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Abstract

We discuss the problem of clustering elements
according to the sources that have generated
them. For elements that are characterized
by independent binary attributes, a closed-
form Bayesian solution exists. We derive a
solution for the case of dependent attributes
that is based on a transformation of the in-
stances into a space of independent feature
functions. We derive an optimization prob-
lem that produces a mapping into a space
of independent binary feature vectors; the
features can reflect arbitrary dependencies in
the input space. This problem setting is mo-
tivated by the application of spam filtering
for email service providers. Spam traps de-
liver a real-time stream of messages known to
be spam. If elements of the same campaign
can be recognized reliably, entire spam and
phishing campaigns can be contained. We
present a case study that evaluates Bayesian
clustering for this application.

1. Introduction

In model-based clustering, elements X =
{x(1), . . . ,x(n)} have been created by an unknown
number of sources; each of them creates elements
according to its specific distribution. We study
the problem of finding the most likely clustering of
elements according to their source

C∗ = arg max
C

P (X|C), (1)

where C consistently partitions the elements of X into
clusters C = {c1, . . . , cm} that are mutually exclusive
and cover each element.
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Computing the likelihood of a set X under a cluster-
ing hypothesis C requires the computation of the joint
likelihood of mutually dependent elements Xc within
a partition c. This is usually done by assuming latent
mixture parameters θ that generate the elements of
each cluster and imposing a prior over the mixture pa-
rameters. The joint likelihood is then an integral over
the parameter space, where individual likelihoods are
independent given the parameters:

P (Xc) =

∫

∏

x∈Xc

P (x|θ)P (θ)dθ. (2)

For suitable choices of P (x|θ) and P (θ), this integral
has an analytic solution. In many cases, however,
the space X of elements is very high-dimensional, and
the choice of likelihood and prior involves a trade-off
between expressiveness of the generative model and
tractability regarding the number of parameters. If the
elements are binary vectors, X = {0, 1}D, one extreme
would be to model P (x|θ) as a full multinomial distri-
bution over X , involving 2D parameters. The other
extreme is to make an independence assumption on
the dimensions of X , reducing the model parameters
to a vector of D Bernoulli probabilities. No remedy for
this dichotomy is known that preserves the existence
of an analytic solution to the integral in Equation 2.

Our problem setting is motivated by the application
of clustering messages according to campaigns; this
will remain our application focus throughout the pa-
per. Filtering spam and phishing messages reliably
remains a hard problem. Email service providers op-
erate Mail Transfer Agents which observe a stream of
incoming messages, most of which have been created
in bulk by a generator. A generator can be an appli-
cation that dispatches legitimate, possibly customized
newsletters, or a script that creates spam or phishing
messages and disseminates them from the nodes of a
botnet. Mail Transfer Agents typically blacklist known
spam and phishing messages. Messages known to be
spam can be collected by tapping into botnets, and
by harvesting emails in spam traps. Spam traps are
email addresses published invisibly on the web that
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have no legitimate owner and can therefore not re-
ceive legitimate mail. In order to avoid blacklisting,
spam dissemination tools produce emails according to
probabilistic templates. This motivates our problem
setting: If all elements that are generated in a joint
campaign can be identified reliably, then all instances
of that campaign can be blacklisted as soon as one
element reaches a spam trap, or is delivered from a
known node of a botnet. Likewise, all instances of a
newsletter can be whitelisted as soon as one instance
is confirmed to be legitimate.

While text classification methods are frequently re-
ported to achieve extremely high accuracy for spam
filtering under laboratory conditions, their practical
contribution to the infrastructure of email services is
smaller: they are often applied to decide whether ac-
cepted emails are to be delivered to the inbox or the
spam folder. The vast majority of all spam delivery at-
tempts, however, is turned down by the provider based
on known message and IP blacklists. Text classifiers
are challenged with continuously shifting distributions
of spam and legitimate messages; their risk of false
positives does not approach zero sufficiently closely to
constitute a satisfactory solution to the spam problem.

This paper makes three major contributions. Firstly,
we develop a generative model for a clustering of bi-
nary feature vectors, based on a transformation of the
input vectors into a space in which an independence
assumption incurs minimal approximation error. The
transformations can capture arbitrary dependencies
in the input space while the number of parameters
stays reasonable and full Bayesian inference remains
tractable. Secondly, we derive the optimization prob-
lem and algorithm that generates the feature transfor-
mation. Finally, we present a large-scale case study
that explores properties of the Bayesian clustering so-
lution for email campaign detection.

