
Block-Wise Construction of Acyclic Relational Features with
Monotone Irreducibility and Relevancy Properties

Ondřej Kuželka kuzelo1@fel.cvut.cz
Filip Železný zelezny@fel.cvut.cz

Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic

Abstract

We describe an algorithm for construct-
ing a set of acyclic conjunctive relational
features by combining smaller conjunctive
blocks. Unlike traditional level-wise ap-
proaches which preserve the monotonicity of
frequency, our block-wise approach preserves
a form of monotonicity of the irreducibility
and relevancy feature properties, which are
important in propositionalization employed
in the context of classification learning. With
pruning based on these properties, our block-
wise approach efficiently scales to features in-
cluding tens of first-order literals, far beyond
the reach of state-of-the art propositionaliza-
tion or inductive logic programming systems.

1. Introduction

Propositionalization aims at converting structured de-
scriptions of examples into attribute-value descriptions
which can be processed by most established machine
learning algorithms. A major stream of proposition-
alization approaches (Lavrač & Flach, 2001; Krogel &
al, 2003; Železný & Lavrač, 2006) proceeds by con-
structing a set of features (first-order formulas) which
follow some prescribed syntactical constraints and play
the role of Boolean attributes. Here we assume that
examples are represented as first-order logic interpre-
tations, features are first-order conjunctions and some
Horn background theory B (possibly empty) is avail-
able. Feature F acquires value true for example I (is
covered by the example) if m(B)∪ I |= F where m(B)
is the minimal model of B, otherwise it has the false
value. With slight abuse of notation, we will write this
relation simply as B ∧ I |= F . Propositionalization is

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

obviously similar to the framework of frequent query
discovery (Dehaspe & Toivonen, 1999). The two set-
tings mainly differ in the choice of the feature (query)
evaluation criterion; in the latter this is based on the
frequency on a set of unlabeled examples (i.e. the
number of examples covered by the query), whereas
in propositionalization it usually combines the values
of feature frequencies in respective classes of a labeled
example set into a single measure of feature relevancy.

Current systems working in both of the mentioned
frameworks (e.g. RSD or WARMR) construct con-
junctions in a level-wise manner. Each conjunction
in level n extends by one literal some conjunction in
level n− 1. Monotonicity of frequency (if F is not fre-
quent then F ∧ l is not frequent for any literal l) is
greatly exploited for pruning in the frequent-pattern
discovery setting. Unfortunately, relevancy that is of
interest in propositionalization is in general not mono-
tone in this level-wise approach. Irreducibility, another
desirable property of a feature, is unfortunately not
monotone either here. For example p(X) is irreducible,
p(X)∧ p(Y) is reducible, and p(X)∧ p(Y)∧ q(X,Y) is
again irreducible.

The purpose of this work is to remove these deficien-
cies by proposing a novel, block-wise approach to con-
struct a feature set, by identifying small conjunctions
(‘building blocks’) out of which all features can be com-
posed. The properties of irreducibility and relevancy,
and the extensions (the sets of examples covered) of
the building blocks are exploited to compute the ana-
logical properties of the resulting composition.

In the next section we formalize our chosen feature
language bias requiring a form of acyclicity. Then we
provide our main theoretical contributions expressed
in two theorems. Theorem 3.3 in Section 3 mainly
shows that irreducibility is monotone in the block-wise
composition sense and Theorem 4.4 in Section 4 as-
serts an analogical property for relevancy. In Section
5 we informally demonstrate the completeness of our

Block-Wise Construction of Acyclic Relational Features

feature construction algorithm (‘RelF’). In Section 6,
on three benchmark relational learning problems, we
test RelF against the level-wise feature construction
algorithm RSD (Železný & Lavrač, 2006) and the in-
ductive logic programming system Progol (Muggleton,
1995). RelF is significantly faster than the competing
systems, able to efficiently search among conjunctions
of tens of first-order literals, far beyond the reach of
RSD or Progol. Of equal importance, classification
accuracies achieved with RelF’s features are insignif-
icantly different from those achieved with the compet-
ing systems, indicating RelF’s language bias is not
overconstrained. Section 7 concludes the paper.

2. Features

The set of literals in a conjunction C is written as
lits(C), |C| = |lits(C)| is size of C. A set of conjuc-
tions is said to be standardized-apart if no two con-
junctions in the set share a variable. Given a set A of
atoms, we denote Args(A) = {(a, n)|a ∈ A, 1 ≤ n ≤
arity(a)}, i.e. Args(A) is the set of all argument places
in A. We will assume that no conjunction contains
two equal literals, i.e. p(X) ∧ p(Y) will be allowed,
but p(a) ∧ p(a) will not. For an atom a, argi(a) is its
i-th argument. The admissible features syntax will be
constrained by means of templates, which are a sim-
ple formalization of mode declarations used in systems
such as Progol (Muggleton, 1995).

