
Model-Free Reinforcement Learning as Mixture Learning

Nikos Vlassis vlassis@dpem.tuc.gr

Technical University of Crete, Dept. of Production Engineering and Management, 73100 Chania, Greece

Marc Toussaint mtoussai@cs.tu-berlin.de

TU Berlin, Franklinstr 28/29 FR6-9, 10587 Berlin, Germany

Abstract

We cast model-free reinforcement learning as
the problem of maximizing the likelihood of
a probabilistic mixture model via sampling,
addressing both the infinite and finite horizon
cases. We describe a Stochastic Approxima-
tion EM algorithm for likelihood maximiza-
tion that, in the tabular case, is equivalent
to a non-bootstrapping optimistic policy it-
eration algorithm like Sarsa(1) that can be
applied both in MDPs and POMDPs. On
the theoretical side, by relating the proposed
stochastic EM algorithm to the family of op-
timistic policy iteration algorithms, we pro-
vide new tools that permit the design and
analysis of algorithms in that family. On the
practical side, preliminary experiments on a
POMDP problem demonstrated encouraging
results.

1. Introduction

Reinforcement Learning (RL) is the problem of learn-
ing to control a stochastic dynamical system (or an
agent interacting with its environment) by simulation
and trial-and-error (Bertsekas & Tsitsiklis, 1996; Sut-
ton & Barto, 1998). RL methods hold great promise in
learning controllers for systems with unknown dynam-
ics, and they have recently demonstrated impressive
results (Abbeel et al., 2007; Kober & Peters, 2009).

In this paper we describe a reduction of model-free RL
to a problem of likelihood maximization in a mixture
model. Our approach is based on the work of Tous-
saint and Storkey (2006) who showed that the value
function of a known MDP is proportional to the like-

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

lihood function of an appropriately constructed mix-
ture model. This likelihood can then be maximized by
probabilistic inference techniques like EM or Markov
Chain Monte Carlo (Hoffman et al., 2008). We show
in this paper that when the model of the MDP is un-
available we can use a stochastic EM algorithm to op-
timize the policy based on trajectory samples only. In
particular, we use the Stochastic Approximation EM
(SAEM, Delyon et al., 1999) where the E-step is per-
formed by sampling from the MDP with importance
weights that reflect rewards. However, a direct trans-
lation of the model of Toussaint and Storkey (2006)
to model-free RL leads to an inefficient sampling al-
gorithm that uses only the reward at the last time
step of a sampled trajectory. We propose an alterna-
tive formulation that ensures that all rewards observed
along a trajectory are taken into account in the mix-
ture learning.

In the tabular case (discrete states and actions), the
proposed SAEM algorithm turns out to be identical
to a non-bootstrapping optimistic policy iteration al-
gorithm similar to Sarsa(1). Optimistic policy iter-
ation (OPI) is an instance of approximate policy it-
eration where the policy is updated before it is com-
pletely evaluated (Bertsekas & Tsitsiklis, 1996; Tsit-
siklis, 2002). In OPI, one or more complete or partial
trajectories are generated according to the current pol-
icy, the observed rewards are then used to update that
policy, and so forth. Of particular interest are non-
bootstrapping OPI methods that are based on Monte-
Carlo partial policy evaluation, because these methods
can be directly applied to partially observable domains
(POMDPs) as well.

The convergence of OPI is not always guaranteed, even
for tabular MDPs, and it depends on various factors
including the choice of trajectories for simulation, the
amount of bootstrapping used, the frequency of policy
updates, and the particular form of the policy update
operator (Tsitsiklis, 2002). Several counter-examples

have been given in the literature that demonstrate
possible non-convergent behavior of OPI (Bertsekas
& Tsitsiklis, 1996; Gordon, 1996). For application of
OPI methods in POMDPs the theoretical results are
scarce. If the policy update operator is a sufficiently
smooth function of the action values, then we know
that value and policy fixed points do exist (Perkins &
Pendrith, 2002), and convergence to a fixed point is
guaranteed if the policy is fully evaluated before it is
updated (Perkins & Precup, 2003). A similar result
has been established by Melo et al. (2008). However,
the general convergence of non-boostrapping OPI al-
gorithms is still open.

