
Sparse Higher Order Conditional Random Fields
for improved sequence labeling

Xian Qian† qianxian@fudan.edu.cn
Xiaoqian Jiang ‡ xqjiang@mit.edu
Qi Zhang† qi zhang@fudan.edu.cn
Xuanjing Huang† xjhuang@fudan.edu.cn
Lide Wu† ldwu@fudan.edu.cn
†School of Computer Science, Fudan University, Shanghai, 200433, P.R.China
‡School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.

Abstract

In real sequence labeling tasks, statistics of
many higher order features are not sufficient
due to the training data sparseness, very
few of them are useful. We describe Sparse
Higher Order Conditional Random Fields
(SHO-CRFs), which are able to handle local
features and sparse higher order features to-
gether using a novel tractable exact inference
algorithm. Our main insight is that states
and transitions with same potential functions
can be grouped together, and inference is per-
formed on the grouped states and transitions.
Though the complexity is not polynomial,
SHO-CRFs are still efficient in practice be-
cause of the feature sparseness. Experimental
results on optical character recognition and
Chinese organization name recognition show
that with the same higher order feature set,
SHO-CRFs significantly outperform previous
approaches.

1. Introduction

In sequence labeling tasks, structured learning models
owe a great part of their success to the ability in us-
ing local structured information, such as Conditional
Random Fields (CRFs) (Lafferty et al., 2001), Aver-
aged Perceptron (Collins, 2002a), Max Margin Markov
Networks (Taskar et al., 2003), etc. However, these ap-
proaches are inefficient to cover long distance features
due to high computational complexity.

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

Recent approaches attempting to capture non-local
features can be divided into four classes. The first
class employs approximate inference algorithms such
as Loopy Belief Propagation, Gibbs sampling. Despite
of their simplicity, approximate inference techniques
are not guaranteed to converge to a good approxi-
mation. The second class uses reranking framework
such as (Collins, 2002b). These approaches typically
generate N best candidate predictions, then adopt a
post processing model to rerank these candidates using
non-local features. The main drawback of these meth-
ods is that the effectiveness of post processing model
is restricted by the number of candidates. The third
class chooses Semi-Markov chain as the graphic model,
such as Semi-Markov CRFs (Sarawagi & Cohen, 2004).
Though the inference is exact and efficient, it can only
deal with segment-based higher order features. The
last class formulates the labeling task as a linear pro-
gramming(LP) problem with some relaxations (Roth
& tau Yih, 2005), so higher order features can be rep-
resented as linear constraints. For many higher order
features, such inference is still approximate.

Different from the approaches mentioned above, we
want to handle local and non-local features together
while keeping the inference exact and tractable with
some reasonable assumptions on non-local features.
Our motivation is that in real applications, statis-
tics of higher order features are not sufficient due to
the training data sparseness, most of them may be
useless. For example, in the optical character recog-
nition(OCR) task, many higher order transitions are
meaningless, such as “aaaa”, “ijklmn”, only very few
of them are helpful, such as “tion”, “ment”. So in this
sense, higher order features are sparse in terms of their
contribution.

We propose Sparse Higher Order Conditional Ran-

Sparse Higher Order CRFs

dom Fields(SHO-CRFs) which can handle local and
sparse higher order features together using a novel
tractable exact inference algorithm. Though at the
worst case, the complexity is still not polynomial,
SHO-CRFs is quite efficient in practice due to feature
sparseness. Experiments on optical character recogni-
tion(OCR) and Chinese organization name recognition
tasks demonstrate our technique, SHO-CRFs signifi-
cantly outperform conventional CRFs with the help of
sparse higher order features, and outperform the can-
didate reranking approach with the same higher order
features.

The paper is structured as follows: in section 2, we
give the definition of configurations; in section 3, we
describe our new inference algorithm using configura-
tion graph; in section 4, we analyze the complexity of
SHO-CRFs; experimental results are shown in section
5; we conclude the work in section 6.

2. Features and configurations

For probabilistic graphical models, the task of se-
quence labeling is to learn a conditional distribution
p(y|x), where x = x1 . . . xl is the observed node se-
quence to be labeled, y = y1y2 . . . yl is the label se-
quence. Each component yt is assumed to range over
a finite label alphabet. For example, in named en-
tity recognition(NER) task, we want to extract person
names. Here x might be a sequence of words, and y
might be a sequence in {B, I,O}|x|, where yt = B in-
dicates “word xt is the beginning of a person name”,
yt = I indicates “word xt is inside a person name, but
not the beginning” and yt = O indicates other cases.