Definition 2.1 (Template) A pre-template is a pair
(γ, µ) where γ is a finite set of ground atoms and µ ⊆
Args(γ). Elements of µ (Args(γ)\µ) are called inputs
(outputs) in γ. A pre-template (γ, µ) is a template if
every atom in γ has at most one input argument and
there is a partial irreflexive order ≺ on constants in
γ such that c ≺ c′ whenever c (c′) occurs as an input
(output) in γ.

A template τ = (γ, µ) is conveniently shown
by writing γ with input (output) argu-
ments marked with the sign + (-), such as
τ ≈ {hasCar(−c), hasLoad(+c,−l), box(+l),
large(+l), triangle(+l)}.

Definition 2.2 (Feature) Given a template τ =
(γ, µ), a τ -pre-feature F is a finite conjunction of lit-
erals containing no constants or functions, such that
lits(Fθ) ⊆ γ for some substitution θ. The occurrence
of variable in the i-th argument of literal l in F is an
input (output) occurrence in F if the i-th argument of
lθ is (is not) in µ. A variable is neutral in F if it has
[i] at least one input occurrence in F , and [ii] exactly
one output occurrence in F . A variable is pos (neg)
in F if it complies only with [i] ([ii]). A τ -pre-feature

is a τ -feature F if all its variables are neutral in F ;
it is a pos (neg) τ -feature F if it has exactly one pos
(neg) variable, denoted p(F) (n(F)), and the remain-
ing variables are neutral; it is a pos-neg τ -feature if it
has exactly one pos variable and exactly one neg vari-
able and the remaining variables are neutral.

For example, using the τ defined under Def. 2.1 the
following conjunction is a τ -feature

hasCar(C) ∧ hasLoad(C, L1) ∧ hasLoad(C, L2)∧

∧box(L1) ∧ large(L1) ∧ triangle(L2)

hasCar(C) is a neg τ -feature, hasLoad(C, L1) ∧
box(L1) is a pos τ -feature and hasLoad(C, L1) is a
pos-neg τ -feature. It is important to note that the
only pos (neg) variable p(F+) (n(F−)) in a pos (neg)
feature is uniquely given despite the fact that inputs
and outputs are not given uniquely in general.

Wherever we shall deal with a single fixed template
τ , we will simply speak of (pos, neg, pos-neg) features
instead of (pos, neg, pos-neg) τ -features. Given the
assumed partial order in templates, a feature F cor-
responds to a tree graph TF , here called the F -tree,
with vertices vi corresponding to literals li. There is
an edge between vi and vj if there is a variable which
has an output occurrence in li and an input occurrence
in lj . We say that a (pos, neg) feature has depth d if
the corresponding F -tree has depth d. Analogically,
we say that a literal l is in depth d in (pos,neg) fea-
ture if it is in depth d in the corresponding F -tree (if
d = 0, we call l root of F).

Definition 2.3 (Graft) Let F− be a neg (pos-neg)
feature and φ+ = {F+

i } be a standardized-apart (possi-
bly with exception n(F−) = p(F+

i)) set of pos features.
We define the graft F−⊕n(F−) φ

+ = F−∧i Fiθi, where
each substitution θi = {p(F+

i)/n(F−)}. A pos feature
F+ is said to be contained in (pos) feature F if and
only if F+ ⊂ F and F\F+ is a neg (pos-neg) feature.

In what follows, the variable in the subscript of the
graft operator will be uniquely determined by context.
Hence we will mostly drop the subscript for simplicity.

Running Example Let us have a set of two positive
examples E+ and a set of two negative examples E−

E+ = {{hasCar(c1), hasLoad(c1, l1), circ(l1),

box(l1), hasLoad(c1, l2), tri(l2)},
{hasCar(c2), hasLoad(c2, l3), box(l3), tri(l3)}}
E+ = {{hasCar(c3), hasLoad(c3, l4), box(l4),

Block-Wise Construction of Acyclic Relational Features

circ(l4)},
{hasCar(c4), hasLoad(c4, l5), tri(l5), circ(l5)}}

We define a very simple template τ ≈
{hasCar(−c), hasLoad(+c,−l), box(+l), tri(+l),
circ(+l)} to constrain the features for this data.
Although there is an infinite number of features
correct w.r.t. τ , there are only finitely many features,
which are not H-reducible, as we will see in the next
section.

3. Irreducibility

To define the reducibility property of conjunctive fea-
tures, we borrow the notion of θ-subsumption which is
usually employed in the context of clauses.

Definition 3.1 (Reducibility) Let C and D be con-
junctions of literals and let there be a substitution
θ such that lits(Cθ) ⊆ lits(D). We say that C θ-
subsumes D (written C ¹θ D). If further D ¹θ C, we
call C and D θ-equivalent (written C ≈θ D). We say
that C is reducible if there exists a clause C ′ such that
C ≈θ C ′ and |C| > |C ′|. A clause C ′ is said to be a
reduction of C if C ≈θ C ′ and C ′ is not reducible.