By relating the proposed SAEM algorithm to the fam-
ily of OPI algorithms like Sarsa, we provide new tools
that permit the design and analysis of OPI algorithms.
We report some preliminary experiments in which
SAEM demonstrates encouraging results on a stan-
dard POMDP problem.

2. Value function as mixture likelihood

Consider an infinite-horizon MDP on the random vari-
ables of state xt and action ut as defined by the
start distribution p(x0), stationary transition proba-
bility p(xt+1 |ut, xt), and a deterministic reward sig-
nal rt ≡ r(ut, xt). Given a stochastic policy π(ut|xt)
we define the value V (π) as the expected discounted
future reward:

V (π) = E
[∞∑
t=0

γtrt ;π
]
, (1)

where γ ∈ (0, 1) is a known discount factor. Our task
is to find a stationary policy π that maximizes V (π).

Toussaint and Storkey (2006) showed that the value
function can be expressed as a likelihood in an infinite-
component mixture model. To express this formally
we use the notation ξ = (x0, u0, .., xT , uT) for a state-
action trajectory of length |ξ| = T . Let X T = {ξ : |ξ|=
T} be the space of length-T trajectories and X ∗ =⋃∞
T=0 X T the space of arbitrary length trajectories.

For a given MDP and policy π we define the joint
probability distribution over ξ ∈ X ∗ and T as,

p(ξ, T ;π) = π(uT |xT)
[T−1∏
t=0

p(xt+1|ut, xt) π(ut|xt)
]

· p(x0) δ|ξ|T p(T) . (2)

Here, δ|ξ|T is one for |ξ| = T and zero otherwise, and
p(T) is a prior over the trajectory length. From this
joint probability distribution we can define a condi-

tional distribution over ξ ∈ X ∗

p(ξ|T ;π) =
p(ξ, T ;π)
p(T)

, (3)

and a marginal distribution over ξ ∈ X ∗

p(ξ;π) =
∞∑
T=0

p(ξ|T ;π)p(T). (4)

Note that both are properly normalized over the whole
space ξ ∈ X ∗. When rewards are scaled to [0, 1] we can
introduce an auxiliary binary random variable R with

p(R=1 |uT , xT) = r(uT , xT), (5)

an idea suggested earlier in other contexts (Cooper,
1988; Dayan & Hinton, 1997; Peters & Schaal, 2008).
If we further define

p(R=1|ξ) = p(R=1|u|ξ|, x|ξ|) (6)

we get the following joint distribution over R and ξ ∈
X ∗:

p(R, ξ;π) = p(R|ξ) p(ξ;π). (7)

If we assume a geometric prior p(t) = (1 − γ)γt then
we can rewrite the value function (1) as

V (π) =
∞∑
T=0

γTE
[
rT ;π

]
=
∞∑
T=0

γT
∑
uT ,xT

p(uT , xT ;π) r(uT , xT)

=
1

1− γ

∞∑
T=0

p(T)
∑
ξ∈XT

p(ξ|T ;π) p(R=1|ξ)

=
1

1− γ
∑
ξ∈X∗

p(ξ;π) p(R=1|ξ). (8)

That is, we have related the value function V (π) to the
mixture likelihood p(R=1;π) in the joint distribution
p(R, ξ;π), where the variable-length trajectory ξ ∈ X ∗
is the latent variable. The model (8) can also be viewed
as a generative process for the auxiliary random vari-
able R: first sample a time step T from p(T), then
sample a length-T trajectory ξ ∼ p(ξ|T ;π) from the
MDP following policy π, and finally sample the binary
random variable R from p(R|uT , xT). The probability
that R = 1 is then proportional to the value V (π).