The paper is structured as follows. We present the
Bayesian clustering model in Section 2, and an opti-
mization problem and algorithm for transforming de-
pendent features into independent features in Section
3. Section 4 discusses the estimation of prior param-
eters, Section 5 develops a sequential clustering algo-
rithm based on Bayesian decisions. Section 6 reports
on empirical results in our motivating application. We
review related work in Section 7. Section 8 concludes.

2. Bayesian Clustering for Binary

Features

In general, a clustering hypothesis C entails that the
likelihood of the dataset factorizes into the likelihoods

of the subsets Xc of elements in the clusters c ∈ C.
Elements within a cluster are dependent, so the like-
lihood of each element depends on the preceding ele-
ments in its cluster, as in Equation 3.

P (X|C) =
∏

c∈C

P (Xc)

=
∏

c∈C

∏

i:x(i)∈c

P (x(i)|{x(j) ∈ c : j < i}) (3)

The crucial part is modeling the probability P (x|X ′)
of a binary feature vector x given a set of elements X ′.
A natural way is to introduce latent model parameters
θ and integrate over them as in Equation 4.

P (x|X ′) =

∫

θ

P (x|θ)P (θ|X ′)dθ (4)

Modeling θ as a full joint distribution over all 2D pos-
sible feature vectors, with D being the dimensionality
of the input space X , is intractable.

Let φe be independent binary features and let vector
φ(x) be a representation of x in the space of inde-
pendent features φ. In order to streamline the pre-
sentation of the clustering model, we postpone the ra-
tionale and construction of the feature transformation
to Section 3. Under the assumption that attributes
in the space φ are independent, the model parame-
ters can be represented as a vector of Bernoulli proba-
bilities, θ ∈ (0, 1)E , and we can compute P (x|θ) as
∏E
e=1 P (φe(x)|θe). Furthermore, we impose a Beta

prior on every component θe with parameters αe and
βe. Since the Beta distribution is conjugate to the
Bernoulli distribution, we can now compute the poste-
rior over the model parameters analytically as in Equa-
tion 5, where #e = |{x′ ∈ X ′ : φe(x

′) = 1}|.

P (θ|X ′) = P (X ′|θ) P (θ)

P (X ′)

=

∏E
e=1

∏

x∈X′ P (φe(x)|θe)PBeta(θe|αe, βe)
∫

P (X ′|θ′)P (θ′)dθ′

=

E
∏

e=1

PBeta(θe|αe + #e, βe + |X| −#e) (5)

The integral in Equation 4 then has the analytic solu-
tion of Equation 6:

P (x|X ′) =
∏

e:φe(x)=1

αe + #e

αe + βe + |X ′| (6)

∏

e:φe(x)=0

βe + |X ′| −#e

αe + βe + |X ′| .
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For a single element, independent of all others, the
probability term simplifies to

P (x) =
∏

e:φe(x)=1

αe
αe + βe

∏

e:φe(x)=0

βe
αe + βe

. (7)

Furthermore, the joint probability of an interdepen-
dent set X ′ in one cluster can be computed as

P (X ′) =
∏

i:x(i)∈X′

P (x(i)|{x(j) ∈ X ′ : j < i})

=
E
∏

e=1

∏#e

k=1(αe + k − 1)
∏|X′|−#e

k=1 (βe + k − 1)
∏|X′|
k=1(αe + βe − 1)

=
E
∏

e=1

B(αe + #e, βe + |X ′| −#e)

B(αe, βe)
,

where B denotes the Beta function.

3. Feature Transformation

In this section we will present a method of approx-
imating a distribution over high-dimensional binary
vectors that allows analytical integration over the in-
duced model parameters. The idea is to find a map-
ping into another space of binary vectors where the di-
mensions are treated independently of each other, such
that the divergence between the original distribution
and the approximate distribution defined in terms of
the mapped vectors is minimal.