An example of a θ-reducible conjunction of literals is
C = hasCar(C)∧hasLoad(C, L1)∧hasLoad(C,L2)∧
box(L1). Let D = hasCar(C) ∧ hasLoad(C,L1) ∧
box(L1), then Cθ ⊆ D, where θ = {L2/L1}, and
|D| < |C|. In this work we cannot rely directly
on the established notion of reducibility as defined
above. This is because a reduction of a τ -feature
may not be a τ -feature itself. For example, for
τ ≈ {car(−c1), hasLoad(+c1,−l), hasLoad(−c2, +l),
hasCar(+c2)}, the conjunction car(C1) ∧
hasLoad(C1, L1) ∧ hasLoad(C2, L1) ∧ car(C2)
is a correct τ -feature but its reduction
hasCar(C1) ∧ hasLoad(C1, L1) is not.

The fact that reduction does not preserve correctness
of feature syntax may represent a problem because,
to avoid redundancy, we would like to work only with
reduced features. The next definition introduces H-
reduction, which has the property that H-reduction
of a τ -feature is always a τ -feature. While there is
an infinite number of τ -features for a sufficiently rich
template τ , there is always only a finite number of
non-H-reducible ones.

Definition 3.2 (H-reduction) We say that (pos) τ -
feature f H-subsumes (pos) τ -feature g (written f ¹H

g) if and only if there is a substitution (called H-
substitution) θ such that fθ ⊆ g and for every literal
l ∈ lits(f) it holds depthf (l) = depthg(lθ) for some

correct assignment of inputs and outputs of f and g. If
further g ¹H f , we call f and g H-equivalent (written
f ≈H g). We say that (pos) τ -feature f is H-reducible
if there is a (pos) τ -feature f ′ such that f ≈H f ′ and
|f | > |f ′|. Feature f ′ is said to be an H-reduction of
f if f ≈H f ′ and f is not H-reducible.

In the proof of Theorem 3.3 we will speak interchange-
ably about substitution θ from variables to terms and
about the induced substitution from literals to literals.

Theorem 3.3 Let F+ be a pos feature and let F−

be a neg feature. Then following holds: (i) F+ is
H-reducible if and only if F+ contains pos features
F+

1 , F+
2 such that F+

1 6= F+
2 , p(F+

1) = p(F+
2) and

F+
1 ¹H F+

2 . (ii) If F+ is H-reducible, then F− ⊕ F+

is also H-reducible. (iii) Whether a (pos) feature F
is H-reducible can be computed in polynomial time (in
|F |).

Proof In this proof we will use the following obser-
vation. Let A,B be pos features and let θ be a
H-substitution such that Aθ ⊆ B. Observe that if
l ∈ B\Aθ, then also l′ ∈ B\Aθ for any literal l′ con-
tained in pos feature F+

l ⊆ B, where F+
l has l as

its root. (i ⇒) Let F+
r be H-reduction of F+ and

let θ1, θ2 be H-substitutions such that F+
r θ1 ⊆ F+

and F+θ2 ⊆ F+
r . Substitution θ3 = θ2θ1 is a map-

ping θ3 : lits(F+) → lits(F+). Since F+θ2 ⊆ F+
r ,

|F+θ2| ≤ |F+
r | and consequently |F+θ3| ≤ |Fr| <

|F+|, because applying a substitution to a feature
cannot increase its size. Therefore there is a literal
l ∈ F+\F+θ3 and, as we have observed, also a whole
pos feature F+

1 ⊆ F+\F+θ3. Thus, there is a pos fea-
ture F+

2 (F+
2 6= F+

1) such that F+
1 θ3 ⊆ F+

2 . It remains
to show that for some such F+

1 , F+
2 , p(F+

1) = p(F+
2).

If p(F+
1) 6= p(F+

2), then there must be pos features
F+′

1 , F+′
2 such that F+

1 ⊂ F+′
1 , F+

2 ⊂ F+′
2 and

F+′
1 θ3 ⊆ F+′

2 . For such F+′
1 , F+′

2 with maximum size,
p(F+

1) = p(F+
2). (i ⇐) Let θ be a H-substitution

such that F+\F+θ = F+
1 , then F+θ ≈H F+ and

|F+θ| = |F+|−|F+
1 | < |F+|. (ii) This follows from (i).

(iii) An approach, which tests whether F+
1 ¹H F+

2 for
all pairs of pos features F+

1 , F+
2 contained in F+ with

equal pos variables, runs in polynomial time in |F | (cf.
Algorithm 1).

The second property of H-reduction stated in The-
orem 3.3 allows us to filter H-reducible pos features
during propositionalization process.

Running Example Let us return to our running ex-
ample from Section 2. As we have already mentioned,
there is an infinite number of features, but only a fi-
nite number of non-H-reducible ones. An example of

Block-Wise Construction of Acyclic Relational Features

Algorithm 1 domI,B(S)

1: Input: Pos feature F+, Interpretation I, Back-
ground theory B;

2: litsDom ← {l|pred(l) = pred(root(F+)) ∧ ((I ∧
B) |= l)}

3: for ∀ output variables outi of F+’s root do
4: argDomi ← ∩c∈childrenouti

(l)domI(c)
5: litsDom ← litsDom ∩ {l|argi(l) ∈ argDomi}
6: end for
7: return {t|t is term at input of l ∧ l ∈ litsDom}

an H-reducible feature for template τ is

Freducible = hasCar(C) ∧ hasLoad(C, L) ∧ box(L)∧
∧hasLoad(C, L2) ∧ box(L2) ∧ circ(L2) ∧ tri(L2).

