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Abstract
High dimensionality can pose severe difficul-
ties, widely recognized as different aspects of
the curse of dimensionality. In this paper we
study a new aspect of the curse pertaining to
the distribution of k-occurrences, i.e., the num-
ber of times a point appears among the k nearest
neighbors of other points in a data set. We show
that, as dimensionality increases, this distribution
becomes considerably skewed and hub points
emerge (points with very high k-occurrences).
We examine the origin of this phenomenon,
showing that it is an inherent property of high-
dimensional vector space, and explore its influ-
ence on applications based on measuring dis-
tances in vector spaces, notably classification,
clustering, and information retrieval.

1. Introduction
It is widely recognized that high-dimensional spaces pose
severe difficulties, regarded as different aspects of the the
curse of dimensionality (Bishop, 2006). One aspect of this
curse is distance concentration, which directly affects ma-
chine learning applications. It refers to the tendency of dis-
tances between all pairs of points in high-dimensional data
to become almost equal. Concentration of distances and
the meaningfulness of finding nearest neighbors in high-
dimensional spaces has been studied thoroughly (Beyer
et al., 1999; Aggarwal et al., 2001; François et al., 2007).

There is another aspect of the curse of dimensionality that
is related to nearest neighbors (NNs). Let D be a set of
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points and Nk(x) the number of k-occurrences of each
point x ∈ D, i.e., the number of times x occurs among
the k NNs of all other points in D. Under certain condi-
tions, as dimensionality increases, the distribution of Nk

becomes considerably skewed to the right, resulting in the
emergence of hubs, i.e., points which appear in many more
k-NN lists than other points. Unlike distance concentra-
tion, the skewness of Nk has not been studied in depth. As
will be described in Section 2.2, the two phenomena are re-
lated but distinct. In this paper we study the causes and the
implications of this aspect of the dimensionality curse.

1.1. Related Work

The skewness of Nk recently started to be observed in fields
like audio retrieval (Aucouturier & Pachet, 2007; Dod-
dington et al., 1998) and fingerprint identification (Hicklin
et al., 2005), where it is described as a problematic situa-
tion. Singh et al. (2003) notice possible skewness of N1

on real data and account for it in their reverse NN search
algorithm. Nevertheless, these works neither analyze the
causes of skewness nor generalize it to other applications.

The distribution of k-occurrences has been explicitly stud-
ied in the applied probability community (Newman et al.,
1983; Yao & Simons, 1996). No skewness was observed
because of the different properties of the settings studied,
which will be explained in Section 2.2.

1.2. Motivation and Contributions

Since the skewness of k-occurrences has been observed in
the contexts of specific applications, the question remains
whether it is limited to them by being an artifact of the data
or the modeling algorithms. In this paper we show that it
is actually an inherent property of high-dimensional vec-
tor spaces under widely used assumptions. To the best of
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our knowledge, there has been no study relating this phe-
nomenon with the properties of vector space and the dimen-
sionality curse. It is worth to examine its origin and conse-
quences because of its influence on applications based on
distances in vector spaces, notably classification, cluster-
ing, and information retrieval.

We make the following contributions. First, we demon-
strate and explain the emergence of skewness of k-
occurrences (Section 2). We then study its implications on
widely used techniques (Sections 3–5). As this is a pre-
liminary examination of the problem, we provide a list of
directions for future work (Section 6).

2. The Skewness of k-occurrences
In this section we first demonstrate the emergence of skew-
ness in the distribution of Nk and then explain its causes.

2.1. A Motivating Example

We start with an illustrative experiment which demon-
strates the changes in the distribution of Nk with vary-
ing dimensionality. Consider a random data set consist-
ing of 10000 d-dimensional points drawn uniformly from
the unit hypercube [0, 1]d, and the following distance func-
tions: Euclidean (l2), fractional l0.5 (proposed for high-
dimensional data by Aggarwal et al. (2001)), and cosine.
Figure 1 shows the empirically observed distributions of
Nk, with k = 5, for (a) d = 3, (b) d = 20, and (c) d = 100.

For d = 3 the distributions of N5 for the three distance
functions (Fig. 1(a)) are consistent with the binomial dis-
tribution. This is expected when considering k-occurrences
as node in-degrees in the k-nearest neighbor digraph. For
uniformly distributed points in low dimensions, this di-
graph follows the Erdős-Rényi (ER) random graph model,
in which the degree distribution is binomial (Erdős &
Rényi, 1959).