A straightforward approach would be to employ a
model that captures dependencies between small sets
of attributes only and assumes independence other-
wise. Instead of working with independence assump-
tions, we construct a search space of transformations.
This space is complete in the sense that any possi-
ble interaction of attributes can be reflected in the
newly constructed attributes. These attributes are
constructed such that their product approximates the
true distribution as closely as possible.

The Bayesian clustering model introduced in Section 2
requires us to infer the probability of a feature vector
x given a set of feature vectors X ′ it depends on. We
therefore want to approximate P (x|X ′) by a quantity
Qφ(x|X ′), where φ is a mapping from the original vec-
tor space X = {0, 1}D to the image space Z = {0, 1}E .
We define Qφ as a product over independent probabil-
ities for each output dimension, as in Equation 8.

Qφ(x|X ′) =

E
∏

e=1

P (φe(x)|φe(X ′)) (8)

By its definition as a product over probabilities, quan-
tity Qφ(x|X) is always non-negative; however, it does

not necessarily sum to one over the event space of
possible inputs x. Since Qφ serves as an approxi-
mation of a probability in the Bayesian inference, it
is desirable that

∑

x
Qφ(x|X) ≤ 1 for all X. More-

over, the natural measure of approximation quality –
the Kullback-Leibler divergence – is only motivated
for measures that add up to at most one and may
be maximized by trivial solutions otherwise. Note
that the sum does not have to be exactly 1, since
an extra element x̄ with P (x̄) = 0 can be added
to X that absorbs the remaining probability mass,

Qφ(x̄|X ′)
def
= 1−

∑

x∈X Qφ(x̄|X ′).

Normalization ofQφ(x|X) is intractable, since it would
require explicit summation of Equation 8 over all 2D

possible input elements. We therefore have to define
the space of possible transformations such that after
any transformationQφ is guaranteed to sum to at most
one. By Theorem 1 (see Appendix), this holds for all
injective transformations.

Every mapping from X = {0, 1}D to the Z = {0, 1}E
can be represented as a set of E Boolean functions,
and every Boolean function can be constructed as a
combination of elementary operations. Therefore we
can define the search space as the set of all concate-
nations of elementary Boolean transformations ψ that
preserve injectiveness. The choice of which elementary
transformations to use is driven by the practical goal
that φ also preserves sparseness. The following two
elementary transformations are injective, sufficient to
generate any Boolean function, and preserve sparsity:

ψxij((. . . , xi, . . . , xj , . . . )
>)=(. . . , xi, . . . , xi 6= xj , . . . )

>

ψaij((. . . , xi, . . . , xj , . . . )
>)

=(. . . , xi∧xj , . . . , xi∧¬xj ,¬xi∧xj , . . . )>.

Every ψ replaces two features by Boolean combina-
tions thereof, leaving every other feature untouched.

For any set of elements X, the quantity Qφ(x|X)
should minimize the Kullback-Leibler divergence from
the true distribution P (x|X). Hence, the optimization
criterion (Equation 9) is the expected KL divergence
between Qφ(x|X) and P (x|X) over all X.

φ∗ = arg min
φ

E
X∼P(x)

[KL(P (·|X)||Qφ(·|X))] (9)

= arg min
φ

E
X∼P(x)

[

∑

x∈X

P (x|X) log
P (x|X)

Qφ(x|X)

]

(10)

= arg max
φ

E
X∼P(x)

[

∑

x∈X

P (x|X) logQφ(x|X)

]

(11)

= arg max
φ

E
X∼P(x),x∼P(x|X)

[logQφ(x|X)] . (12)
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Equation 10 expands the definition of the KL diver-
gence; Equation 11 replaces minimization by maxi-
mization and drops the term P (x|X) logP (x|X) which
is constant in φ. We approximate the expectation in
Equation 12 by the sum over an empirical sample S,
and obtain

Optimization Problem 1. Over the set of con-

catenations of elementary transformations, φ ∈
{ψxij , ψaij}∗, maximize

∑

x∈S

logQφ(x|S \ {x}).

The sum of log-probabilities can be calculated as

∑

x∈S

logQφ(x|S \ {x})

=

E
∑

e=1

#S
e log(α0 + #S

e −1)− |S| log(α0 +β0 + |S| −1)

+ (|S| −#S
e ) log(β0 + |S| −#S

e − 1),

where #S
e = |{x′ ∈ S : φe(x

′) = 1}|, and α0, β0 are
the parameters of the Beta prior.