This feature is indeed H-reducible as may be seen from
the following fact

hasLoad(C, L) ∧ box(L) ¹H

¹H hasLoad(C, L2) ∧ box(L2) ∧ circ(L2) ∧ tri(L2)

When all H-reducible features are removed, there re-
main only 18 correct τ -features for τ from our running
example.

4. Relevancy

Definition 4.1 (Domain) Let I be an interpreta-
tion, B be a background theory, τ be a template and T
be a set of terms. Let S be a standardized-apart set of
pos τ -features. Then, domain w.r.t. I and B (domI,B)
is a mapping domI,B : S → 2T such that domI,B(F+)
contains all terms t such that (I ∧ B) |= F+θ, where
θ = {p(F+)/t}.

Domain assigns to each pos feature a set of terms {ti},
for which there is a grounding of S such that p(S) = ti
and the grounding of S is true in I ∧ B. In order to
allow efficient computation of domains of pos features,
we make the assumption that for every literal l with
a subset of output arguments out1, . . . , outi grounded,
it is possible to find the set of all possible groundings
of this literal efficiently. If this assumption holds, then
an algorithm exists, which correctly computes domain
and works in time polynomial in the size of F+ (Al-
gorithm 1). This algorithm is not novel, for B = ∅
it corresponds to an algorithm known as directed-arc-
consistency algorithm in the field of CSP and as con-
junctive acyclic query algorithm in database theory
(Yannakis, 1981).

Once we have established how domain of a pos feature
is computed, it is easy to use this method to decide

whether (I ∧B) |= F , where F is a neutral feature. If
l = pred(X1, . . . , Xn) is root of F , it suffices to replace
l by l′ = pred(X0, X1, . . . , Xn) in F and extend back-
ground theory to B′ = B ∪ {pred(yes,X1, . . . , Xn) ←
pred(X1, . . . , Xn)}. If domain of this newly created
pos feature feat+(F) is non-empty, then (I ∧B) |= F .
This simplifies notation because we do not need to
treat neutral features separately.

Example Let us have feature F and interpretation I

F = hasCar(C) ∧ hasLoad(C, L) ∧ tri(L) ∧ box(L),

I = {hasCar(c), hasLoad(c, l1), hasLoad(c, l2), tri(l1),

circ(l1), tri(l2), box(l2), hasLoad(c, l3), box(l4)},

B = ∅.
First, we modify F so that we could use Algorithm 1 to
decide whether (I∧B) |= F , i.e. we replace hasCar(C)
by hasCar(X, C) and extend the background theory
B = {hasCar(yes,X) ← hasCar(X)}.1 Then we
may proceed as follows: (i) We compute domains of
pos features box(L) and tri(L), i.e. domI(box(L)) =
{l2, l4}, domI(tri(L)) = {l1, l2}. (ii) Then we com-
pute domain of pos feature with root hasLoad(C, L),
i.e. domI(hasLoad(C, L)) = {l1, l2, l3} ∩ {l2} ∩
{l1, l2} = {l2}. (iii) Since no domain is empty
so far, we proceed further and compute domain of
pos feature with root hasCar(X, C), which becomes
domI(hasCar(X, C)) = {yes}∩{yes}. So, we see that
(I ∧B) |= F .

The next definition introduces irrelevancy of boolean
attribute (Lavrač et al., 1999), which enables one to
filter such irrelevant attributes from dataset.

Definition 4.2 (Irrelevant Attribute) Let A be a
set of boolean attributes, let cov(a) denote subset of
examples covered by a ∈ A and let pos(a) (neg(a))
denote subset of positive (negative) examples covered
by a ∈ A. A boolean attribute a ∈ A is said to be E+-
irrelevant (E−-irrelevant) if and only if there is a′ ∈
A, a 6= a′ such that pos(a) ⊆ pos(a′) and neg(a′) ⊆
neg(a) (neg(a) ⊆ neg(a′) and pos(a′) ⊆ pos(a)). If
one of the inclusions, for at least one example, is strict,
a is said to be strictly E+-irrelevant (E−-irrelevant).
A boolean attribute a is called irrelevant if it is both
E+-irrelevant and E−-irrelevant. It is called strictly
irrelevant if it is irrelevant and strictly E+-irrelevant
or strictly E−-irrelevant.

1We assume that there had been no literals
hasCar(X, C) before we added them to the original fea-
ture and to background theory.

Block-Wise Construction of Acyclic Relational Features

In this section, we develop methods for detection of
pos features, which give rise to irrelevant features when
grafted with neg features.