As dimensionality increases, the observed distributions of
N5 depart from the random graph model and become more
skewed to the right (Fig. 1(b, c)). We verified this by being
able to fit the tails of the distributions with the log-normal
distribution, which is highly skewed (fits were supported
by the χ2-test at 0.05 confidence level). We made similar
observations with various k values, distance measures (lp
norm for both p ≥ 1 and 0 < p < 1, Bray-Curtis, normal-
ized Euclidean, and Canberra), and distributions, like the
normal. In all these cases, skewness exists and produces
hubs, i.e., points with high Nk.

2.2. The Causes of Skewness

The skewness of k-occurrences appears to be related with
the phenomenon of distance concentration, which is usu-

ally expressed as the ratio between some measure of spread
and some measure of magnitude of distances of all points
in a data set to some arbitrary reference point (Aggarwal
et al., 2001; François et al., 2007). If this ratio converges
to 0 as dimensionality goes to infinity, it is said that the
distances concentrate.

To ease comprehension, consider again the iid uniform ran-
dom data examined in the previous section and select as the
reference point the mean of the distribution. Figure 2 plots,
for each point x, its N5(x) against its Euclidean distance
from the mean, for d = 3, 20, 100. As dimensionality in-
creases, stronger correlation emerges, meaning that points
closer to the mean tend to become hubs. We need to un-
derstand why some points tend to be closer to the mean
and, thus, become hubs. Based on existing theoretical re-
sults (Beyer et al., 1999; Aggarwal et al., 2001), high di-
mensional points are approximately lying on a hypersphere
centered at the data set mean. Moreover, the results by De-
martines (1994) and François et al. (2007) specify that the
distribution of distances to the data set mean has a non-
negligible variance for any finite d.1 Hence, the existence
of a non-negligible number of points closer to the data set
mean is expected in high dimensions. These points, by be-
ing closer to the mean, tend to be closer to all other points
– a tendency which is amplified (in relative terms) by high
dimensionality, making points closer to the data set mean
have increased inclusion probability into k-NN lists, even
for small values of k.

Note that the non-negligible variance has an additional
“side”: we also expect points farther from the mean and,
thus, with much lower Nk than the rest. Such points corre-
spond to the bottom-right parts of Fig. 2(b, c), and can be
regarded as outliers since they are also far away from all
other points (Tan et al., 2005). Outliers will be analyzed
further in Section 4.

Research in applied probability describes that, within the
Poisson process setting, as d → ∞ the distribution of
k-occurrences converges to the Poisson distribution with
mean k (Newman et al., 1983; Yao & Simons, 1996), which
implies no skewness. However, a Poisson process produces
an unbounded infinite set of points for which no meaning-
ful data set mean exists, and distances do not concentrate
(their spread and magnitude are infinite). Through simu-
lation of this setting we verified that, once boundaries are
introduced (as in the majority of practical cases), skewness
of Nk emerges.2

1These results apply to lp distances, but our numerical sim-
ulations suggest that other mentioned distance functions behave
similarly.

2With the exception of combinations of (bounded) data dis-
tributions and distances without meaningful means, e.g. centered
normal distribution and cosine distance.
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Figure 1. Distribution of 5-occurrences for Euclidean, l0.5, and cosine distances on iid uniform random data sets with dimensionality
(a) d = 3, (b) d = 20, and (c) d = 100 (log-log plot).
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Figure 2. Scatter plots and Spearman correlation of N5(x) against the Euclidean distance of point x to the data set mean for iid uniform
random data with (a) d = 3, (b) d = 20, and (c) d = 100.

2.3. Skewness in Real Data

In this section we examine the skewness of Nk in real data
which, unlike previously examined random data, present
two factors: (a) they usually have dependent attributes,
therefore we need to consider their intrinsic dimensionality
(measured by the maximum likelihood estimator (Levina
& Bickel, 2005)), (b) they are usually clustered, hence we
need to consider more than one group of points.