CRFs are undirected graphic models depicted by
Markov network distribution:

p(y|x) ∝
l∏

t=1

φ(x,y, t)

where φ(x,y, t) is a real-valued potential function at
position t, which has the form:

φ(x,y, t) = exp

(∑

i

wifi(x,ys:t)

)

where wi is the parameter to be estimated from the
training data, fi is a real valued feature function, or
features for short, which is given and fixed. In this
paper, for simplicity, we will focus on the case of binary
features. However, our results extend easily to the
general real valued case. We call a binary feature is
fired if its value is true. ys:t = ysys+1 . . . yt is a label
subsequence affected by fi, t− s is the order of fi.

Formally, each feature can be factorized into two parts:

f(x,ys:t) = b(x, t)IZ(ys:t)

Both parts are binary functions, b(x, t) indicates
whether the observation satisfies certain characteris-
tics at position t, Z is a set of label subsequences that
are specified by f . IZ(ys:t) indicates whether ys:t ∈ Z.

For example, we define a feature which is fired if the
word subsequence lies between “professor” and “said”
is recognized as a person name. Consider the sentence
x =“Professor Abdul Rahman Haj Yihye said ...”, we
have

f1(x,y2:5) = b(x, 5)I{BIII}(y2:5)

where

b(x, 5) =

1 if the 1 st word is “professor′′

and the next word is “said′′

0 otherwise

Another example is the feature used in skip chain
CRFs, which is fired if a pair of same capitalized
words have similar label. Suppose x =“Speaker John
Smith ... Professor Smith will ...”, “Smith” appears
at position 3 and 100. Let U = {B, I, O} denote
the full label set, U4:99 = U × · · · × U , and Z =
{B, I} ×U4:99 × {B, I}, we have,

f2(x,y3:100) = b(x, 100)IZ(y3:100)

where

b(x, 100) =

1 if the 3rd and 100 th words are
the same and capitalized

0 otherwise

Such feature is fired only if both “Smith” are labeled
as a part of person name.

For a fired feature f at position t, if its corresponding
Z yields the form Zs:t = Zs × Zs+1 × · · · × Zt, where
Zi ⊆ U, s ≤ i ≤ t, such Z is called the configuration
of f . Both examples mentioned above are configura-
tions. However, for example, Z = {BI, IB} is not a
configuration, in this case, we treat it as union of two
configurations.

The potential function of a configuration is defined as:

φ(Zs:t) = exp (wf(x,ys:t)) , for any ys:t ∼ Zs:t

where yp:q ∼ Zs:t(p ≤ s ≤ t ≤ q) indicates that subse-
quence yp:q satisfies ys:t ∈ Zs:t.

Sparse Higher Order CRFs

3. Inference

3.1. Task

We describe our inference algorithm for train-
ing, which can be applied for decoding with a
slight modification. In training stage, CRFs learn
w = [w1, . . . , wM]T from training data X =
{(x(1), ỹ(1)), (x(2), ỹ(2)) . . . }:

min
w
O(w) = −

∑

i

log p(ỹ(i)|x(i))

where ỹ(i) is the gold standard label sequence of x(i),
M is the feature number.

The goal of inference is to calculate O(w) and ∂O
∂w . It

is not difficult to obtain that

∂O
∂wj

=
∑

i

∑
t

(
γ(Zi,t)− fj(x(i), ỹ(i)

s:t)
)

where Zi,t is the configuration of fj at position t of
the ith training sample, and γ(Zi,t) is the marginal
probability:

γ(Zi,t) =
∑

y∼Zi,t

p(y|x(i))

The inference task is to compute γ(Zi,t).

3.2. The configuration graph

Given a sequence, we could represent its configurations
by a configuration graph. For example, suppose there
are two configurations, A1:3 = {B, I} × {I} × {B, I}
and B2:4 = {I, O} × {I, O} × {B}, the corresponding
configuration graph is shown in Figure 1, each config-
uration is represented by a box.