Lemma 4.3 Let I be an interpretation, B back-
ground theory and let S1 = {F+

1 , F+
2 , . . . , F+

m}
and S2 = {G+

1 , G+
2 , . . . , G+

n } be standardized-apart
sets of pos features such that ∩m

i=1domI,B(F+
i) ⊆

∩n
i=1domI,B(G+

i), then for any pos-neg feature F−

domI,B(F− ⊕V S1) ⊆ domI,B(F− ⊕V S2)

Proof Let us first consider the case when
depthF−(V) = 0. The only place, where do-
mains of Fi ∈ S1 (Gi ∈ S2 respectively) are used,
is line 4 in Algorithm 1. Clearly argDomS1 =
∩m

i=1domI,B(F+
i) ⊆ argDomS2 = ∩n

i=1domI,B(G+
i)

and consequently litsDomS1 ⊆ litsDomS2 and there-
fore also domI,B(F ⊕V S1) ⊆ domI,B(F ⊕V S2). The
general case of lemma may be proved by induction on
depth of V . (i) The case for depth 0 has been already
proved. (ii) Let us suppose that lemma holds for
depth d. Now, we suppose that depthF−(V) = d + 1.
We may take the pos-neg feature T ⊂ F− which
contains V such that depthT (V) = 0, W = p(T)
(respecting inputs/outputs of F− and n(F−) = V)
and graft it with S1 (S2, respectively). We have
domI,B(T ⊕V S1) ⊆ domI,B(T ⊕V S2) and by in-
duction argument finally also domI,B(F− ⊕V S1) =
domI,B((F−\T)⊕W {T⊕V S1}) ⊆ domI,B((F−\T)⊕W

{T ⊕V S2}) = domI,B(F− ⊕V S2), which finishes the
proof.

Theorem 4.4 Let E+ be a set of positive examples,
let E− be a set of negative examples and let B be back-
ground theory. Let S = {F+

i }n
i=1 be a set of distinct

pos features with equal types of input arguments such
that for all i 6= j there is an example I ∈ E+ ∪ E−

with domI,B(F+
i) 6= domI,B(F+

j). Let domI,B(F+
1) ⊆

∩n
i=2domI,B(F+

i) be true for all I ∈ E+ (I ∈ E−)
and let ∩n

i=2domI,B(F+
i) ⊆ domI,B(F+

1) be true for
all I ∈ E− (I ∈ E+). (i) For any neg feature F−,
F− ⊕ {F+

1 } is E+-irrelevant (E−-irrelevant). (ii) Let
S′ be a set of pos features obtained from S by repeatedly
removing irrelevant pos features. Set S′ is unique.

Proof We will prove only the case for E+-irrelevancy
because the proof for E−-irrelevancy is analogous.

(i) Let F− be a neg feature and let F± = feat+(F−) be
the corresponding pos-neg feature, which has unique
p(F±). By application of Lemma 4.3, if domI,B(F+

1) ⊆
∩n

i=2domI,B(F+
i) for all I ∈ E+, then domI,B(F± ⊕

{F+
1 }) ⊆ domI,B(F± ⊕ {F+

2 , . . . , F+
n }) for all I ∈

E+. Similarly, if ∩n
i=2domI,B(F+

i) ⊆ domI,B(F+
1)

for all I ∈ E−, then domI,B(F± ⊕ {F+
2 , . . . , F+

n }) ⊆

domI,B(F± ⊕ {F+
1 }) for all I ∈ E−. Therefore if

(I ∧ B) |= F− ⊕ {F+
1 } , then (I ∧ B) |= F− ⊕

{F+
2 , . . . , F+

n } for all I ∈ E+ and similarly if (I∧B) |=
F− ⊕ {F+

2 , . . . , F+
n }, then (I ∧ B) |= F− ⊕ {F+

1 } for
all I ∈ E−. This means that F+

1 is E+-irrelevant.

(ii) It could happen that by removing some irrel-
evant pos features from S, F+

1 could become rele-
vant. We need to show that this is not the case.
Let G+ be a graph with vertices corresponding to
Si. Let there be an edge (vi, vj) if and only if
domI,B(F+

i) ⊆ ∩k∈AdomI,B(F+
k) for all I ∈ E+ and

∩k∈AdomI,B(F+
k) ⊆ domI,B(F+

i) for all I ∈ E− and
j ∈ A, i /∈ A. Let vi be a vertex corresponding to pos
feature F+

i . Any vertex with non-zero in-degree cor-
responds to an irrelevant pos feature. If we show that
G is acyclic, then it is easy to find the unique set of
relevant pos features as the set of pos features corre-
sponding to vertices with zero in-degree. To show that
G is acyclic, we first notice that if two distinct vertices
vi, vj ∈ G are connected by a directed path, then there
is also the edge (vi, vj). Therefore if there was a di-
rected cycle containing (v1, v2), there would have to be
also two edges (v1, v2) and (v2, v1). This would mean
that for each positive example it would be true that
domI,B(F+

2) ⊆ ∩n
i=3domI,B(F+

i) ∩ domI,B(F+
1) and

domI,B(F+
1) ⊆ ∩n

i=3domI,B(F+
i) ∩ domI,B(F+

2), but
then domI,B(F+

1) = domI,B(F+
2) and the same would

be true for negative examples implying domI,B(F+
1) =

domI,B(F+
2) for all examples, which contradicts as-

sumption that no two distinct pos features have equal
domains for all examples. Therefore G must be acyclic
and the set of irrelevant pos features (in a given set)
must be unique.