Optimization Problem 1 is non-convex, so we apply a
greedy procedure that iteratively adds the next-best
transformation starting with the identity transforma-
tion, as detailed in Algorithm 1.

Algorithm 1 Greedy Transformation Composition

φ0 ← id
for t = 1 . . . do

ψ̂ ← arg maxψ
∑

x∈S Qφt−1◦ψ(x|S \ {x})
if

∑

x∈S

Q
φt−1◦ψ̂(x|S \ {x}) < ∑

x∈S

Qφt−1(x|S \ {x})
then

return φt−1

else

φt ← φt−1 ◦ ψ̂
end if

end for

4. Parameter Estimation

In the following section, we will derive a closed-form
estimator for parts of the parameters of the prior P (θ).
The decisions whether to merge an element x with a
set X ′ depend strongly on the prior parameters via
P (x) in Equation 7 and P (x|X ′) in Equation 6.

Heller and Ghahramani (2005) derive an EM-like algo-
rithm that maximizes the data likelihood by iteratively

finding the best clustering and then performing gradi-
ent descent on the prior parameters. This approach
is computationally very expensive, since the likelihood
function is not convex and the entire dataset needs to
be re-clustered in each iteration.

We overcome these problems by using an alternative
parametrization of the Beta distribution. This allows
us to estimate half of the parameters from an unclus-
tered set of training examples S; the other half of the
parameters is pooled into a single value and adjusted
by a grid search on tuning data.

We re-parametrize the Beta priors as αe = µeσ and
βe = (1−µe)σ, where the µe are the prior means and σ
is the common precision1 parameter. The probability
of an element not given any other elements of the same
cluster does not depend on the prior precisions, only on
the means. Hence, the means have a stronger impact
on the resulting partitioning.

Imposing a Beta-distributed hyperprior on µe with pa-
rameters α0 > 1 and β0 > 1 we can compute the
Maximum-A-Posteriori estimate of the means as

µe = arg max
µ

P (µ|S) = arg max
µ

∏

x∈S

P (φe(x)|µ)P (µ)

= arg max
µ

PBeta (µ|α0 + |{x ∈ S : φe(x) = 1}|,

β0 + |{x ∈ S : φe(x) = 0}|)

=
α0 + |{x ∈ S : φe(x) = 1}| − 1

α0 + β0 + |S| − 2
.

5. Sequential Bayesian Clustering

In this section we discuss the task of inferring the most
likely partitioning of a set of emails and present our
model-based sequential clustering algorithm.

Brute-force search over the entire space of possi-
ble partitionings in Equation 1 requires the evalua-
tion of exponentially many clusterings and is there-
fore intractable for reasonable numbers of emails.
A more efficient approach would be to perform
Markov chain Monte Carlo sampling methods like in
(Williams, 2000), which yields not only the Maximum-
A-Posteriori partitioning, but samples from the poste-
rior distribution.

Approximate agglomerative clustering algorithms
(Heller & Ghahramani, 2005) are more efficient. Since
in practice emails have to be processed sequentially,
and decisions whether an email belongs to a spam cam-
paign cannot be revised after delivering it, we adopt
the sequential clustering algorithm of Haider et al.

1The precision parameter of a Beta distribution is in-
versely related to its variance.
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Algorithm 2 Model-based Sequential Clustering

C ← {}
for t = 1 . . . n do

cj ← arg maxc∈C P (x(t)|Xc)
if P (x(t)|Xc) < P (x(t)) then

C ← C ∪ {{x(t)}}
else

C ← C \ {cj} ∪ {cj ∪ {x(t)}}
end if

end for

return C

(2007). This greedy incremental algorithm has the
advantage of approximately finding the best campaign
association of a new email in O(n), where n is the
number of previously seen emails, instead of taking
O(n3) operations for performing a full agglomerative
re-clustering.

Instead of a weighted similarity measure as in (Haider
et al., 2007), our clustering model is based on a genera-
tive model. We replace the weighted sum over pairwise
features by an integral over the model parameters of
a cluster. This gives us the model-based sequential
clustering in Algorithm 2.