{B,I} {I} {B,I}× ×

{I,O} {I,O} {B}× ×

{I} {I}×

position

1 2 3 4

Figure 1. A configuration graph

Since γ(Zr:t) =
∑

yr:t∼Zr:t
γ(yr:t) =∑

yr−1:t∼U×Zr:t
γ(yr−1:t) = γ(Z′r−1:t), so a con-

figuration could be extended to a wider range while
keeping its marginal probability. Let rmin denote the
leftmost position of the configurations at t, then all
the configurations at t could be extended to rmin : t,
so that they have same range. In the rest of the

paper, we assume that such extension has been done
for all configurations.

The extension operation will be frequently used in the
rest of the paper, given a set of label subsequence,
As:t = {ys:t} and new range from p to q, the extension
is defined as:

Ep:q(As:t)

=

Ap:q s ≤ p ≤ q ≤ t
Up:s−1 ×As:q p < s ≤ q ≤ t
Ap:t ×Ut+1:q s ≤ p ≤ t < q
Up:s−1 ×As:t ×Ut+1:q p < s ≤ t < q
Up:q otherwise

For configuration Zr:t, we wish to compute its
marginal probability using

γ(Zr:t) =
1

z(x)

∑

yr:t∼Zr:t

α(x,yr:t)β(x,yr:t) (1)

where z(x) is the partition function,

α(x,yr:t) =
∑

y′1:t∼{yr:t}

t∏

k=1

φ(x,y′1:t, k)

β(x,yr:t) =
∑

y′r:l∼{yr:t}

l∏

k=t+1

φ(x,y′r:l, k)

Intuitively, if we treat y as a flow that flows from
left to right, α(x,yr:t) denotes the potential functions
that have been obtained by flows end with yr:t, and
β(x,yr:t) denotes the potential functions that will be
obtained by flows begin with yr:t.

However, formulation (1) is incorrect, consider the ex-
ample in Figure 2, where A,B are configurations at
t, t + 1 respectively, y1r:t = y2r:t ∈ A. We could
not compute β(y1r:t), since β(y1) 6= β(y2), the rea-
son is that, β(y1) excludes φ(B), while β(y2) does
not. Hence we don’t know whether β(y1r:t) = β(y1)
or β(y2).

A

B

t t+1

y1

y2

rr-1

A

B

y1

y2

t t+1rr-1

Figure 2. Error example of formulation (1) and correction

However, we could rectify this formulation by extend-
ing Ar:t to Ar−1:t, so that y1 and y2 are two different
elements of Ar−1:t. Similarly, for configuration Cp:t+2,
if p < r, such extension is also required.

Sparse Higher Order CRFs

Therefore, we should consider the leftmost position
(denoted as s) of configurations at t+1, t+2, . . . that
overlaps Ur:t, and extends configurations Zir:t to Zis:t

if s < r. In the following, we assume that such exten-
sion has been done for all configurations, i.e., r ≤ s.

In fact, the β value is unique for ys:t, even s > r, so
we use the following equation for inference:

γ(Zr:t) =
1

z(x)

∑

yr:t∼Zr:t

α(x,yr:t)β(x,ys:t) (2)

Conventional forward backward algorithm considers
all yr:t ∼ Ur:t to calculate z(x) and γ(Z), hence
the complexity is exponential in the number of labels.
However, if we could split Us:t into several parts, so
that all elements in one part share a common β value,
then the complexity is reduced.

3.3. State partition

To derive a common β, we consider a simple case, Uu:v

and one configuration Bp:q, q > v are given. If p > v,
Bp:q and Uu:v are disjoint, then all yu:v ∼ Uu:v share
a common β: β(yu:v) = φ(B)|Bv+1:l|+ |Bv+1:l|, where
Bv+1:l = Ev+1:l(Bp:q). Hence no split needed.

If p ≤ v, We have,

β(yu:v) =
{

φ(B)|Bv+1:l|+ |Bv+1:l| yu:v ∼ Bu:v

|Uv+1:l| otherwise

where Bu:v = Eu:v(Bp:q), as shown in Figure 3. Hence,
we obtain the partition: {Bu:v,Bu:v}, all members in
one part share a common β.

Bu:v

Bu:v

Bu:q

v v+1u q

Figure 3. Split Uu:v so that all members in one part share
a common β.

Generally, consider Us:t mentioned in the previous
sunsection, let S = {Zip:q} denote the set of config-
urations at t + 1, t + 2, . . . that overlap Us:t, we ex-
tend each of them from Zip:q to Zis:t, then derive a
partition of Us:t, so that all ys:t in one part share a
common β:

P(S) = {Aks:t|Aks:t 6= ∅, k = 1, . . . , 2|S|} (3)

where Aks:t =
⋂|S|

i=1 Akis:t, Akis:t = Zis:t or Zis:t.