5. Algorithm

In this section, we design a propositionalization algo-
rithm RelF (Algorithm 2). RelF merges the two
usual phases of propositionalization, i.e. feature con-
struction and extension computation. Specifically, the
core algorithm accepts a set of learning examples and
a feature template. The features are obtained by
combinatorial composition of pos features, which act
as the primitive building blocks. The advantage of
this assembly approach is that H-redundant or irrele-
vant pos features may be removed from the set of pos
features while guaranteeing that all relevant features
will be found. In the filtering phase, the algorithm
first filters pos features, which have equal domains
for all examples, and only after that it also removes
irrelevant pos features (thus satisfying conditions of
Theorem 4.4). The rules used for detection of E+-
irrelevant (E−-irrelevant) pos features are based on

Block-Wise Construction of Acyclic Relational Features

Algorithm 2 RelF (Sketch of Algorithm): Given a
template and a set of examples, RelF computes the
propositionalized table.

1: Input: template τ , examples E;

2: PosFeats ← {}
3: OrderedDefs ← topologically ordered predicate

definitions computed from τ
4: for ∀pred ∈ OrderedDefs do
5: NewPosFeats ← {}
6: NewPosFeats ← Combine(pred, PosFeats)
7: Filter H-reducible pos features
8: Filter pos features with equal domains for all

examples
9: Filter irrelevant pos features

10: Add NewPosFeats to PosFeats
11: end for
12: Save all correct features from PosFeats

Theorem 4.4. That means S1 is E+-irrelevant if there
is set of pos features {Si} and Ind ⊂ N such that
domI,B(S1) ⊆ ∩i∈InddomI,B(Si) on positive examples
and ∩i∈InddomI,B(Si) ⊆ domI,B(S1) on negative ex-
amples.

The algorithm exploits the partial irreflexive order,
which is imposed on types of arguments by Def. 2.2.
Due to existence of this order it is possible to sort all
declared predicates l ∈ γ topologically with respect to
a graph induced by the partial order. When the topo-
logical order is found, it is possible to organize gener-
ation of features in such a way that pos features are
built iteratively by combining smaller pos features into
larger ones. With input arguments τ and E, where τ is
a template and E is a set of examples, it returns set of
neutral features TAlg ⊆ Tτ , where Tτ is set of all cor-
rect τ -features. An important property of Algorithm
2 is that for any neutral feature F ∈ Tτ , which is not
strictly irrelevant, there is a neutral feature F ′ ∈ TAlg

such that F and F ′ cover the same set of examples.
In other words, RelF correctly outputs all relevant
boolean attributes, which means that it is complete in
a well-specified sense.

Running Example In Section 3, we have made the
set of correct τ -features finite. We have shown that,
for our particular template τ , there are only 18 fea-
tures. We will now demonstrate how RelF constructs
the E+-relevant features. We first generate and fil-
ter the following three pos features: box(L), tri(L),
circ(L). We may check that circ(L) is E+-irrelevant
(due to box(L)), so we may safely throw it away. The
next pos features created by grafting with box(L) and
tri(L) are pos features F+

1 = hasLoad(C, L)∧ box(L),

Algorithm 3 Combine (Procedure used by RelF):
Given a predicate symbol and a set of pos features,
Combine constructs pos features.

1: Input: predicate, PosFeats;

2: Constructed ← {}
3: ArgCombinations ← []
4: for ∀ output arguments outi of predicate do
5: Smaller ← pos features from PosFeats with

type of input equal to type of outi
6: ArgCombinations [outi] ← all combinations

without repetition of F+ ∈ Smaller
7: end for
8: Constructed ← all possible graftings of

predicate(X1, . . . , Xk) with the respective
combinations from ArgCombinations

9: return Constructed

F+
2 = hasLoad(C,L) ∧ box(L) ∧ tri(L) and F+

3 =
hasLoad(C, L) ∧ tri(L). Notice that if we had not
removed circ(L), there would have been seven such
pos features. We can now filter also F+

1 , F+
2 , F+

3 in
the exactly same manner as we filtered box(L), tri(L),
circ(L). In this case, F+

2 is E+-irrelevant because

domI1(F
+
2) = ∅ ⊆ domI1(F

+
1) ∩ domI1(F

+
3) = {c1},

domI2(F
+
2) = {c2} ⊆ domI2(F

+
1)∩domI2(F

+
3) = {c2},

domI3(F
+
1) ∩ domI3(F

+
3) = ∅ ⊆ domI3(F

+
2) = ∅,

domI4(F
+
1) ∩ domI4(F

+
3) = ∅ ⊆ domI4(F

+
2) = ∅.