In every step, the algorithm compares the hypothe-
ses that the new element belongs to one of the exist-
ing clusters with the hypothesis that it forms its own
cluster. The likelihoods of these hypotheses are cal-
culated according to Equations 6 and 7. This greedy
algorithm can be straightforwardly extended to using
a non-uniform prior over clustering hypotheses, by re-
placing P (x) with P (x)P (C∪{{x(t)}}) and P (x(t)|Xc)
with P (x(t)|Xc)P (C \ {cj} ∪ {cj ∪ {x(t)}}).

6. Email Campaign Detection

In this section, we explore the behavior of the feature
transformation procedure, and conduct a case study
of the Bayesian clustering method for spam filtering.

In unsupervised clustering, there is no ground truth
available that the output of the clustering algorithm
can be compared with. Fortunately, our motivating
application scenario – email spam containment – has
a natural evaluation criterion: the contribution of the
produced partitionings to accurate filtering.

We design an experimental setting that evaluates the
Bayesian clustering solution and the feature transfor-
mation technique for the problem of detecting spam
campaigns at an email service provider. Benchmark
data sets such as the SpamTREC corpus are not suit-
able for our evaluation. A fair evaluation relies on a

stream that contains realistic proportions of messages
of mailing campaigns, in the correct chronological or-
der. Benchmark corpora contain messages that have
been received by users, and have therefore passed un-
known filtering rules employed by the receiving server.
Furthermore, benchmark data sets do not contain re-
liable time stamps whereas the actual chronological
order is crucial.

Our experimental setting relies on a stream of spam
messages received by the mail transfer agent of an
email service provider. Between July and November
2008, we recorded a small fraction of spam messages,
a total of 139,250 spam messages in correct chronologi-
cal order. The messages have been tagged as spam be-
cause the delivering agent was listed on the Spamhaus
IP block list which is maintained manually. We sim-
ulate the practical setting where one has a stream of
verified spams, and one stream of unknown emails, by
taking every other email from the set as training exam-
ple. The rest is split into test examples (90%) and tun-
ing examples. In order to maintain the users’ privacy,
we blend the stream of spam messages with an addi-
tional stream of 41,016 non-spam messages from pub-
lic sources. The non-spam portion contains newslet-
ters and mailing lists in correct chronological order as
well as Enron emails and personal mails from public
corpora which are not necessarily in chronological or-
der. Every email is represented by a binary vector of
1,911,517 attributes that indicate the presence or ab-
sence of a word. The feature transformation technique
introduces an additional 101,147 attributes.

6.1. Feature Transformation

In order to assess the capability of our feature trans-
formation technique for approximating a high dimen-
sional probability distribution, we train the transfor-
mation on an additional set S1 of 10,000 older emails
including spam and ham (i.e., non-spam) messages in
equal parts, and test on another set S2 of emails of
the same size. Since we cannot measure the Kullback-
Leibler divergence from the true distribution directly,
we measure the quantity −1

|Si|

∑

x∈Si
logQφ(x|Si\{x}),

which is the average entropy of an email, given all other
emails of the set. We compare the entropies on the
training and test sets for the transformation found by
the Greedy Transformation Composition algorithm to
the entropy of the identity transformation. The iden-
tity transformation corresponds to an assumption of
independent attributes in the input space.

In addition to the overall optimal transformation, we
compute the optimal transformations φa and φx com-
posed of only elementary transformations of the forms



Bayesian Clustering for Email Campaign Detection

ψaij or ψxij , respectively. Preliminary experiments
showed that the choice of prior parameters α0 and β0

has negligible influence within reasonable ranges, so
we report the results for α0 = 1.1 and β0 = 100 in
Table 1. We can see that including elementary trans-

Table 1. Comparison of training and test entropies using
different feature transformations.
Transformation id φ∗ φa φx

Training entropy 1013.7 574.1 585.3 632.4
Test entropy 1007.1 687.5 672.0 720.2

formations of the form ψxij decreases training entropy,
but increases test entropy. The best transformation
reduces test entropy compared to the identity trans-
formation by about 33%. This shows that factorizing
the probability over the dimensions in the image space
yields a much better approximation than factorizing
over the dimensions in the original feature space.