We examined 50 real data sets belonging to three cate-
gories: UCI multidimensional data, gene expression data,
and textual data. Due to space considerations, Table 1 lists
mainly the data sets used in later sections. Columns de-
scribe data set sources, basic statistics (whether attributes
were standardized or not, the number of points (n), embed-
ding dimensionality (d), estimated intrinsic dimensionality
(dmle), number of classes), the number of groups (clusters)
for expressing correlations with Nk, and the distance met-
ric (Euclidean or cosine). We took care to ensure that the
choice of distance metric and preprocessing (i.e., standard-
ization) corresponds to a realistic scenario for the particular
data set. The value of k will be fixed at 10.

We characterize the asymmetry of Nk with the standard-
ized third moment SNk

= E(Nk − µNk
)3/σ3

Nk
(µNk

, σNk

are the mean and standard deviation of Nk, resp.). The cor-
responding (10th) column of Table 1 shows that N10 of all
examined data are skewed to the right.3 Moreover, we de-

3If SNk = 0 there is no skewness, positive (negative) values
signify skewness to the right (left).

fine for each point x its standardized hubness score h(x)
(used in later sections):

h(x) = (Nk(x)− µNk
)/σNk

. (1)

To examine the first factor (intrinsic dimensionality), for
each data set we randomly permuted the elements within
every attribute. This way, attributes preserve their individ-
ual distributions, but the dependencies between them are
lost and intrinsic dimensionality increases (François et al.,
2007). In Table 1 (11th column) we give the skewness, de-
noted SS

Nk
, of the modified data. In most cases SS

Nk
is con-

siderably higher than SNk
, implying that skewness depends

on the intrinsic rather than embedding dimensionality.

To examine the second factor (many groups), for every data
set we measured: (i) the Spearman correlation, denoted as
CN10

dm (12th column), of Nk and the distance from the data
set mean, and (ii) the correlation, denoted as CN10

cm (13th
column), of Nk and the distance to the closest group mean.
Groups are determined using K-means clustering, where
the number of clusters was computed for each data set by
exhaustive search of values between 2 and b

√
nc, in order

to maximize CN10
cm .4 In most cases, CN10

cm is much stronger
than CN10

dm . Consequently, in real data hubs are closer than
other points to their respective cluster centers (which we
verified by examining the actual scatter plots).

4We report averages of CN10
cm over 10 runs of K-means clus-

tering with different random seeding, in order to reduce the effects
of chance.
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Table 1. Real data sets (portion). Data sources are the UCI Machine Learning Repository, and Kent Ridge Bio-medical Repository (KR).

Name Src. Stan. n d dmle Cls. Clu. Dist. SN10 SS
N10

C
N10
dm CN10

cm CAV gBN 10 C
N10
BN10

ecoli UCI yes 336 7 4.13 8 8 l2 0.116 0.208 −0.396 −0.792 0.193 0.223 0.245
ionosphere UCI yes 351 34 13.57 2 18 l2 1.717 2.051 −0.639 −0.832 0.259 0.185 0.464
mfeat-factors UCI yes 2000 216 8.47 10 44 l2 0.826 5.493 −0.113 −0.688 0.145 0.063 0.001
mfeat-fourier UCI yes 2000 76 11.48 10 44 l2 1.277 4.001 −0.350 −0.596 0.415 0.272 0.436
musk1 UCI yes 476 166 6.74 2 17 l2 1.327 3.845 −0.376 −0.752 0.474 0.237 0.621
optdigits UCI yes 5620 64 9.62 10 74 l2 1.095 3.789 −0.223 −0.601 0.168 0.044 0.097
page-blocks UCI yes 5473 10 3.73 5 72 l2 −0.014 0.470 −0.063 −0.289 0.068 0.049 −0.046
pendigits UCI yes 10992 16 5.93 10 104 l2 0.435 0.982 −0.062 −0.513 0.156 0.014 −0.030
segment UCI yes 2310 19 3.93 7 48 l2 0.313 1.111 −0.077 −0.453 0.332 0.089 0.074
sonar UCI yes 208 60 9.67 2 8 l2 1.354 3.053 −0.550 −0.771 0.461 0.286 0.632
spambase UCI yes 4601 57 11.45 2 49 l2 1.916 2.292 −0.376 −0.448 0.271 0.139 0.401
spectrometer UCI yes 531 100 8.04 10 17 l2 0.591 3.123 −0.269 −0.670 0.242 0.200 0.225
vehicle UCI yes 846 18 5.61 4 25 l2 0.603 1.625 −0.162 −0.643 0.586 0.358 0.435
vowel UCI yes 990 10 2.39 11 27 l2 0.766 0.935 −0.252 −0.605 0.598 0.313 0.691
lungCancer KR no 181 12533 59.66 2 6 l2 1.248 3.073 −0.537 −0.673 0.136 0.052 0.262
ovarian-61902 KR no 253 15154 9.58 2 10 l2 0.760 3.771 −0.559 −0.773 0.399 0.164 0.467
mini-newsgroups UCI no 1999 7827 3226.43 20 44 cos 1.980 1.765 −0.422 −0.704 0.526 0.524 0.701
reuters-transcribed UCI no 201 3029 234.68 10 3 cos 1.165 1.693 −0.781 −0.763 0.595 0.642 0.871