Modeling the value function as a mixture likelihood of-
fers the possibility to use probabilistic inference tech-
niques for optimization, like the EM algorithm (Tou-
ssaint & Storkey, 2006) or Markov Chain Monte

Carlo (Hoffman et al., 2008). In particular, in the
EM algorithm we compute a parameter π that locally
maximizes the likelihood p(R;π) by iteratively maxi-
mizing a lower bound of log p(R;π) (Neal & Hinton,
1998). Let q(ξ) be a distribution over the latent vari-
able ξ ∈ X ∗. Consider the function

F (q, π) = log p(R;π)−D
(
q(ξ)

∣∣∣∣ p(ξ|R;π)
)

(9)

=
∑
ξ∈X∗

q(ξ)
[

log p(R|ξ) + log p(ξ;π)
]

+H(q), (10)

where D(·) is the Kullback-Leibler divergence between
two distributions, and H(·) is the entropy of a distribu-
tion. We start with an initial guess of the parameter
π, and then we alternate between an E-step and an
M-step. In the E-step we find a distribution q that
maximizes F (q, π) for fixed π, using (9). The optimal
q that minimizes the Kullback-Leibler divergence in
(9) is the posterior over the latent variables given the
observed data (in our case the hypothetical R = 1)
and for given parameters πold:

q∗(ξ) = p(ξ |R;πold). (11)

In the M-step we find a new parameter π that max-
imizes F (q∗, π) for the optimal q∗, using (10). Often
this maximization can be performed analytically.

If the model of the MDP is available then the EM
algorithm is similar to ordinary policy iteration: the
E-step involves a full sweep of the state-action space
in order to compute q∗, which is analogous to pol-
icy evaluation. The M-step maximizes F (q∗, π) over
the policy parameters π, which is analogous to policy
improvement. In this paper we are interested in the
model-free case, in which we do not have access to the
transition model of the MDP. In this case we cannot
perform exact inference in the E-step, and hence we
have to resort to sampling, giving rise to a stochastic
EM algorithm.

3. Stochastic Approximation EM

In the model-free case we propose to use a stochastic
EM algorithm in which the E-step posterior distribu-
tion is estimated by Monte Carlo sampling from the
MDP, and hence no explicit knowledge of the MDP
model is needed. There are several variants of stochas-
tic EM in the literature that differ in the details of the
Monte Carlo approximation, particularly in the num-
ber of Monte Carlo draws per iteration, and in their
conditions for convergence (Celeux & Diebolt, 1985;
Wei & Tanner, 1990; Delyon et al., 1999). In our work
we use the Stochastic Approximation EM algorithm
(SAEM, Delyon et al., 1999) that is easy to imple-
ment and guarantees convergence to a local maximum

of the likelihood function under reasonable conditions.
An attractive feature of SAEM is that convergence is
guaranteed even when the sample size is kept constant
over successive iterations of the algorithm, as opposed
to other stochastic EM versions that may need to tune
the sample size in order to ensure convergence. Ad-
ditionally, in the context of our RL application the
SAEM algorithm can be given a familiar interpreta-
tion in terms of state-action values, as we will see in
later sections.

The SAEM algorithm iterates between three
steps (Delyon et al., 1999): In iteration k we

1. generate m samples ξi, i = 1, . . . ,m, from
p(ξ |R;πk−1), where πk−1 is the parameter from
the previous iteration,

2. update a function F̂k(π) according to

F̂k(π) = (1−αk)F̂k-1(π)+
αk
m

m∑
i=1

log p(ξi;π), (12)

3. and assign new parameters

πk = argmax
π

F̂k(π). (13)

To understand this scheme, first assume that αk = 1
in each iteration. Then F̂k = 1

m

∑m
i=1 log p(ξi;π) is

simply the sample based approximation of the function
F (q, π) in (10) (neglecting terms independent of π)
and the 3rd step is the standard M-step based on this
approximation. Special about the SAEM algorithm is
that it uses a learning rate αk, with 0 < αk < 1, and
thereby smoothes the approximation of F (q, π) over
several iterations, which is a key for its convergence.

In the case of our model p(R, ξ;π) (equation (7)) we
can use importance weights for the sampling in step 1:
we can generate samples from

p(ξ |R=1;πk−1) ∝ p(ξ;πk−1) p(R=1|ξ) (14)

by first sampling m variable-length trajectories ξi ∼
p(ξ;πk−1) from the MDP using the previous policy
πk−1, and then assigning them importance weights

wξi
= p(R=1|ξi). (15)

Note that in this case the importance weights corre-
spond to the terminal rewards r(u|ξi|, x|ξi|) for each
trajectory ξi. Accordingly, the function F̂k in step 2
reads

F̂k(π) = (1−αk)F̂k-1(π)+
αk
m

m∑
i=1

wξi
log p(ξi;π). (16)

For particular choice of policy parameters π, the func-
tion F̂k can be maximized analytically as we will see
later on.