Finally, we may graft these pos features with car(C ′)
to obtain the resulting set of neutral features.

6. Experiments

In this section we evaluate perfomance and accuracy
of RelF2. We evaluate RelF in two relational learn-
ing domains in comparison to RSD (Železný & Lavrač,
2006) and Progol (Muggleton, 1995). Our intention is
to demonstrate (i) that RelF can propositionalize re-
lational data orders of magnitude faster than standard
algorithms and (ii) that classifiers built using features
generated by RelF are not much worse than those
built using more general feature seclarations.

In (Krogel & al, 2003) extensive experiments were con-
ducted to compare three state-of-the-art propositional-
ization systems: RSD, SINUS and RELAGGS. In this
study each of the systems obtained best predictive ac-
curacy on exactly two out of six domains. RELAGGS

2All program codes can be obtained on request from the
first author.

Block-Wise Construction of Acyclic Relational Features

proved itself superior especially in domains where nu-
merical attributes were essential. On the other hand
SINUS and RSD performed well in typical ILP tasks
such as predicting mutagenicity or learning legal posi-
tions of chess-end-games. However, in all experiments
RSD was several times faster than SINUS. That is
why we chose RSD for comparisons. We also conduct
experiments comapring RelF to state-of-the-art ILP
system Progol and we also compare our results with
those presented in literature. In all experiments de-
scribed in this section random forest classifiers3 are
used (Breiman, 2001). We follow suggestions given
in (Scheffer & Herbrich, 1997) to obtain unbiased es-
timate of quality of learned classifiers. We perform
experiments both with RSD having the same feature
declaration bias as RelF and with RSD allowing cyclic
features. While for RelF the only necessary restric-
tion on features is given by the templates (which im-
plicitly restrict depth of features), for RSD we also
need to bound maximum size of features.

6.1. Mutagenesis

Our first set of experiments was done on the well-
known Mutagenesis dataset (Lodhi & Muggleton,
2005), which consists of 188 organic molecules marked
according to their mutagenicity. We used atom-bond
descriptions and numerical attributes lumo and logP.
The longest features found by RelF had over 20 bond-
literals and were found in 116 seconds. The longest
features found by RSD had 3 bond-literals and RSD
needed 272 seconds. Bigger features could not be
found in 15000s by RSD. RSD without acyclic feature
bias was not able to find more features than with the
acyclic bias.

Table 1 displays predictive accuracies obtained on the
Mutagenesis dataset. The third column refers to Pro-
gol with maximum number of searched nodes set to
10000 and maximum clause length set to 4. Theory
construction runtime was 398s. All clauses found by
Progol were acyclic. The third column displays accu-
racy obtained by an ensemble method with a set of
theories found by Progol reported in (Lodhi & Mug-
gleton, 2005), which is to date the highest predictive
accuracy for this dataset. However, in this last ex-
periment more information about moleculs was used
(functional groups and indicator variables). Therefore
we repeated our experiments, but we added also the in-
dicator variables and functional groups and obtained
accuracy 87.4%. Adding functional groups was not
very useful in this case, because RelF was already

3We used the random forest classifier from Weka pack-
age (Witten & Frank, 2005).

able to capture the functional groups due to its ability
to construct long features.

Table 1. Accuracies on Mutagenesis dataset.

Algorithm RelF RSD Progol Progol Ens.
Accuracy [%] 89.8 87.8 82.0 95.8

6.2. CAD Documents

The second set of experiments was conducted in a do-
main describing CAD documents (product structures)
(Žáková et al., 2007). The dataset consists of 96 class-
labeled examples. This dataset is interesting because
long features are needed to obtain reasonable classi-
fication accuracy. For RSD we used both the same
template (acyclic bias) and a slightly more general
template. We needed to significantly constrain size
of RSD’s features to 12 literals for acyclic case (re-
sulting in runtime 12324s) and 11 literals for cyclic
case (resulting in runtime 2198s). This is in contrast
with RelF, whose longest features had over 50 literals
(with runtime 108s). Importantly, the single feature
that separated the dataset best was discovered only
by RelF. The accuracy of Progol is low due to the
fact that Progol is unable to find clauses with suffi-
cient lengths within 15000s limit, which agrees with
findings reported in (Žáková et al., 2007).

Table 2. Accuracies on CAD dataset.

Algorithm RelF RSD RSD (cyclic) Progol
Accuracy [%] 96.7 96.7 91.2 81.1

We have performed an additional experiment on CAD
dataset to make clear to what extent the speedup
achieved by RelF compared to RSD is due is due to
filtering of irrelevant pos features. With enabled irrel-
evancy filtering RelF ran 108 seconds, whereas with
disabled irrelevancy filtering it crashed after running
for several minutes because of lack of free memory.
This shows that the key concept, which makes RelF
efficient, is irrelevant pos feature filtering.