2.4. Skewness and Intrinsic Dimensionality

The results in Table 1 suggest that the skewness of Nk is
strongly correlated with d (Spearman correlation over all
50 data sets is 0.62), and especially with the intrinsic di-
mensionality dmle (Spearman correlation over all 50 data
sets is 0.80). We elaborate further on the interplay of skew-
ness and intrinsic dimensionality by considering dimen-
sionality reduction (DR) techniques. The main question
is whether DR can alleviate the issue of the skewness of
k-occurrences altogether.

We examined the widely used principal component analy-
sis (PCA) dimensionality reduction method. Figure 3 de-
picts for several real data sets, and iid uniform random data,
the relationship between the percentage of features main-
tained by PCA, and SNk

(k = 10). For real data, SNk
stays

relatively constant until a small percentage of features is
left, after which it suddenly drops. This is the point where
the intrinsic dimensionality is reached, and further reduc-
tion incurs loss of information. Such behavior is in con-
trast with the case of iid uniform random data, where SNk

steadily reduces with the decreasing number of (randomly)
selected features (PCA is not meaningful in this case), be-
cause intrinsic and embedded dimensionalities are equal.
These observations indicate that dimensionality reduction
does not have a significant effect on the skewness of k-
occurrences when the number of features is above the in-
trinsic dimensionality, a result that is useful in most prac-
tical cases since otherwise loss of significant information
may occur.

3. Influence on Classification
From this section we start to investigate possible implica-
tions of the skewness of Nk on widely used machine learn-
ing methods, beginning with supervised learning.
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Figure 3. Skewness of N10 in relation to the percentage of PCA
features kept.

3.1. “Good” and “Bad” k-occurrences

When labels are present, k-occurrences can be distin-
guished based on whether labels of neighbors match. We
define the number of “bad” k-occurrences of x, BN k(x),
as the number of points from D for which x is among the
first k NNs and the labels of x and the points in ques-
tion do not match. Conversely, GN k(x), the number of
“good” k-occurrences of x, is the number of such points
where labels do match. Naturally, for every x ∈ D,
Nk(x) = BN k(x) + GN k(x).

To account for labels, Table 1 includes B̃N 10 (15th col-
umn), the sum of all “bad” 10-occurrences of a data set nor-
malized by

∑
x N10(x) = 10n. This measure is intended

to express the total amount of “bad” k-occurrences within
a data set. Also, to compute the amount of information reg-
ular k-occurrences contain about “bad” k-occurrences in a
data set, CN10

BN 10
(16th column) denotes the Spearman cor-

relation between BN 10 and N10 vectors. The motivation
behind this measure is to express the degree to which BN k

and Nk follow a similar distribution.

“Bad” hubs, i.e., points with high BN k, are of particular
interest to supervised learning, since they carry more infor-
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mation about the location of the decision boundaries than
other points, and affect classification algorithms (as will be
described next). To understand the origins of “bad” hubs
in real data, we rely on the notion of the cluster assump-
tion from semi-supervised learning (Chapelle et al., 2006),
which roughly states that most pairs of points in a high den-
sity region (cluster) should be of the same class. To mea-
sure the degree to which the cluster assumption is violated
in a particular data set, we simply define the cluster as-
sumption violation (CAV) coefficient as follows. Let a be
the number of pairs of points which are in different classes
but in the same cluster, and b the number of pairs of points
which are in the same class and cluster. Then, we define
CAV = a/(a + b), which gives a number in range [0, 1],
higher if there is more violation. To reduce the sensitiv-
ity of CAV to the number of clusters (too low and it will
be overly pessimistic, too high and it will be overly op-
timistic), we choose the number of clusters to be 3 times
the number of classes of a particular data set. Clustering is
performed with K-means.