An advantage of SAEM over other stochastic EM al-
gorithms is that step 2 is effectively making use of
all simulated data when optimizing for the current πk.
Translated in our RL problem, this means that the op-
timal policy πk at step k depends on trajectories and
rewards observed when following policies other than
πk at earlier steps. This feature makes SAEM simi-
lar to on-policy control algorithms like Sarsa (Sutton
& Barto, 1998) that iteratively estimate Q-functions
using rewards obtained by following previous policies.
The SAEM algorithm is guaranteed to converge to a
local maximum of the likelihood function for models in
the exponential family, under general conditions that
include the standard conditions of stochastic approxi-
mation for αk (Delyon et al., 1999).

However, a drawback of using the model p(R, ξ;π)
in (7) is that the function F̂k(π) in (16) is making
use only of a single reward per trajectory (the termi-
nal one), and therefore a lot of observed rewards are
wasted. The result is that a huge set of trajectories
would be needed in order for F̂k(π) to contain useful
information for computing the new πk. Although the
SAEM framework described above justifies the use of
a single reward per trajectory for deriving a conver-
gent on-policy control algorithm, such an algorithm
would be of little practical significance as it would re-
quire an unrealistically large data sample for produc-
ing meaningful results. (We have empirically verified
this in practice.) In the next section we show that we
can express the value function using a different mix-
ture model, in which the M-step of the corresponding
SAEM algorithm uses all intermediate rewards in a
trajectory.

4. An alternative mixture model for V

We show here that the value function V (π) can be
expressed in terms of an alternative mixture model:

Theorem 1. There exists a parametrized family of ge-
ometric distributions a(t) and b(t) for which the value
function is proportional to

V (π) ∝
∞∑
T=0

a(T)
∞∑
t=0

b(t)
∑
ξ∈X t

p(ξ|t;π) p(R=1|ξ, T),

(17)
with

p(R=1|ξ, T) =
{
p(R=1|u|ξ|, x|ξ|) if |ξ| ≤ T

0 otherwise .

(18)

Proof. We prove the theorem by explicitly construct-
ing the parametrized family of distributions a(·) and
b(·). The family will be parametrized by a scalar δ
with γ < δ < 1. We define

a(t) = (1− δ)δt, (19)

b(t) = (1− γ/δ)(γ/δ)t, (20)

for t = 0, . . . ,∞. Since p(R= 1|ξ, T) = 0 for |ξ| > T ,
the right hand side of (17) reads:

∞∑
T=0

a(T)
T∑
t=0

b(t)
∑
ξ∈X t

p(ξ|t;π) p(R=1|ut, xt), (21)

where we have truncated the t-summation at time T .
The term

∑
ξ∈X t p(ξ|t;π) p(R= 1|ut, xt) is by defini-

tion the expectation E[rt;π] (as in (8)), and the right
hand side of (17) reads

∞∑
T=0

a(T)
T∑
t=0

b(t) E[rt;π] (22)

= (1− δ)(1− γ/δ)
∞∑
T=0

δT
T∑
t=0

(γ/δ)tE[rt;π] (23)

= (1− δ)(1− γ/δ)
∞∑
t=0

(γ/δ)tE[rt;π]
∞∑
T=t

δT (24)

= (1− δ)(1− γ/δ)
∞∑
t=0

(γ/δ)tE[rt;π] δt
∞∑
T=0

δT (25)

= (1− γ/δ)
∞∑
t=0

γtE[rt;π] = (1− γ/δ)V (π), (26)

and hence (17) holds with proportionality constant
1/(1− γ/δ).

