
the best of the two.
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