This partition is called the state partition of Us:t, de-
noted as πs:t, each part Aks:t ∈ πs:t is called a grouped

state. The common β value of Aks:t is denoted by
β(Aks:t) . P(S) is called the derived partition of con-
figuration set S.

3.4. Transition partition

The next problem is to calculate the β value. First,
we show two propositions:

Proposition 1

For any As:t ∈ πs:t and any y ∈ U , we have, all
ys:t+1 ∼ As:t×{y} share a common potential function
φ(x,ys:t+1, t + 1) at t + 1.

Proof Let S = {Zir:t+1} denote the set of con-
figurations at t + 1, and T = {Yis:t},where
Yis:t = Es:t(Zir:t+1), for its derived partition
P(T), each part can be represented by Cs:t =(⋂

i∈I Yis:t

) ⋂ (⋂
j∈T−I Yjs:t

)
, so Cs:t × {y} =

(⋂
i∈I Yis:t × {y}

) ⋂ (⋂
j∈T−I Yjs:t × {y}

)
. Hence

for any ys:t+1 ∼ Cs:t × {y}, its potential function
φ(x,ys:t+1, t + 1) =

∏
i∈I,y∈Zit+1

φ(Zi). Since πs:t is
refinement of P(T), so proposition 1 holds. �
Proposition 2

For any As:t ∈ πs:t, Br:t+1 ∈ πr:t+1, there exists an
Yt+1 ⊆ U , so that As:t × Yt+1 ⊆ Us:r−1 ×Br:t+1, and
As:t × Yt+1

⋂
Us:r−1 ×Br:t+1 = ∅.

Proof is shown in Appendix A, which also gives such
Yt+1. An intuitive illustration is shown in the left part
of Figure 4.

As:t t+1×Y

Br:t+1

A Ys:t t+1×

A Vs:t 1×

Br:t+1

3 grouped transitions

A Vs:t 2×

A Vs:t 3×

Y = Vt+1 iU

Figure 4. Left: Proposition 2, Right: 3 grouped transitions
between grouped states As:t and Br:t+1

All ys:t+1 ∼ As:t×Yt+1 share a common β. If we con-
sider all Bir:t+1 ∈ πr:t+1, then the set {As:t×Yi|As:t×
Yi ⊆ Us:r−1 ×Bir:t+1,Bir:t+1 ∈ πr:t+1} is a partition
of As:t × U , and the union of partitions of Ais:t × U
over Ais:t ∈ πs:t is a partition of Us:t+1. According
to proposition 1, all ys:t+1 ∼ As:t × {y} share a com-
mon potential function , so we derived a partition of
As:t × Yi =

⋃
j As:t × Vj so that all ys:t+1 in one part

As:t × Vj share common β and φ values (denoted by
φ(As:t × Vj)). The union of such partitions over all
{As:t × Yi} is a partition of Us:t+1, which is called

Sparse Higher Order CRFs

transition partition, denoted as $s:t+1. Each member
As:t × Vj is called a grouped transition. An example
is shown in the right part of Figure 4.

We could compute β(As:t) recursively by enumerating
all its linked grouped transitions {As:t × Vt+1}:

β(As:t)

=
∑

As:t×Vt+1

β(BVt+1)|Vt+1|φ(As:t × Vt+1)

where BVt+1 is the grouped state Br:t+1 that satisfies
Us:r−1 ×Br:t+1 ⊇ As:t × Vt+1.

3.5. The extended forward backward
algorithm

We could build a trellis in which grouped states are
represented by nodes, and edges between nodes denote
grouped transition sets between two grouped states.
If the transition set is empty, the corresponding edge
does not exist. For instance, consider the first feature
in section 2, suppose state features fi(yt,x, t) and first
order transition features gi(yt−1, yt,x, t) are used ad-
ditionally, the trellis is shown in Figure 5.

Abdul Rahman SaidHaj Yiyhe

{BII}

U×U×{B}

U×U×{O}

{B}

U×{I}-{BI} {O}

{I}

{B}

{O}

{I}

{B}

{O}

{I}

U×U×{I}-{BII}

{BI}

U×{B}

U×{O}

Figure 5. Trellis for the first feature example in section 2
with additional features fi(yt,x, t) and gi(yt−1, yt,x, t)

Recall that we use Equation (2) to compute marginal
probability of Zr:t, we have Zr:t =

⋃
i Tir:t where

Tir:t ∈ $r:t, and Tir:t has φ(Zr:t). So the problem
is to compute γ(Tir:t).