Let us contrast this to the previous mixture model
(equations (7) and (8)). In that model we had the
joint p(R, ξ;π) over R and ξ ∈ X ∗, where the length
of ξ was distributed according to p(T) ∝ γT (equation
(4)). What we have derived in the above theorem cor-
responds to a joint distribution over R, t, ξ ∈ X t, and
a new random variable T :

p(R, t, ξ, T ;π) = a(T) b(t) p(ξ|t;π) p(R|ξ, T), (27)

with p(ξ|t;π) defined in accordance to (3). The new
variable T can be thought of as providing a ‘maximal’
trajectory length in the sense that, for given T , only
trajectories with length shorter than T have nonzero
probability when conditioned on R=1. Effectively, the
T variable implies an additional discounting so that
the geometric priors a(T) and b(t) together induce the

appropriate discounting. As the theorem shows, the
mixture likelihood p(R= 1) is also in the new model
proportional to the value function V (π).

When δ → γ (but strictly δ > γ) the distribution b(t)
is nearly constant (decays very slowly) and the distri-
bution a(T) approximates p(T). In this case, using
expression (21), we have

V (π) ∝
∞∑
T=0

a(T)
T∑
t=0

b(t)
∑
ξ∈X t

p(ξ|t;π) p(R=1|ut, xt)

=
∞∑
T=0

a(T)
T∑
t=0

b(t)
∑
ξ∈XT

p(ξ|T ;π) p(R=1|ut, xt)

=
∞∑
T=0

a(T)
∑
ξ∈XT

p(ξ|T ;π)
T∑
t=0

b(t) p(R=1|ut, xt)

≈
∞∑
T=0

p(T)
∑
ξ∈XT

p(ξ|T ;π)
T∑
t=0

p(R=1|ut, xt). (28)

In the second line we could extend the summation over
ξ ∈ X t to ξ ∈ X T since the additional summation
over (xt+1:T , ut+1:T) sums to 1. Equation (28) corre-
sponds to the stochastic shortest path formulation of
an infinite-horizon value function (Bertsekas & Tsit-
siklis, 1996, p. 39), and our theorem can be regarded
as a generalization of that formulation.

5. Stochastic approximation EM in the
new model

We derive here a SAEM algorithm for the new mixture
model (17). Contrary to section 3, we now have three
latent random variables T ∼ a(T), t ∼ b(t), and ξ ∈
X t. In analogy to (14), in step 1 of SAEM we need to
sample from the posterior

p(t, ξ, T |R;πk−1) ∝ a(T) b(t) p(ξ|t;πk−1) p(R|ξ, T) .
(29)

To sample from this posterior we first sample T , then t,
then ξ ∈ X t. The advantage of sampling in this order
is that, since we need to sample only trajectories with
nonzero posterior, we can constrain the range of t to
0, .., T . Further, instead of sampling independent tra-
jectories of different lengths t, we can more efficiently
reuse the samples: For given Ti, we generate a sin-
gle trajectory ξi of length Ti and treat all of its sub-
trajectories (length-t prefixes of ξi) as samples from
p(ξ|t;πk−1), for t = 0, .., Ti. We denote the length-t
prefix of ξi as ξit. To each of these sub-trajectories ξit
we then assign importance weight

wξit
= b(t) p(R=1|ξit, T). (30)

The update of F̂k in step 2 of SAEM reads:

F̂k(π) = (1− αk)F̂k-1(π)+

αk
m

m∑
i=1

1
|ξi|+ 1

|ξi|∑
t=0

wξit
log p(ξit|t;π). (31)

Note that this update takes into account all rewards
observed during a trajectory ξi.

5.1. The finite horizon case

We can also derive a SAEM algorithm for the finite
horizon case, in which the value function is the ex-
pected sum of rewards up to a terminal time step H:

V (π) = E
[H∑
t=0

rt ;π
]
. (32)

In the original model of section 2 this value translates
to a likelihood, analogous to equation (8), when we
choose the time prior p(T) = 1/(H+1) for T ≤ H and
zero otherwise. Again, if we derive a SAEM algorithm
directly for this original mixture model this leads to an
inefficient use of samples. However, we note that the
finite horizon case can alternatively be expressed by
choosing in equation (17) a delta distribution a(T) =
δTH and a uniform distribution b(t) = 1/(H+1) for
t ≤ H, and derive the SAEM algorithm as above. This
leads to exactly the same algorithm as above, except
that we always choose length T = H to generate the
sample trajectories ξi. In this case the update of F̂k
reads:

F̂k(π) = (1− αk)F̂k-1(π)+

αk
m(H + 1)

m∑
i=1

H∑
t=0

wξit
log p(ξit|t;π), (33)

where the importance weights now correspond to im-
mediate rewards:

wξit
= p(R=1|ξit, T) = p(R=1|u|ξit|, x|ξit|). (34)

5.2. The tabular case

Here we consider the classical tabular case, where the
state and the action spaces are discrete and the policy
is parametrized by the conditional probability table
πux of taking action u at state x, with

∑
u πux = 1 for

all x. For convenience we can write the policy using
an indicator function:

π(ut|xt) = exp
∑
ux

I(xt=x, ut=u) log πux. (35)

Then the log probability of a sub-trajectory ξit under
the MDP (using (2) and (3), and ignoring terms that
do not depend on π) is

log p(ξit|t;π) = const. +
∑
ux

cuxξit
log πux, (36)

where cuxξit
is the number of occurrences of a state-

action pair (u, x) in the trajectory ξit, and thereby the
number of occurrences of (u, x) in the sample ξi until
time t. From equation (31) the update of F̂k reads
(ignoring constants):

F̂k(π) = (1− αk)F̂k-1(π)+

αk
m

∑
ux

(log πux)
m∑
i=1

1
|ξi|+ 1

|ξi|∑
t=0

wξit
cuxξit

. (37)

In step 3 of the SAEM algorithm we need to find
the argmaxπ F̂k(π). Let us define another function
Qk(x, u) over all x, u pairs as:

Qk(x, u) = (1− αk)Qk-1(x, u)+

αk
m

m∑
i=1

1
|ξi|+ 1

|ξi|∑
t=0

wξitc
ux
ξit
. (38)

This function can be regarded as an action-value func-
tion: since the importance weights wξit

are propor-
tional to immediate rewards (and they are approxi-
mately equal to the immediate rewards when b(t) is
nearly constant, e.g., when δ → γ or in the finite hori-
zon case), the last term in (38) is effectively performing
a partial evaluation of the most recently followed pol-
icy (πk-1) in an approximate batch every-visit Monte
Carlo manner. This term is combined with the action
value function Qk−1 of the previous EM iteration to
produce the new Qk estimate, and so forth for each
k. Using the definition of the Q-function, the function
F̂k(π) reads

F̂k(π) =
∑
ux

Qk(x, u) log πux. (39)

Maximization of F̂k(π) using a Lagrange multiplier
λx(
∑
u πux − 1) for each state x gives

πk(x, u) ∝ Qk(x, u). (40)

The smoothness of the policy update operator as a
function of the action values has been key in estab-
lishing the convergence of related approximate policy
iteration algorithms (Jaakkola et al., 1995; Perkins &
Precup, 2003).

In summary, SAEM is an optimistic policy iteration
algorithm for RL that is similar to Sarsa(1), with a

smooth (non-greedy) policy improvement step (40).
The algorithm is based on batch every-visit Monte
Carlo policy evaluation and involves no bootstrapping,
hence it is also appropriate for domains that exhibit
partial observability (POMDPs). Its convergence can
be guaranteed under quite general conditions (Delyon
et al., 1999), but we have not attempted to provide
any formal proofs in this paper.

6. Experiments

For illustration purposes we first demonstrate the pro-
posed SAEM algorithm on the ‘chain’ toy MDP (Dear-
den et al., 1998). This MDP is shown in Fig. 1. The
process always starts from state 1, every chosen action
can be flipped with probability 0.2 (hence the state
transitions are effectively stochastic), and the discount
factor is γ = 0.99. The optimal policy is to always take
action ‘a’ from any state.

Figure 1. Learning curve of SAEM on the ‘chain’ MDP.
The dashed line corresponds to the optimal value V ∗(1).

In Fig. 1 we show the learning curve of SAEM (mean
and standard deviation of value, over five runs) when
initializing with a uniformly random policy. In each
iteration of SAEM we sampled m = 50 trajectories,
and used δ = γ, which means that the length of each
trajectory was sampled from a geometric distribution
with parameter γ, and b(t) is constant. We evaluated
each policy by standard MDP policy evaluation us-
ing the model. Using the above settings the algorithm
was consistently able to locate the optimal policy in
all runs. For smaller sample sizes (e.g., m = 10) the
algorithm would often converge to suboptimal policies
corresponding to local maxima of the likelihood func-
tion (not shown in the graph).