6.3. Predictive Toxicology Challenge

The last set of experiments was done with data from
the Predictive Toxicology Challenge (Helma et al.,
2001). The PTC dataset consists of 344 organic
molecules marked according to their carcinogenicity on
male and female mice and rats. Our experiments were
done for male rats. Longest features constructed by
RelF had over 20 bond-literals and were constructed
in 762 seconds, while longest features constructed by
RSD had only 4 bond-literals in 2971 seconds.

Block-Wise Construction of Acyclic Relational Features

Table 3 refers to predictive accuracies obtained on the
PTC dataset. With Progol, we were unable to obtain
any theory compression. The third column in Table 3
refers to approach based on optimal assignment ker-
nel (Fröhlich et al., 2005). The fourth column also
refers to approach based on kernels (Ralaivola et al.,
2005). Predictive accuracy reported for this last ap-
proach is the highest presented in literature, however,
it is a leave-one-out estimate as opposed to 10-fold
cross-validation estimates of the other discussed re-
sults.

Table 3. Accuracies on PTC dataset for male rats.

Algorithm RelF RSD Kernel1 Kernel2
Accuracy [%] 62.5 64.9 63.0 65.7

7. Conclusions

We have introduced RelF, an algorithm for construc-
tion of acyclic relational features. We have shown
that blockwise construction of acyclic features enables
RelF to remove H-reducible and irrelevant pos fea-
tures. In experiments, we have shown that RelF is
able to construct relevant features with sizes far be-
yond the reach of state-of-the-art propositionalization
systems. Of importance, we have also shown that, for
three typical ILP datasets, restriction to acyclic fea-
tures was not very detrimental with respect to predic-
tive accuracy. In fact, the obtained results were very
close to the best results reported in literature. Al-
though there are definitely datasets where cyclic fea-
tures could provide better predictive accuracies, one
can always merge results from different propositional-
ization algorithms and feed the propositional learners
with such merged propositionalized tables. An algo-
rithm for construction of a limited class of features
such as RelF would be useful also in such cases.

Acknowledgements. We are grateful to ICML 2009
reviewers for their insightful comments. The first au-
thor is supported by project 1ET101210513 (Czech
Academy of Sciences), the second author is supported
by project MSM6840770038 (Czech Ministry of Edu-
cation). Both authors are further supported by project
201/08/0509 (Czech Science Foundation).

References

Breiman, L. (2001). Random forests. Machine Learn-
ing, 45, 5–32.

Dehaspe, L., & Toivonen, H. (1999). Discovery of fre-
quent datalog patterns. Data Mining and Knowledge
Discovery, 3, 7–36.

Fröhlich, H., Wegner, J. K., Sieker, F., & Zell, A.
(2005). Optimal assignment kernels for attributed
molecular graphs. International Conference on Ma-
chine learning (ICML ’05) (pp. 225–232). ACM.

Helma, C., King, R. D., Kramer, S., & Srinivasan, A.
(2001). The predictive toxicology challenge 2000-
2001. Bioinformatics, 17, 107–108.

Krogel, M.-A., & al (2003). Comparative evaluation
of approaches to propositionalization. International
Conference on Inductive Logic Programming (ILP
03’). Springer.

Lavrač, N., & Flach, P. A. (2001). An extended trans-
formation approach to inductive logic programming.
ACM Transactions on Computational Logic, 2, 458–
494.

Lavrač, N., Gamberger, D., & Jovanoski, V. (1999).
A study of relevance for learning in deductive
databases. Journal of Logic Programming, 40, 215–
249.

Lodhi, H., & Muggleton, S. (2005). Is mutagenesis still
challenging. International Conference on Inductive
Logic Programming (ILP ’05), Late-Breaking Papers
(pp. 35–40).

Muggleton, S. (1995). Inverse entailment and Progol.
New Generation Computing, Special issue on Induc-
tive Logic Programming, 13, 245–286.

Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi,
P. (2005). Graph kernels for chemical informatics.
Neural Networks, 18, 1093–1110.

Scheffer, T., & Herbrich, R. (1997). Unbiased as-
sessment of learning algorithms. 15th International
Joint Conference on Artificial Intelligence (IJCAI
’97) (pp. 798–803).

Železný, F., & Lavrač, N. (2006). Propositionalization-
based relational subgroup discovery with RSD. Ma-
chine Learning, 62(1-2), 33–63.

Witten, I. H., & Frank, E. (2005). Data mining: Prac-
tical machine learning tools and techniques. Morgan
Kaufmann, San Francisco. 2nd edition.

Yannakis, M. (1981). Algorithms for acyclic database
schemes. International Conference on Very Large
Data Bases (VLDB ’81) (pp. 82–94).

Žáková, M., Železný, F., Garcia-Sedano, J., Tissot,
C. M., Lavrač, N., Křemen, P., & Molina, J. (2007).
Relational data mining applied to virtual engineer-
ing of product designs. International Conference on
Inductive Logic Programming (ILP ’07). Springer.