6.2. Bayesian Clustering for Spam Filtering

Our evaluation protocol is as follows. We use a train-
ing window of 5,000 known spam messages, corre-
sponding to a history of approximately 11 days. The
training messages are partitioned using Algorithm 2.
In each step, the clustering algorithm adds the chrono-
logically next 100 known spam emails to the partition-
ing and removes the 100 oldest. We then classify the
100 next test messages. We use the odds ratio

maxXspam
P (x|Xspam)

P (x)

as classification score, the maximum is over all spam
clusters in the training window. Test messages are not
added to the window of partitioned training messages.

A main difficulty in spam filtering is that ham emails
can be very diverse, and it is unrealistic that one has
training examples available from every region of the
true distribution. We conduct experiments in two
different settings that assess performance when ham
emails from the test distribution are available and the
performance without access to ham emails, respec-
tively. In setting A, we train the feature transforma-
tion and parameters µe with 10,000 ham emails from
the test distribution, and in setting B, we train on
10,000 spam messages instead.

As baseline for setting A, we use a Support Vector
Machine that is trained in every step on the history of
the last 5,000 spam and on the same 10,000 ham emails
as the clustering method. Hence, the SVM baseline
receives the same training data. In setting B, we use

a one-class SVM, trained on the history of 5,000 spam
messages. Additionally, we evaluate the benefit of the
feature transformation by comparing with a clustering
algorithm that uses the identity transformation.

An EM clustering procedure that uses a point esti-
mates for the model parameters serves as an additional
reference. We use a MAP estimate based on the same
model prior used for the Bayesian model. EM requires
the number of clusters to be known. We use the num-
ber of clusters that the Bayesian model identifies as
input to the EM clustering.

We use two evaluation measures. Firstly, we measure
the area under the ROC curve (AUC). Secondly, we
use an evaluation measure that reflects the character-
istics of the application more closely. An MTA has to
be extremely confident when deciding to refuse a mes-
sage for delivery from a contacting agent. We there-
fore measure the rate of true positives (spam messages
identified as such) at a false positive rate of zero. We
adjust the hyperparameters σ for the clustering model
and C or ν for the standard SVM and one-class SVM,
respectively, on the tuning set. We tune the parame-
ters separately for optimal AUC, and for an optimal
rate of true positives at a false positive rate of zero.
Figure 1 shows ROC curves.

We can see that in the setting with ham emails avail-
able for training, the SVM outperforms the clustering-
based filter in terms of AUC. In terms of the true pos-
itive rate at a false positive rate of zero, the clustering
method outperforms the SVM classifier, by achieving
a true positive rate of 0.945± 9.1× 10−4 compared to
0.938±9.6×10−4 of the SVM. The cluster-based filter
shows its full strength in setting B, in the absence of
non-spam training messages from the test distribution.
Here, it achieves an AUC value of 0.992 ± 2.6 × 10−4

and a true positive rate of 0.749± 1.7× 10−3, whereas
the one-class SVM attains an AUC of 0.770±1.4×10−3

and a true positive rate of 0.102 ± 1.2 × 10−3. That
is, the Bayesian clustering method increases the true
positive rate at zero false positives almost sevenfold,
in the setting where no training emails from the distri-
bution of the test hams are available. Clustering with
the identity transformation as well as clustering with
the EM algorithm performs worse in all settings than
Bayesian clustering with the feature transformation.
In setting A (ham messages from the test distribution
available) with the parameters tuned for a high true
positive rate at a false positive rate of zero, the EM
algorithm achieves a true positive rate of only 0.04.
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Figure 1. Evaluation of spam filtering performance.

7. Related Work

Previous work on Bayesian clustering explored in great
detail the use of hierarchical priors for the cluster
structure and algorithms for inference under such pri-
ors, for example (Williams, 2000), (Heller & Ghahra-
mani, 2005), and (Lau & Green, 2007). These ap-
proaches focus on modeling hierarchical dependencies
between elements, while modeling only low-level de-
pendencies between the attributes within elements,
such as Gaussian covariances. By contrast, we assume
a uniform prior over the cluster structure, and instead
focus on modeling arbitrary dependencies between bi-
nary attributes. We find that a non-uniform prior over
partitionings is in fact not necessary, because properly
taking the prior over mixture parameters P (θ) into
account also prevents the trivial solution of assigning
every element to its own cluster from being optimal.