For all examined (50) real data sets, we computed the
Spearman correlations between B̃N 10 and CAV (14th col-
umn of Table 1), and found it strong (0.85). Another sig-
nificant correlation (0.39) is observed between CN10

BN 10
and

intrinsic dimensionality. In contrast, B̃N 10 is not corre-
lated with intrinsic dimensionality nor with the skewness
of N10 (both correlations are around 0.03). The latter fact
indicates that high dimensionality and skewness of Nk are
not sufficient to induce “bad” hubs. Instead, based on the
former fact, we can argue that there are two, mostly inde-
pendent, forces at work: violation of the cluster assumption
on one hand, and high intrinsic dimensionality on the other.
“Bad” hubs originate from putting the two together; i.e.,
the consequences of violating the cluster assumption can
be more severe in high dimensions than in low dimensions,
not in terms of the total amount of “bad” k-occurrences,
but in terms of their distribution, since strong regular hubs
are now more prone to “pick up” bad k-occurrences than
non-hub points. This is supported by the positive correla-
tion between CN10

BN 10
with intrinsic dimensionality, meaning

that in high dimensions BN k tends to follow a more similar
distribution to Nk than in low dimensions.

3.2. Influence on Classification Algorithms

We now examine how the skewness of Nk and the ex-
istence of (“bad”) hubs affects well-known classification
techniques, focusing on the k-NN classifier, support vector
machines (SVM), and AdaBoost.

k-NN classifier. The k-NN classifier is negatively affected
by the presence of “bad” hubs, because they provide erro-
neous class information to many other points. To validate
this assumption, we tried a simple weighting scheme. For

each point x, we calculate its standardized “bad” hubness
score, hB(x), by adapting its h(x) score (Equation 1) to
consider BN k(x) instead of Nk(x). Thus, during majority
voting, when a point x participates a k-NN list, its vote is
weighted by e−hB(x). Figure 4(a–d) compares the resulting
accuracy of k-NN classifier with and without this weight-
ing scheme for some data sets of Table 1. Leave-one-out
evaluation is performed using Euclidean distance, whereas
the k value for Nk is naturally set to the k value used by the
k-NN classifier. The reduced accuracy of the unweighted
scheme signifies the negative influence of “bad” hubs.

Support vector machines. We consider SVM with the
RBF (Gaussian) kernel, which is a smooth monotone func-
tion of the Euclidean distance between points. Therefore,
Nk values in the kernel space are exactly the same as in the
original space.5 To examine the influence of “bad” hubs
on SVM, Fig. 4(e, f) illustrates 10-fold cross-validation ac-
curacy results when points are progressively removed from
the training sets: (i) by decreasing BN k (k = 5), and (ii) at
random. Accuracy drops with removal by BN k, indicating
that bad hubs are important for SVMs.

The reason is that in high-dimensional data, points with
high BN k can comprise good support vectors. Table 2 ex-
emplifies this point by listing, for several data sets, normal-
ized average ranks of support vectors in the 10-fold cross-
validation models with regards to decreasing BN k. The
ranks are in the range [0, 1], with the value 0.5 expected
from a random set of points. Lower values of the ranks
indicate that the support vectors, on average, tend to have
high BN k.

Table 2. Normalized average support vector ranks with regards to
decreasing BN 5.

Data set SV rank Data set SV rank
mfeat-factors 0.218 page-blocks 0.267
mfeat-fourier 0.381 segment 0.272
optdigits 0.189 vehicle 0.464

AdaBoost. Boosting algorithms take into account the “im-
portance” of points in the training set for classification by
weak learners, usually by assigning and updating weights
of individual points – the higher the weight, the more at-
tention is to be paid to the point by following learners. We
consider the classical AdaBoost algorithm in conjunction
with CART trees of maximal depth 3, and set the initial
weight of each point x in the training set to 1/(1 + |h(x)|),
normalized by the sum over all points (h(x) was defined in
Equation 1). The motivation behind the weighting scheme
is to assign less importance to both hubs and outliers than