Since SAEM involves no bootstrapping, it can also be
applied on POMDPs. We applied the algorithm on
the Hallway POMDP, a standard problem from the
POMDP literature (Littman et al., 1995). This is a
robot maze problem with partial observability, where
the robot always starts from an unknown state drawn
from a fixed starting distribution and must reach a
goal state. This POMDP involves 60 states, 21 obser-
vations, and 5 actions. Here γ = 0.95.

In this experiment we used a stochastic memoryless
policy for the agent, which can be regarded as a finite
state controller with as many nodes as the number of
observations.1 In Fig. 2 we show the learning curves
of SAEM for sample sizes m = 1000 and m = 100.
In both cases we executed five runs, starting with a
uniformly random policy, and using δ = 0.99. For
m = 1000 we plot the mean and standard deviation
of the value of each discovered policy (thick line with
error bars), and for m = 100 we just show the five runs
(dashed lines). The value of a policy was computed by
standard model-based policy evaluation of finite state
controllers (Hansen, 1998).

Figure 2. Learning curves of SAEM on the Hallway
POMDP, for two different sample sizes.

For small sample sizes (m = 100) the algorithm often
got trapped in local maxima of the likelihood func-
tion (e.g., the lower two dashed lines), but for larger
sample sizes (m = 1000) the algorithm seemed to be
able to avoid bad local maxima, consistently heading
for high-value policies (as suggested by the small er-
ror bars). This is an encouraging result, confirming

1We chose the class of stochastic memoryless policies
just for illustration purposes; it is trivial to adapt SAEM
to work with any stochastic finite state controller.

the potential of SAEM to handle domains with partial
observability.2

7. Conclusions

In this paper we reformulated model-free Reinforce-
ment Learning as a probabilistic inference problem
(mixture learning). The approach draws on the prob-
abilistic model of Toussaint and Storkey (2006) that
allows casting policy optimization as a problem of like-
lihood maximization in a mixture model. The key to
turn this into an efficient model-free RL algorithm was
to propose a new mixture model (17) that leads to
a stochastic EM algorithm (SAEM) that uses all re-
ward signals on a sampled trajectory. The proposed
model can be viewed as a generalization of the stochas-
tic shortest path reformulation of an infinite-horizon
MDP (Bertsekas & Tsitsiklis, 1996).

Since the SAEM algorithm is non-bootstrapping it can
also be useful in domains exhibiting partial observabil-
ity. We tried SAEM on a standard problem from the
POMDP literature, with encouraging results, provid-
ing further evidence that Sarsa-style algorithms hold
promise in POMDPs (Loch & Singh, 1998).

The main contribution of this work is the established
link between the family of stochastic EM algorithms
like SAEM and the family of optimistic policy iteration
algorithms like Sarsa(1), which we believe can provide
new tools for the design and analysis of RL algorithms.

Acknowledgements

We would like to thank the reviewers for their helpful
reviews. Marc Toussaint is supported by the German
Research Foundation (DFG), Emmy Noether fellow-
ship TO 409/1-3.

References

Abbeel, P., Coates, A., Quigley, M., & Y., N. A.
(2007). An application of reinforcement learning to
aerobatic helicopter flight. In B. Schölkopf, J. Platt
and T. Hoffman (Eds.), Advances in neural infor-
mation processing systems 19, 1–8. Cambridge, MA:
MIT Press.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Athena Scientific.

Celeux, G., & Diebolt, J. (1985). The SEM algorithm:
a probabilistic teacher algorithm derived from the
2State-of-the-art model-based POMDP solvers produce

policies with value around 1 in this problem (Poupart,
2005; Shani et al., 2007).

EM algorithm for the mixture problem. Comp.
Statis. Quaterly, 2, 73–82.

Cooper, G. F. (1988). A method for using belief net-
works as influence diagrams. Proc. 4th Workshop
on Uncertainty in Artificial Intelligence (pp. 55–63).
Minneapolis, Minnesota, USA.