Suppose grouped transition Ts:t+1 = As:t×Vt+1 links
grouped states As:t and Br:t+1, we have,

γ(Ts:t+1)

∝
∑

ys:t+1∼Ts:t+1

α(ys:t+1)β(yr:t+1)

= β(Br:t+1)
∑

ys:t+1∼Ts:t+1

α(ys:t+1)

= β(Br:t+1)φ(Ts:t+1)|Vt+1|
∑

ys:t∼As:t

α(ys:t)

= β(Br:t+1)φ(Ts:t+1)|Vt+1|α(As:t)

where α(As:t) =
∑

ys:t∼As:t
α(ys:t), which could be

calculated recursively:

α(Br:t+1)

=
∑

As:t × Vt+1
⊆ Us:r−1 ×Br:t+1

α(As:t)|Vt+1|φ(As:t × Vt+1)

And z(x) =
∑

As:l∈πs:l
α(As:l).

4. Complexity analysis

In SHO-CRFs training, we have to derive state par-
titions and transition partitions of each sequence, a
trellis like Figure 5 is built. Given extended configu-
ration sets At = {Es:t(Zisi:ti

)}si≤t<ti
, and the config-

uration set at t+1 (denoted by Bt+1), the complexity
to derive πs:t is |πs:t||At| ≤ |$s:t+1||At|, the complex-
ity to derive $s:t+1 is |$s:t+1||Bt+1|. In the worse
case, |$s:t+1| is exponential in label size when feature
represents no sparsity at all. However in most real
world scenarios, the size of |$s:t+1| is usually limited,
so building such a trellis is tractable. In the second
step, the complexity of extended forward-backward al-
gorithm is the sum of |$s:t| over x, t.

The ratio κ(t) = |$s:t|
|U |t−s+1 is called the sparsity at t,

|$s:t|, |U |t−s+1 are the complexities of SHO-CRFs
and conventional CRFs respectively. For example,
the sparsity of the 4th word “Yiyhe” in Figure 5 is
κ(4) = 12/34.

5. Experiments

5.1. Optical Character Recognition(OCR)

We conduct two experiments to demonstrate our
method. The first is Optical Character Recognition
(OCR) task. For comparison, we use the same data
and settings as Ben Taskar’s work(Taskar et al., 2003),
where 6100 handwritten words were divided into 10
folds of 600 training and 5500 testing examples, aver-
aged character accuracy over the 10 folds are reported
as evaluation metric.

We compare our algorithm to four state of the art algo-
rithms: traditional CRFs (Lafferty et al., 2001), M3Ns
(Taskar et al., 2003), candidate reranking (Collins,
2002b) and structured Hidden Markov Model (SHMM)
(Galassi et al., 2007), a variant of Hierarchical Hidden
Markov Model that provides high level knowledge ab-
straction. For traditional CRFs, pixel features and
first order transition features are used. The results
of M3Ns are directly copied from Ben Taskar’s paper.
For candidate reranking and SHO-CRFs, we use the
affixes as additional higher order features. We down-

Sparse Higher Order CRFs

Table 1. Distribution of Affixes

Length 1 2 3 4 5 6 7 8

Number 45 236 216 94 81 38 20 15

load the word list from the web1, and get the pre-
fixes and suffixes of length 1-8 with frequency higher
than 100,100,100,100,70,70,70,50 respectively. Differ-
ent thresholds are used for affixes of different length
because frequencies of short affixes are generally higher
than long affixes, using a single threshold will add
noisy short affixes or miss important long affixes. The
distribution of affixes of different length are shown in
table 1.

An affix feature is defined as true if and only if the
first or last several predicted characters form the cor-
responding affix. For candidate reranking, we use tra-
ditional CRFs to generate 100 candidates, then use
averaged perceptron to rerank with affix features. For
SHO-CRFs, local features and affix features are used
simultaneously, the order of affix feature is one less
than the length of corresponding affix, so SHO-CRF is
a 7th order CRF. For SHMM, we use three blocks,
one emits general observation and two affix (suffix
and prefix) feature specific observation respectively.
The parameters of every Gaussian mixture (3 Gaus-
sians/State in our implementation) of each state of
the HMM are estimated through Expectation Maxi-
mization.