5Centering the kernel matrix changes the Nk of points in the
kernel space, but we observed that the overall distribution (i.e. its
skewness) does not become radically different. Therefore, the fol-
lowing arguments still hold for centered kernels, providing Nk is
calculated in the kernel space.
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Figure 4. (a–d) Accuracy of k-NN classifier with and without the weighting scheme. (e, f) Accuracy of SVM with RBF kernel and points
being removed from the training sets by decreasing BN 5, and at random (averaged over 20 runs). (g, h) Accuracy of AdaBoost with and
without the weighting scheme: (g) k = 20, (h) k = 40.
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Figure 5. Binned accuracy of AdaBoost, by decreasing Nk.

other points (this is why we take the abs of h(x)). Fig-
ure 4(g, h) illustrates on two data sets from Table 1 how
the weighting scheme helps AdaBoost achieve better gen-
eralization in fewer iterations, showing the classification
accuracy on a 2:1:1 training-validation-test set split (vali-
dation sets are used to determine the values of k). While
it is known that AdaBoost is sensitive to outliers, this sug-
gests that hubs should be regarded in an analogous manner,
i.e. both hubs and outliers are intrinsically more difficult
to classify correctly, and the attention of the weak learners
should initially be focused on regular points.

To further support this claim Fig. 5 depicts binned accura-
cies of unweighted AdaBoost trained in one fifth of the iter-
ations shown in Fig. 4(g, h), for points sorted by decreasing
k-occurrences. It exemplifies how in earlier phases of en-
semble training the generalization power with hubs and/or
outliers is worse than with regular points.

4. Influence on Clustering
The main objectives of clustering algorithms are to mini-
mize intra-cluster distance and maximize inter-cluster dis-
tance. The skewness of k-occurrences in high-dimensional
data influences both objectives.

Intra-cluster distance may be increased due to points with
low k-occurrences. As mentioned in Section 2.2, such
points are far from all the rest, acting as outliers. A com-
mon outlier score of a point is its distance from its k-th
nearest neighbor (Tan et al., 2005). Low Nk values
and high outlier scores are correlated as exemplified in
Fig. 6(a, b) (in their lower-right parts) for two data sets from
Table 1. Outliers and their influence on clustering are well-
studied subjects (Tan et al., 2005): outliers do not clus-
ter well because they have high intra-cluster distance, thus
they are often discovered and eliminated beforehand. The
existence of outliers is attributed to various reasons (e.g.,
erroneous measurements). Nevertheless, the skewness of
Nk suggests that in high-dimensional data outliers are also
expected due to inherent properties of vector space.

Inter-cluster distance may be reduced due to points with
high k-occurrences, i.e., hubs. Like outliers, hubs do not
cluster well, but for a different reason: they have low inter-
cluster distance, because they are close to many points, thus
also to points from other clusters. In contrast to outliers,
the influence of hubs on clustering has not attracted signif-
icant attention.

To examine the influence of both outliers and hubs, we
used the popular silhouette coefficients (SC) (Tan et al.,
2005). For the i-th point, ai is its average distance to all
points in its cluster (ai corresponds to intra-cluster dis-
tance), whereas bi is the minimum average distance to
points of other clusters (bi corresponds to inter-cluster dis-
tance). The SC of the i-th point is (bi − ai)/ max(ai, bi),
in range [−1, 1] (higher values are preferred). We exam-
ined several clustering algorithms and distance measures,
but due to lack of space report results for the algorithm
of Meilă and Shi (2001) and Euclidean distance. Follow-
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Figure 6. (a, b) Correlation between low Nk and outlier score
(k = 20). (c) Relative silhouette coefficients for hubs (gray filled
bars) and outliers (empty bars). Relative values for a and b coef-
ficients are also plotted (referring to the right vertical axes).

ing a standard method, we select as hubs those points x
with h(x) > 2, i.e., Nk(x) more than 2 standard deviations
higher than the mean (note that h(x) ignores labels). Let
nh be their number. Moreover, we select as outliers the nh

points with the lowest k-occurrences. Finally, we randomly
select nh points from the remaining points (we report av-
erages for 100 different selections). To compare hubs and
outliers against random points, we measure as relative SC
of hubs (outliers) the quotient of the mean SC of hubs (out-
liers) divided by mean SC of random points. For several
data sets from Table 1, Figure 6(c) plots with bars the rela-
tive SC. As expected, outliers have relative SC lower than
one, meaning that they cluster worse than random points.
Notably, the same holds for hubs, too.6

To gain further insight, the same figure plots with lines
(referring to the right vertical axes) for hubs and outliers
their relative mean values of ai and bi (dividing with those
of randomly selected points). Outliers have high relative
ai values, indicating higher intra-cluster distance. Hubs,
in contrast, have low relative bi values, indicating reduced
inter-cluster distance. In conclusion, when clustering high-
dimensional data, hubs should receive analogous attention
as outliers.