Dayan, P., & Hinton, G. E. (1997). Using Expectation-
Maximization for reinforcement learning. Neural
Computation, 9, 271–278.

Dearden, R., Friedman, N., & Russell, S. (1998).
Bayesian Q-learning. Proc. 15th National Conf. on
Artificial Intelligence (pp. 761–768). Madison, Wis-
consin, USA.

Delyon, B., Lavielle, M., & Moulines, E. (1999). Con-
vergence of a stochastic approximation version of the
EM algorithm. The Annals of Statistics, 27, 94–128.

Gordon, G. (1996). Chattering in Sarsa(λ) (Technical
Report). CMU Learning Lab internal report.

Hansen, E. (1998). Solving POMDPs by searching in
policy space. Proc. 14th Int. Conf. on Uncertainty
in Artificial Intelligence (pp. 211–219). Madison,
Wisconsin, USA.

Hoffman, M., Doucet, A., De Freitas, N., & Jasra,
A. (2008). Bayesian policy learning with trans-
dimensional MCMC. In J. Platt, D. Koller,
Y. Singer and S. Roweis (Eds.), Advances in neural
information processing systems 20, 665–672. Cam-
bridge, MA: MIT Press.

Jaakkola, T., Singh, S. P., & Jordan, M. I. (1995).
Reinforcement learning algorithm for partially ob-
servable Markov decision problems. In Advances in
neural information processing systems 7, 345–352.
MIT Press.

Kober, J., & Peters, J. (2009). Policy search for motor
primitives in robotics. In D. Koller, D. Schuurmans,
Y. Bengio and L. Bottou (Eds.), Advances in neural
information processing systems 21, 849–856.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P.
(1995). Learning policies for partially observable en-
vironments: Scaling up. Proc. 12th Int. Conf. on
Machine Learning (pp. 362–370).

Loch, J., & Singh, S. P. (1998). Using eligibility traces
to find the best memoryless policy in partially ob-
servable Markov decision processes. Proc. 15th Int.
Conf. on Machine Learning (pp. 323–331). Madison,
Wisconsin, USA.

Melo, F. S., Meyn, S. P., & Ribeiro, M. I. (2008).
An analysis of reinforcement learning with function
approximation. Proc. 25th Int. Conf. on Machine
Learning (pp. 664–671). Helsinki, Finland.

Neal, R. M., & Hinton, G. E. (1998). A view of the
EM algorithm that justifies incremental, sparse, and
other variants. In M. I. Jordan (Ed.), Learning in
graphical models, 355–368. Kluwer Academic Pub-
lishers.

Perkins, T. J., & Pendrith, M. D. (2002). On the
existence of fixed points for Q-learning and Sarsa in
partially observable domains. Proc. 19th Int. Conf.
on Machine Learning (pp. 490–497).

Perkins, T. J., & Precup, D. (2003). A convergent form
of approximate policy iteration. In S. T. S. Becker
and K. Obermayer (Eds.), Advances in neural in-
formation processing systems 15, 1595–1602. Cam-
bridge, MA: MIT Press.

Peters, J., & Schaal, S. (2008). Learning to control in
operational space. International Journal of Robotics
Research, 27, 197–212.

Poupart, P. (2005). Exploiting structure to efficiently
solve large scale partially observable Markov decision
processes. Doctoral dissertation, Dept. of Computer
Science, University of Toronto.

Shani, G., Brafman, R. I., & Shimony, S. E. (2007).
Forward search value iteration for POMDPs. In
Int. Joint Conf. on Artificial Intelligence (pp. 2619–
2624).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

Toussaint, M., & Storkey, A. (2006). Probabilistic
inference for solving discrete and continuous state
Markov decision processes. Proc. 23rd Int. Conf. on
Machine Learning (pp. 945–952). Pittsburgh, Penn-
sylvania, USA.

Tsitsiklis, J. N. (2002). On the convergence of opti-
mistic policy iteration. Journal of Machine Learning
Research, 3, 59–72.

Wei, G., & Tanner, M. (1990). A Monte Carlo imple-
mentation of the EM algorithm and the poor man’s
data augmentation algorithm. J. Amer. Statist. As-
socation, 85, 699–704.