Comparison results are shown in table 2. SHO-CRFs
achieve the highest published accuracy. However, our
work is orthogonal to kernel based methods, we believe
that combining the new inference algorithm and M3Ns
will achieve a further improvement. While for rerank-
ing method, affix features degrade performance a little.
The reason is that, in perceptron training stage, can-
didates are generated by CRFs model learned on 90%
training samples rather than the full data set, so the
best candidate is less accurate due to small training
data size (only about 600 samples), which significantly
affect the quality of perceptron learning. SHO-CRFs
also exceed SHMM which suffers from numerous local
minimum traps that riddle the cost surface.

We also investigate the effect of affix length to see
which order is high enough to capture such long dis-
tance features. Hence, affixes of length 1,2,. . . , 8 are
gradually added. The results of are shown in Figure
6. The accuracy increases slowly when affix length

1www.curlewcommunications.co.uk/wordlist.html

Table 2. Comparison results on OCR data set

Algorithm Accuracy Training time(m)

CRFs 80.92% 7.4
M3Ns (linear) 80.5% -
M3Ns (quad) 86.5% -
M3Ns (cubic) 87.5% -
100-Best Rerank 78.9% 66
SHMM 79.05% 26
SHO-CRFs 88.52% 29

1 2 3 4 5 6 7 8
80

81

82

83

84

85

86

87

88

89

Max Affix Length

A
cc

ur
ac

y

Baseline CRFs without affix features
SHO−CRFs with affix features

Figure 6. Effect of Affix Length

> 6. So a 5th order CRF is enough to capture affix
features, however, such an order is too high for con-
ventional CRFs.

5.2. Chinese Organization Name Recognition

Our second experiment is Chinese Organization
(ORG) Name Recognition task, which is the most diffi-
cult subtask of Chinese named entity recognition, since
the ORG names are often very long and complexly
structured. In this task, each Chinese character of sen-
tence is to be assigned with a label y ∈ {B, I, E, S, O},
where “B, I,E” means that current character is the
beginning, middle, end of a multi-character ORG name
respectively, “S” means a single character ORG name,
“O” means other. We use MSRA Chinese named en-
tity corpus in SIGHAN 2008 (Jin & Chen, 2008). A
baseline CRF model is trained using local features, in-
cluding first order transition features and surrounding
character unigrams and bigrams within a window of 5
characters.

We derived some linguistic characteristics by roughly
going through training corpus and represented them
by higher order features. Some of them are listed
in table 3. Finally, 28 higher order features are de-
fined, a dictionary contains about 20K manually col-

Sparse Higher Order CRFs

Table 3. Some higher order features in ORG recognition task

Fired condition Interpretation Example
xs:t = location +
. . . + suffix AND is
labeled as a ORG

Some ORG names have
the structure: location +
... + suffix

黄/B 骅/I 市/I 中/I 医/I 精/I 神/I 病/I 专/I 科/I 医/I 院/E
(Huanghua Chinese medical psychiatric hospital) Where
location = 黄骅市(Huanghua City), suffix = 医院(hospital)

xs:t =“ . . . ”
or （. . .）or
《. . .》AND only
one of ys,yt is O

Negative feature, to pun-
ish those inconsistently
labeled symmetric mark
pairs

（/O 简/O 称/O 青/B 民/I 盟/E ）/O (（called Qingmin
League for short ）) Both brackets should be labeled as O

xs:t = 、+ x1 + 、+
. . .+ xn + 等+ . . . +
suffix AND each xi is
labeled as ORG

Each unit in parallel
structures is possibly a
ORG.

韩/O国/O的/O现/B代/E、/O乐/B喜/I金/I星/E、/O
三/B 星/E 等/O 几/O 家/O 大/O 型/O 企/O 业/O 集/O
团/O (Several large-scale enterprise groups such as Hyundai,
LG, Samsung) Where x1 = 现代(Hyundai), x2 = 乐喜金
星(LG), x3 = 三星(Samsung), suffix = 集团(group)

Table 4. Chinese ORG recognition result

F1 Training
Time(m)

Additional Resources

CRFs 84.02% 42 None

10-Best Rerank 84.81% 375
20-Best Rerank 84.82% 375
50-Best Rerank 84.92% 375 20K items including location names, company names etc.
100-Best Rerank 85.03% 375
SHO-CRFs 88.59% 164

Official best (Yang
et al., 2008)

90.48% - 1998 People’s Daily corpus, 40K location names and 300K ORG
names

Official 2nd (Yu
et al., 2008)

88.40% - Additional Chinese word segmenter and POS tagger. A dictionary
contains 445K words, 30K location names, 55K ORG names, etc.

lected items including suffixes, location names, com-
pany names are used for detecting high order features,
i.e., b(x, t).