Haider et al. (2007) devise a technique for mailing
campaign detection that relies on training data that
are manually clustered by campaigns. We find that
the effort of manually partitioning training data into

clusters is prohibitive in practice. Note that the effort
of partitioning data is much higher than the effort of
labeling data for classification because pairs of exam-
ples have to be considered.

Multi-way dependencies between attributes have been
considered for instance by Zheng and Webb (2000) and
Webb et al. (2005). They model the probability of an
attribute vector as a product of conditional probabil-
ities, such that each attribute can depend on multi-
ple other attributes. If these approaches were to be
used for Bayesian clustering, the number of mixture
parameters would grow exponentially in the degree of
dependencies. For our application, the high number of
attributes renders these approaches infeasible.

Remedies for the problem of constantly changing dis-
tributions in the Spam filtering domain have been pro-
posed in the area of adverserial learning. Teo et al.
(2008) developed a formulation that allows to model
test emails as modified versions of the training emails
and optimize the classifier against the worst-case sce-
nario of modifications. This approach leads to classi-
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fiers that are more robust against changes of the distri-
bution of spam emails, but still require the availability
of recent spam and ham training data.

8. Conclusion

We devised a model for Bayesian clustering of binary
feature vectors. The model is based on a closed-
form Bayesian solution of the data likelihood in which
the model parameters are integrated out. It allows
for arbitrary dependencies between the input features,
by transforming them into a space in which treating
them as independent incurs minimal approximation er-
ror. We derived an optimization problem for learning
such a transformation as a concatenation of elemen-
tary Boolean operations. In order to estimate the pa-
rameters of the prior from unlabeled data, we rewrite
the parameters of the beta distribution in terms of
mean values and a common variance. The mean val-
ues can be inferred in closed form from unlabeled data
efficiently, the common variance constitutes a param-
eter that is adjusted on tuning data. We adapted a
sequential clustering algorithm to use it with Bayesian
clustering decisions. In a case study, we observed that
the Bayesian clustering solution achieves higher true
positive rates at a false positive rate of zero than an
SVM. The benefit of the clustering solution is particu-
larly visible when no non-spam training messages from
the test distribution are available.
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Appendix

Theorem 1. Let the implicit model parameter θe of

the distribution P (ze) be Beta-distributed with param-

eters αe and βe for each e ∈ {1, . . . , E}. Then the

quantity Qφ(x|X ′) as defined in Equation 8 sums to

at most 1 for all X ′ iff φ is injective.

Proof. First we show indirectly that from ∀X ′ :
∑

z∈Z |{x : φ(x) = z}|∏E
e=1 P (ze|φe(X ′)) ≤ 1 fol-

lows ∀z : |{x : φ(x) = z}| ≤ 1. Assume that
there exists a z∗ ∈ Z with |{x : φ(x) = z∗}| ≥
2. Then choose an x∗ with φ(x∗) = z∗. With-
out loss of generality, let ∀e : z∗e = 1. Then set
n = maxe

(

E
√

0.5(αe + βe)− αe
)

/
(

1− E
√

0.5
)

+ 1 and
X∗ = {x∗, . . . ,x∗} with |X∗| = n. It follows that

E
∏

e=1

P (z∗e |φe(X∗)) =

E
∏

e=1

∫

P (z∗e |θe)P (θe|φe(X∗))dθ

=

E
∏

e=1

αe + n

αe + βe + n
>

E
∏

e=1

E
√

0.5 = 0.5,

and thus
∑

z∈Z

|{x : φ(x) = z}|
E
∏

e=1

P (ze|φe(X∗))

≥|{x : φ(x) = z∗}|
E
∏

e=1

P (z∗e |φe(X∗)) > 1.

The opposite direction follows from the fact that ∀X ′ :
∑

z∈Z

∏E
e=1 P (ze|φe(X ′)) ≤ 1, because P (ze|φe(X ′))

is not an approximation, but a true Bayesian proba-
bility. Now we have

∀X ′ :
∑

x∈X

Qφ(x|X ′) ≤ 1

⇔∀X ′ :
∑

x∈X

E
∏

e=1

P (φe(x)|φe(X ′)) ≤ 1

⇔∀X ′ :
∑

z∈Z

|{x : φ(x) = z}|
E
∏

e=1

P (ze|φe(X ′)) ≤ 1

⇔∀z : |{x : φ(x) = z}| ≤ 1⇔ φ is injective.