6The statistical significance of differences between the mean
SC of hubs and randomly selected points has been verified with
the double t-test at 0.05 confidence level.

5. Influence on Information Retrieval
The existence of hubs affects applications that are based on
nearest neighbor queries. A typical example in informa-
tion retrieval is finding documents that are most similar to
a query document. Hub documents will be frequently in-
cluded in the result list without necessarily being relevant
to the query. This may harm the precision of results and the
users’ experience, by having “persistent” irrelevant results.

To reduce the inclusion probability of hubs in the result list,
we can increase their distance from query documents. For
this purpose we use a simple scheme. Given a database, D,
of documents, for each x ∈ D, let d(x, q) be the distance
(in the range [0, 1]) between x and a query document q. Be-
ing consistent with the findings in the previous section, we
ignore labels and consider as hubs those documents with
h(x) > 2. For hubs, we increase d(x, q) as follows:

d(x, q)← d(x, q) + (1− d(x, q))
h(x)

maxy∈D h(y)
.

Thus, the higher the h(x), the more the distance is in-
creased, remaining however in the range [0, 1].

We examine the influence of hubs by comparing this
scheme with the regular case (no increment). We use co-
sine distance, leave-one-out cross validation, and measure
precision (fraction of results with same class label as the
query) versus the number of retrieved documents. Figure 7
reports (with bars) precision with and without using the
increment scheme, for two selected (for space considera-
tions) text data sets given in Table 1. The same figure de-
picts with lines (referring to the right axis) the probability
of a hub to be included in the result list. In the regular case
(no increment), hubs have much higher inclusion probabil-
ity, resulting in lower precision.
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Figure 7. Precision with (solid bars) and without (dashed bars) the
distance increment scheme: (a) k = 10, (b) k = 1. Inclusion
probability of hubs is also plotted (against the right vertical axes)
with (solid line) and without (dashed line) the increment scheme.

6. Conclusion
We explored the emergence of skewness of k-occurrences
in high-dimensional data, and possible implications on sev-
eral important applications, namely classification, cluster-
ing, and information retrieval. Experimental results sug-
gest these applications are affected by the skewness phe-
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nomenon, and that explicitly taking skewness into account
can improve the accuracy of different methods. Although
this was a preliminary examination, we hope we demon-
strated that the phenomenon may be significant to many
fields of machine learning, data mining and information re-
trieval, and that it warrants further investigation.

Possible directions for future work include a more formal
and theoretical study of the interplay between the skew-
ness of k-occurrences and various distance-based machine
learning models, possibly leading to approaches that ac-
count for the phenomenon at a deeper level. Supervised
learning methods may deserve special attention, as it was
also observed in another study (Caruana et al., 2008) that
the k-NN classifier and boosted decision trees can experi-
ence problems in high dimensions. Further directions of re-
search may involve determining whether the phenomenon
is applicable to probabilistic models, (unboosted) decision
trees, and other techniques not explicitly based on distances
between points; and also to algorithms based on general
metric spaces. Since we determined a correlation between
hubness and the proximity to cluster centers for K-means
clustering of high-dimensional data, it would be interesting
to explore how this can be used in seeding iterative clus-
tering algorithms, like K-means or self-organizing maps.
The interplay between dimensionality reduction and skew-
ness of Nk may also be worth further study. Other fields
that could directly benefit from an investigation into the
skewness of Nk include outlier detection and reverse k-NN
queries. Finally, as we determined high correlation be-
tween intrinsic dimensionality and the skewness of Nk, it
would be interesting to see whether some measure of skew-
ness of the distribution of Nk can be used for estimation of
the intrinsic dimensionality of a data set.
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