For completeness, we compared our SHO-CRFs to the
candidate reranking algorithm and the top 2 official
runs in SIGHAN 2008 open test2, results are summa-
rized in table 4. SHO-CRFs significantly outperform
N-best reranking with the same feature set and achieve
the second best performance using much less resources.

6. Conclusion

We describe SHO-CRFs which could handle local and
sparse higher order features together using a novel
tractable exact inference. Our work is motivated by
the sparseness of long distance features in real ap-
plications. Though the computational complexity is
not polynomial theoretically, experiments on OCR
task and Chinese organization name recognition task
clearly demonstrate the efficiency in real practice.

2In fact, the top 2 official runs in SIGHAN achieve
99.86% and 99.2% F-score, we did not list them out be-
cause they used a larger training corpus that is the super
set of testing data.

Acknowledgments

We appreciate for the suggestions by the four review-
ers that help improve this paper in many aspects.
This work was (partially) funded by Chinese NSF
60673038, Doctoral Fund of Ministry of Education of
China 200802460066, Shanghai Science and Technol-
ogy Development Funds 08511500302, and Shanghai
Leading Academic Discipline Project, Project number:
B114.

References

Collins, M. (2002a). Discriminative training methods
for hidden markov models: Theory and experiments
with perceptron algorithms. Proceedings of Empir-
ical Methods in Natural Language Processing (pp.
1–8).

Collins, M. (2002b). Ranking algorithms for named
entity extraction: Boosting and the voted percep-
tron. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (pp. 489–
496).

Galassi, U., Giordana, A., & Saitta, L. (2007). Struc-

Sparse Higher Order CRFs

tured hidden markov model: A general framework
for modeling complex sequences. AI*IA 2007: Arti-
ficial Intelligence and Human-Oriented Computing
(pp. 290–301).

Jin, G., & Chen, X. (2008). The fourth international
chinese language processing bakeoff: Chinese word
segmentation, named entity recognition and chinese
pos tagging. Proceedings of Sixth Special Interest
Group on Chinese Language Processing Workshop
(pp. 69–81).

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proceedings
of the 18th International Conference on Machine
Learning (pp. 282–289).

Roth, D., & tau Yih, W. (2005). Integer linear pro-
gramming inference for conditional random fields.
Proceedings of the 22nd International Conference on
Machine learning. (pp. 736–743).

Sarawagi, S., & Cohen, W. (2004). Semi-markov con-
ditional random fields for information extraction.
Advances in Neural Information Processing Systems
(pp. 1185–1192).

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-
margin markov networks. Advances in Neural Infor-
mation Processing Systems (pp. 25–32).

Yang, F., Zhao, J., & Zou, B. (2008). CRFs-based
named entity recognition incorporated with heuris-
tic entity list searching. Proceedings of Sixth Spe-
cial Interest Group on Chinese Language Processing
Workshop (pp. 171–174).

Yu, X., Lam, W., Chan, S.-K., Wu, Y., & Chen, B.
(2008). Chinese NER using CRFs and logic for
the fourth sighan bakeoff. Proceedings of Sixth Spe-
cial Interest Group on Chinese Language Processing
Workshop (pp. 102–105).

A. Proof of proposition 2

Suppose S = {Zisi:ti
} are all configurations of

x. πs:t can be derived as follows: π
(0)
s:t = Us:t;

if si ≤ t < ti, π
(i)
s:t is the refinement of parti-

tion {Es:t(Zisi:ti
), Es:t(Zisi:ti

)} and π
(i−1)
s:t , otherwise,

π
(i)
s:t = π

(i−1)
s:t . Finally πs:t = π

(|S|)
s:t . The derivation

of πr:t+1 is similar. We shall prove that for any i,
A(i)

s:t ∈ π
(i)
s:t , B(i)

r:t+1 ∈ π
(i)
r:t+1, proposition 2 holds.

For i = 0, π
(0)
s:t = Us:t, π

(0)
s:t = Ur:t+1, let Yt+1 = U , so

proposition 2 holds.

Suppose proposition 2 holds for i = k, that is, there ex-
ists Y

(k)
t+1 so that A(k)

s:t ×Y
(k)
t+1 ⊆ Us:r−1×B(k)

r:t+1,A
(k)
s:t ×

Y
(k)
t+1 ∩Us:r−1 ×B(k)

r:t+1 = ∅. Then for i = k + 1, there
are 5 cases:

Case 1, sk+1 = tk+1. We have π
(k+1)
s:t = π

(k)
s:t , π

(k+1)
r:t+1 =

π
(k)
r:t+1, so proposition 2 holds.

Cases 2-5 assume that sk+1 < tk+1.

Case 2, sk+1 ≥ t + 2 or tk+1 ≤ t. Like case 1, neither
partition changes, so proposition 2 holds.

Case 3, sk+1 ≤ t, tk+1 ≥ t + 2. Both parti-
tions change. A(k)

s:t is split into two parts: A(k+1)
s:t

= A(k)
s:t ∩ Es:t(Zk+1sk+1:tk+1

), C(k+1)
s:t = A(k)

s:t ∩
Es:t(Zk+1sk+1:tk+1

), B(k)
r:t+1 is split into two parts:

B(k+1)
r:t+1 = B(k)

r:t+1 ∩ Er:t+1(Zk+1sk+1:tk+1
), D(k+1)

r:t+1 =

B(k)
r:t+1 ∩ Er:t+1(Zk+1sk+1:tk+1

).

For A(k+1)
s:t , B(k+1)

r:t+1 , let Y
(k+1)
t+1 =

Y
(k)
t+1 ∩ Et+1:t+1(Zk+1sk+1:tk+1

). We have

A(k+1)
s:t × Y

(k+1)
t+1 ⊆ A(k+1)

s:t × Y
(k)
t+1 ⊆

Ur:s−1 × B(k)
r:t+1, and A(k+1)

s:t × Y
(k+1)
t+1 ⊆

Es:t(Zk+1sk+1:tk+1
) × Et+1:t+1(Zk+1sk+1:tk+1

) ⊆
Ur:s−1 × Er:t+1(Zk+1sk+1:tk+1

). So we get

A(k+1)
s:t × Y

(k+1)
t+1 ⊆ Ur:s−1 × B(k+1)

r:t+1 . Notice

that Y
(k+1)
t+1 = Y

(k)
t+1 ∪ Et+1:t+1(Zk+1sk+1:tk+1

).

Since A(k)
s:t × Y

(k)
t+1 ∩ Us:r−1 × B(k)

r:t+1 = ∅,
A(k+1)

s:t ⊆ A(k)
s:t ,B(k+1)

r:t+1 ⊆ B(k)
r:t+1, so

A(k+1)
s:t × Y

(k)
t+1 ∩ Us:r−1 × B(k+1)

r:t+1 = ∅. Since
Us:t × Et+1:t+1(Zk+1sk+1:tk+1

) ∩ Us:r−1 ×
Er:t+1(Zk+1sk+1:tk+1

) = ∅, A(k+1)
s:t ⊆ Us:t,

B(k+1)
r:t+1 ⊆ Er:t+1(Zk+1sk+1:tk+1

), so A(k+1)
s:t ×

Et+1:t+1(Zk+1sk+1:tk+1
)∩Us:r−1×B(k+1)

r:t+1 = ∅. Hence

we get A(k+1)
s:t × Y

(k+1)
t+1 ∩ Us:r−1 × B(k+1)

r:t+1 = ∅.
So proposition 2 holds for A(k+1)

s:t , Y
(k+1)
t+1 ,

B(k+1)
r:t+1 . Similarly, we have, proposition 2 holds

for C(k+1)
s:t , W

(k+1)
t+1 = ∅, B(k+1)

r:t+1 ; and A(k+1)
s:t ,

V
(k+1)
t+1 = Y

(k)
t+1 ∩ Et+1:t+1(Zk+1sk+1:tk+1

), D(k+1)
r:t+1 ; and

C(k+1)
s:t , Y

(k)
t+1, D(k+1)

r:t+1 , we omit the detail due to space
limit.

Case 4, sk+1 = t + 1. Only πr:t+1 changes, B(k)
r:t+1 is

split into two parts, proof is similar with case 3.

Case 5, tk+1 = t+1. Only πs:t changes, proof is similar
with case 3. �

