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Abstract

Many machine learning algorithms can be
formulated as a generalized eigenvalue prob-
lem. One major limitation of such formula-
tion is that the generalized eigenvalue prob-
lem is computationally expensive to solve
especially for large-scale problems. In this
paper, we show that under a mild condi-
tion, a class of generalized eigenvalue prob-
lems in machine learning can be formulated
as a least squares problem. This class of
problems include classical techniques such as
Canonical Correlation Analysis (CCA), Par-
tial Least Squares (PLS), and Linear Dis-
criminant Analysis (LDA), as well as Hy-
pergraph Spectral Learning (HSL). As a re-
sult, various regularization techniques can be
readily incorporated into the formulation to
improve model sparsity and generalization
ability. In addition, the least squares for-
mulation leads to efficient and scalable im-
plementations based on the iterative conju-
gate gradient type algorithms. We report
experimental results that confirm the estab-
lished equivalence relationship. Results also
demonstrate the efficiency and effectiveness
of the equivalent least squares formulations
on large-scale problems.

1. Introduction

A number of machine learning algorithms can be for-
mulated as a generalized eigenvalue problem. Such
techniques include Canonical Correlation Analysis
(CCA), Partial Least Squares (PLS), Linear Discrimi-
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nant Analysis (LDA), and Hypergraph Spectral Learn-
ing (HSL) (Hotelling, 1936; Rosipal & Krämer, 2006;
Sun et al., 2008a; Tao et al., 2009; Ye, 2007). Al-
though well-established algorithms in numerical linear
algebra have been developed to solve generalized eigen-
value problems, they are in general computationally
expensive and hence may not scale to large-scale ma-
chine learning problems. In addition, it is challenging
to directly incorporate the sparsity constraint into the
mathematical formulation of these techniques. Spar-
sity often leads to easy interpretation and a good gen-
eralization ability. It has been used successfully in lin-
ear regression (Tibshirani, 1996), and Principal Com-
ponent Analysis (PCA) (d’Aspremont et al., 2004).

Multivariate Linear Regression (MLR) that minimizes
the sum-of-squares error function, called least squares,
is a classical technique for regression problems. It can
also be applied for classification problems by defining
an appropriate class indicator matrix (Bishop, 2006).
The solution to the least squares problems can be ob-
tained by solving a linear system of equations, and
a number of algorithms, including the conjugate gra-
dient algorithm, can be applied to solve it efficiently
(Golub & Van Loan, 1996). Furthermore, the least
squares formulation can be readily extended using the
regularization technique. For example, the 1-norm
and 2-norm regularization can be incorporated into
the least squares formulation to improve sparsity and
control model complexity (Bishop, 2006).

Motivated by the mathematical and numerical prop-
erties of the generalized eigenvalue problem and the
least squares formulation, several researchers have at-
tempted to connect these two approaches. In particu-
lar, it has been shown that there is close relationship
between LDA, CCA, and least squares (Hastie et al.,
2001; Bishop, 2006; Ye, 2007; Sun et al., 2008b). How-
ever, the intrinsic relationship between least squares
and other techniques involving generalized eigenvalue
problems mentioned above remains unclear.
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In this paper, we study the relationship between the
least squares formulation and a class of generalized
eigenvalue problems in machine learning. In particu-
lar, we establish the equivalence relationship between
these two formulations under a mild condition. As a
result, various regularization techniques such as the 1-
norm and 2-norm regularization can be readily incor-
porated into the formulation to improve model sparsity
and generalization ability. In addition, this equiva-
lence relationship leads to efficient and scalable imple-
mentations for these generalized eigenvalue problems
based on the iterative conjugate gradient type algo-
rithms such as LSQR (Paige & Saunders, 1982). We
have conducted experiments using several benchmark
data sets. The experiments confirm the equivalence re-
lationship between these two models under the given
assumption. Our results show that even when the as-
sumption does not hold, the performance of these two
models is still very close. Results also demonstrate
the efficiency and effectiveness of the equivalent least
squares models and their extensions.

Notations: The number of training samples, the
data dimensionality, and the number of classes (or la-
bels) are denoted by n, d, and k, respectively. xi ∈ Rd

denotes the ith observation, and yi ∈ Rk encodes the
label information for xi. X = [x1, x2, · · · , xn] ∈ Rd×n

represents the data matrix, and Y = [y1, y2, · · · , yn] ∈
Rk×n is the matrix representation for label informa-
tion. {xi}n

1 is assumed to be centered, i.e.,
∑n

i=1 xi =
0. S ∈ Rn×n is a symmetric and positive semi-definite
matrix, and e is a vector of all ones.

Organization: We present background and related
work in Section 2, establish the equivalence relation-
ship between the generalized eigenvalue problem and
the least squares problem in Section 3, discuss exten-
sions based on the established equivalence result in
Section 4, present the efficient implementation in Sec-
tion 5, report empirical results in Section 6, and con-
clude this paper in Section 7.

2. Background and Related Work

In this section, we present a class of generalized eigen-
value problems studied in this paper. The least squares
formulation is briefly reviewed.

2.1. A Class of Generalized Eigenvalue
Problems

We consider a class of generalized eigenvalue problems
in the following form:

XSXT w = λXXT w, (1)

where X ∈ Rd×n represents the data matrix and
S ∈ Rn×n is symmetric and positive semi-definite.
The generalized eigenvalue problem in Eq. (1) is of-
ten reformulated as the following eigenvalue problem:

(XXT )†XSXT w = λw, (2)

where (XXT )† is the pseudoinverse of XXT . In gen-
eral, we are interested in eigenvectors corresponding to
nonzero eigenvalues. It turns out that many machine
learning techniques can be formulated in the form of
Eqs. (1) and (2).

2.2. Examples of Generalized Eigenvalue
Problems

We briefly review several algorithms that involve a
generalized eigenvalue problem in the general form of
Eq. (1). They include Canonical Correlation Analy-
sis, Partial Least Squares, Linear Discriminant Anal-
ysis, and Hypergraph Spectral Learning. For super-
vised learning methods, the label information is en-
coded in the matrix Y = [y1, y2, · · · , yn] ∈ Rk×n,
where yi(j) = 1 if xi belongs to class j and yi(j) = 0
otherwise.

Canonical Correlation Analysis

In CCA (Hotelling, 1936), two different representa-
tions, X and Y , of the same set of objects are given,
and a projection is computed for each representa-
tion such that they are maximally correlated in the
dimensionality-reduced space. Denote the projection
vector for X by wx ∈ Rd, and assume that Y Y T is non-
singular. It can be verified that wx is the first princi-
pal eigenvector of the following generalized eigenvalue
problem:

XY T (Y Y T )−1Y XT wx = λXXT wx. (3)

Multiple projection vectors can be obtained simulta-
neously by computing the first � principal eigenvec-
tors of the generalized eigenvalue problem in Eq. (3).
It can be observed that CCA is in the form of the
generalized eigenvalue problem in Eq. (1) with S =
Y T (Y Y T )−1Y .

Partial Least Squares

In contrast to CCA, Orthonormalized PLS (OPLS), a
variant of PLS (Rosipal & Krämer, 2006), computes
orthogonal score vectors by maximizing the covariance
between X and Y . It solves the following generalized
eigenvalue problem:

XY T Y XT w = λXXT w. (4)

It can be observed that Orthonormalized PLS involves
a generalized eigenvalue problem in Eq. (1) with S =
Y T Y .
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Hypergraph Spectral Learning

A hypergraph (Agarwal et al., 2006) is a generalization
of the traditional graph in which the edges (a.k.a. hy-
peredges) are arbitrary non-empty subsets of the ver-
tex set. HSL (Sun et al., 2008a) employs a hypergraph
to capture the correlation information among differ-
ent labels for improved classification performance in
multi-label learning. It has been shown that given the
normalized Laplacian LH for the constructed hyper-
graph, HSL invovles the following generalized eigen-
value problem:

XSXT w = λ(XXT )w, where S = I − LH . (5)

It has been shown that for many existing definitions of
the Laplacian LH , the resulting matrix S is symmetric
and positive semi-definite, and it can be decomposed
as S = HHT , where H ∈ Rn×k.

Linear Discriminant Analysis

LDA is a supervised dimensionality reduction tech-
nique. The transformation in LDA is obtained by
maximizing the ratio of the inter-class distance to the
intra-class distance. It is known that CCA is equiv-
alent to LDA for multi-class problems. Thus, the S
matrix can be derived similarly.

2.3. Least Squares for Regression and
Classification

Least squares is a classical technique for both regres-
sion and classification (Bishop, 2006). In regression,
we are given a training set {(xi, ti)}n

i=1, where xi ∈ Rd

is the observation and ti ∈ Rk is the corresponding
target. We assume that both the observations and the
targets are centered, then the intercept can be elim-
inated. In this case, the weight matrix W ∈ Rd×k

can be computed by minimizing the following sum-of-
squares error function:

min
W

n∑
i=1

‖WT xi − ti‖2
2 = ‖WT X − T ‖2

F , (6)

where T = [t1, · · · , tn] is the target matrix. It is well-
known that the optimal solution Wls is given by

Wls = (XXT )†XT T . (7)

Least squares can also be applied for classification
problems. In the general multi-class case, we are given
a data set consisting of n samples {(xi, yi)}n

i=1, where
xi ∈ Rd, and yi ∈ {1, 2, · · · , k} denotes the class la-
bel of the i-th sample, and k ≥ 2. To apply the least
squares formulation to the multi-class case, the 1-of-k
binary coding scheme is usually employed to apply a

vector-valued class code to each data point (Bishop,
2006). The solution to the least squares problem
depends on the choice of the class indicator matrix
(Hastie et al., 2001; Ye, 2007). In contrast to the gen-
eralized eigenvalue problem, the least squares problem
can be solved efficiently using iterative conjugate gra-
dient algorithms (Golub & Van Loan, 1996; Paige &
Saunders, 1982).

3. Generalized Eigenvalue Problem
versus Least Squares Problem

In this section, we investigate the relationship between
the generalized eigenvalue problem in Eq. (1) or its
equivalent formulation in Eq. (2) and the least squares
formulation. In particular, we show that under a mild
condition1, the eigenvalue problem in Eq. (2) can be
formulated as a least squares problem with a specific
target matrix.

3.1. Matrix Orthonormality Property

For convenience of presentation, we define matrices CX

and CS as follows:

CX = XXT ∈ Rd×d, CS = XSXT ∈ Rd×d.

The eigenvalue problem in Eq. (2) can then be ex-
pressed as

C†
XCSw = λw. (8)

Recall that S is symmetric and positive semi-definite,
thus it can be decomposed as

S = HHT , (9)

where H ∈ Rn×s, and s ≤ n. For most examples
discussed in Section 2.2, the closed-form of H can be
obtained and s = k � n. Since X is centered, i.e.,
Xe = 0, we have XC = X , where C = I − 1

neeT is the
centering matrix satisfying CT = C, and Ce = 0. It
follows that

CS = XSXT = (XC)S(XC)T = X(CSCT )XT

= X(CTSC)XT = XS̃XT , (10)

where S̃ = CTSC. Note that

eT S̃e = eT CTSCe = 0. (11)

Thus, we can assume that eTSe = 0, that is, both
columns and rows of S are centered. Before presenting
the main results, we have the following lemmas.

1It states that {xi}n
i=1 are linearly independent before

centering, i.e., rank(X) = n − 1 after the data is centered
(of zero mean).
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Lemma 1. Assume that eTSe = 0. Let H be de-
fined in Eq. (9). Let HP = QR be the QR decom-
position of H with column pivoting, where Q ∈ Rn×r

has orthonormal columns, R ∈ Rr×s is upper triangu-
lar, r = rank(H) ≤ s, and P is a permutation matrix.
Then we have QT e = 0.

Proof. Since P is a permutation matrix, we have
PT P = I. The result follows since eTSe =
eT HHT e = eT QRPT PRT QT e = eT QRRT QT e = 0
and RRT is positive definite.

Lemma 2. Let A ∈ Rm×(m−1) and B ∈ Rm×p (p ≤
m) be two matrices satisfying AT e = 0, AT A = Im−1,
BT B = Ip, and BT e = 0. Let F = AT B. Then
FT F = Ip.

Proof. Define the orthogonal matrix Ax as Ax =[
A, 1√

m
e
]
∈ Rm×m. We have

Im = AxAT
x = AAT +

1
m

eeT ⇔ AAT = Im − 1
m

eeT .

Since BT e = 0 and BT B = Ip, we obtain

FT F = BT AAT B = BT

(
Im − 1

m
eeT

)
B

= BT B − 1
m

(BT e)(BT e)T = Ip.

Let R = URΣRV T
R be the thin Singular Value De-

composition (SVD) of R ∈ Rr×s, where UR ∈
Rr×r is orthogonal, VR ∈ Rs×r has orthonormal
columns, and ΣR ∈ Rr×r is diagonal. It follows that
(QUR)T (QUR) = Ir, and the SVD of S can be derived
as follows:

S = HHT = QRRT QT = QURΣ2
RUT

RQT

= (QUR)Σ2
R (QUR)T . (12)

Assume that the columns of X are centered, i.e., Xe =
0, and rank(X) = n − 1. Let

X = UΣV T = U1Σ1V
T
1

be the SVD of X , where U and V are orthogonal,
Σ ∈ Rd×n, U1Σ1V

T
1 is the compact SVD of X , U1 ∈

Rd×(n−1), V1 ∈ Rn×(n−1), and Σ1 ∈ R(n−1)×(n−1) is
diagonal. Define M1 as

M1 = V T
1 (QUR) ∈ R(n−1)×r. (13)

We can show that the columns of M1 are orthonormal
as summarized in the following lemma:

Lemma 3. Let M1 be defined as above. Then
MT

1 M1 = Ir.

Proof. Since Xe = 0, we have V T
1 e = 0. Also note that

V T
1 V1 = In−1. Recall that (QUR)T (QUR) = Ir and

(QUR)T
e = UT

RQT e = 0 from Lemma 1. It follows
from Lemma 2 that MT

1 M1 = Ir.

3.2. The Equivalence Relationship

We first derive the solution to the eigenvalue problem
in Eq. (2) in the following theorem:

Theorem 1. Let U1, Σ1, V1, Q, ΣR, and UR be de-
fined as above. Assume that the columns of X are
centered, i.e., Xe = 0, and rank(X) = n − 1. Then
the nonzero eigenvalues of the problem in Eq. (2)
are diag(Σ2

R), and the corresponding eigenvectors are
Weig = U1Σ−1

1 V T
1 QUR.

We summarize the main result of this section in the
following theorem:

Theorem 2. Assume that the class indicator matrix
T̃ for least squares classification is defined as

T̃ = UT
RQT ∈ Rr×n. (14)

Then the solution to the least squares formulation in
Eq. (6) is given by

Wls = U1Σ−1
1 V T

1 QUR. (15)

Thus, the eigenvalue problem and the least squares
problem are equivalent.

The proofs of the above two theorems are given in the
Appendix.

Remark 1. The analysis in (Ye, 2007; Sun et al.,
2008b) is based on a key assumption that the H matrix
in S = HHT as defined in Eq. (9) has orthonormal
columns, which is the case for LDA and CCA. How-
ever, this is in general not true, e.g., the H matrix
in OPLS and HSL. The equivalence result established
in this paper significantly improves previous work by
relaxing this assumption.

The matrix Weig is applied for dimensionality reduc-
tion (projection) for all examples of Eq. (1). The
weight matrix Wls in least squares can also be used
for dimensionality reduction. If T̃ = QT is used as
the class indicator matrix, the weight matrix becomes
W̃ls = U1Σ−1

1 V T
1 Q. Thus, the difference between Weig

and W̃ls is the orthogonal matrix UR. Note that
the Euclidean distance is invariant to any orthogo-
nal transformation. If a classifier, such as K-Nearest-
Neighbor (KNN) and linear Support Vector Machines
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Algorithm 1 Efficient Implementation via LSQR
Input: X , H
Compute the QR decomposition of H : HP = QR.
Compute the SVD of R: R = URΣRV T

R .
Compute the class indicator matrix T = UT

RQT .
Regress X onto T using LSQR.

(SVM) (Schölkopf & Smola, 2002) based on the Eu-
clidean distance, is applied on the dimensionality-
reduced data via Weig and W̃ls, they will achieve the
same classification performance.

In some cases, the number of nonzero eigenvalues, i.e.
r, is large (comparable to n). It is common to use
the top eigenvectors corresponding the largest � < r
eigenvalues as in PCA. From Theorems 1 and 2, if we
keep the top � singular vectors of S as the class indi-
cator matrix, the equivalence relationship between the
generalized eigenvalue problem and the least squares
problem holds, as summarized below:

Corollary 1. The top � < r eigenvectors in Eq. (2)
can be computed by solving a least squares problem with
the top � singular vectors of S employed as the class
indicator matrix.

4. Extensions

Based on the established equivalence relationship, the
original generalized eigenvalue problem in Eq. (1) can
be extended using the regularization technique. Regu-
larization is commonly used to control the complexity
of the model and improve the generalization perfor-
mance. By using the target matrix T̃ in Eq. (14),
we obtain the 2-norm regularized least squares for-
mulation by minimizing the following objective func-
tion: L2 = ‖WT X − T̃‖2

F + γ
∑r

j=1 ‖wj‖2
2, where

W = [w1, · · · , wr] and γ > 0 is the regularization pa-
rameter. We can then apply the LSQR algorithm, a
conjugate gradient type method proposed in (Paige
& Saunders, 1982) for solving large-scale sparse least-
squares problems.

It is known that model sparsity can often be achieved
by applying the L1-norm regularization (Donoho,
2006; Tibshirani, 1996). This has been introduced into
the least squares formulation and the resulting model
is called lasso (Tibshirani, 1996). Based on the es-
tablished equivalence relationship between the original
generalized eigenvalue problem and the least squares
formulation, we derive the 1-norm regularized least
squares formulation by minimizing the following ob-
jective function: L1 = ‖WT X − T̃‖2

F + γ
∑r

j=1 ‖wj‖1,
for some tuning parameter γ > 0 (Tibshirani, 1996).
The lasso can be solved efficiently using the state-of-

the-art algorithms (Friedman et al., 2007; Hale et al.,
2008). In addition, the entire solution path for all val-
ues of γ can be obtained by applying the Least Angle
Regression algorithm (Efron et al., 2004).

5. Efficient Implementation via LSQR

Recall that we deal with the generalized eigenvalue
problem in Eq. (1), although in our theoretical deriva-
tion an equivalent eigenvalue problem in Eq. (2) is
used instead. Large-scale generalized eigenvalue prob-
lems are known to be much harder than regular eigen-
value problems. There are two options to transform
the problem in Eq. (1) into a standard eigenvalue
problem (Saad, 1992): (i) factor XXT ; and (ii) em-
ploy the standard Lanczos algorithm for the matrix
(XXT )−1XSXT using the XXT inner product. The
second option has its own issue for singular matrices,
which is the case for high-dimensional problems with
a small regularization. Thus, in this paper we factor
XXT and solve a symmetric eigenvalue problem using
the Lanczos algorithm.

The equivalent least squares formulation leads to an
efficient implementation. The pseudo-code of the al-
gorithm is given in Algorithm 1.

The complexity of the QR decomposition in the first
step is O(nk2). Note that k is the number of classes,
and k � n. The SVD of R costs O(k3). In the last
step, we solve k least squares problems. In our imple-
mentation, we use the LSQR algorithm proposed in
(Paige & Saunders, 1982), which is a conjugate gradi-
ent method for solving large-scale least squares prob-
lems. In practice, the original data matrix X ∈ Rd×n

may be sparse in many applications such as text docu-
ment modeling. Note that the centering of X is neces-
sary in some techniques such as CCA. However, X is
no longer sparse after centering. In order to keep the
sparsity of X , the vector xi is augmented by an ad-
ditional component as x̃T

i = [1, xT
i ], and the extended

X is denoted as X̃ ∈ R(d+1)×n. This new component
acts as the bias for least squares.

For dense data matrix, the overall computational cost
of each iteration of LSQR is O(3n + 5d + 2dn) (Paige
& Saunders, 1982). Since the least squares prob-
lems are solved k times, the overall cost of LSQR is
O(Nk(3n + 5d + 2dn)), where N is the total number
of iterations. When the matrix X̃ is sparse, the cost
is significantly reduced. Let the number of nonzero
elements in X̃ be z, then the overall cost of LSQR is
reduced to O(Nk(3n + 5d + 2z)). In summary, the
total time complexity for solving the least squares for-
mulation via LSQR is O(nk2 + Nk(3n + 5d + 2z)).
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6. Experiments

In this section, we report experimental results that
validate the established equivalence relationship. We
also demonstrate the efficiency of the proposed least
squares extensions.

Experimental Setup The techniques involved can
be divided into two categories: (1) CCA, PLS, and
HSL for multi-label learning; and (2) LDA for multi-
class learning. We use both multi-label [yeast (Elisseeff
& Weston, 2001) and Yahoo (Kazawa et al., 2005)]
and multi-class [USPS (Hull, 1994)] data sets in the
experiments. For the Yahoo data set, we preprocess
them using the feature selection method proposed in
(Yang & Pedersen, 1997). The statistics of the data
sets are summarized in Table 1.

For each data set, a transformation matrix is learned
from the training set, and it is then used to project the
test data onto a lower-dimensional space. The linear
Support Vector Machine (SVM) is applied for classifi-
cation. The Receiver Operating Characteristic (ROC)
score and classification accuracy are used to evaluate
the performance of multi-label and multi-class tasks,
respectively. Ten random partitions of the data sets
into training and test sets are generated in the exper-
iments, and the mean performance over all labels and
all partitions are reported. All experiments are per-
formed on a PC with Intel Core 2 Duo T7200 2.0G
CPU and 2G RAM.

For the generalized eigenvalue problem in Eq. (1), a
regularization term is commonly added as (XXT +γI)
to cope with the singularity problem of XXT . We
name the resulting regularized method using a prefix
“r” before the corresponding method, e.g., “rStar”2.
The equivalent least squares formulations are named
using a prefix “LS” such as “LS-Star”, and the result-
ing 1-norm and 2-norm regularized formulations are
named by adding subscripts 1 and 2, respectively, e.g.,
“LS-Star1” and “LS-Star2”. All algorithms were im-
plemented in Matlab.

Evaluation of the Equivalence Relationship In
this experiment, we show the equivalence relationship
between the generalized eigenvalue problem and its
corresponding least squares formulation for all tech-
niques discussed in this paper. We observe that for
all data sets, when the data dimensionality d is larger
than the sample size n, rank(X) = n − 1 is likely to
hold. We also observe that the generalized eigenvalue
problem and its corresponding least squares formula-

2rStar denotes the regularized HSL formulation when
the star expansion (Agarwal et al., 2006) is used to form
the hypergraph Laplacian.

Table 1. Statistics of the test data sets: n is number of data
points, d is the data dimensionality, and k is the number
of labels (classes).

Data Set n d k
Yeast 2417 103 14
Yahoo\Arts&Humanities 3712 23146 26
USPS 9298 256 10

tion achieve the same performance when rank(X) =
n − 1 holds. These are consistent with the theoretical
results in Theorems 1 and 2.

We also compare the performance of the two formu-
lations when the assumption in Theorems 1 and 2 is
violated. Figure 1 shows the performance of different
formulations when the size of training set varies from
100 to 900 with a step size about 100 on the yeast
data set and the USPS data set. Due to the space con-
straint, only the results from HSL based on the star
expansion and LDA are presented. We can observe
from the figure that when n is small, the assumption
in Theorem 1 holds and the two formulations achieve
the same performance; when n is large, the assumption
in Theorem 1 does not hold and the two formulations
achieve different performance, although the difference
is always very small in the experiment. We can also
observe from Figure 1 that the regularized methods
outperform the unregularized ones, which validates the
effectiveness of regularization.

Evaluation of Scalability In this experiment, we
compare the scalability of the original generalized
eigenvalue problem and the equivalent least squares
formulation. Since regularization is commonly em-
ployed in practice, we compare the regularized version
of the generalized eigenvalue problem and its corre-
sponding 2-norm regularized least squares formulation.
The least squares problem is solved by the LSQR al-
gorithm (Paige & Saunders, 1982).

The computation time of the two formulations on the
high-dimensional multi-label Yahoo data set is shown
in Figure 2 (top figure), where the data dimensionality
increases and the training sample size is fixed at 1000.
Only the results from CCA and HSL are presented
due to the space constraint. It can be observed that
the computation time for both algorithms increases
steadily as the data dimensionality increases. How-
ever, the computation time of the least squares formu-
lation is substantially less than that of the original one.
We also evaluate the scalability of the two formulations
in terms of the training sample size. Figure 2 (bottom
figure) shows the computation time of the two formula-
tions on the Yahoo data set as the training sample size
increases with the data dimensionality fixed at 5000.
We can also observe that the least squares formulation
is much more scalable than the original one.
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Figure 1. Comparison of different formulations in terms of
the ROC score/accuracy for different techniques on the
yeast data set and the USPS data set. HSL is applied on
the yeast data set, and LDA is applied on the USPS data
set. For regularized algorithms, the optimal value of γ is
estimated from {1e−6, 1e−4, 1e−2, 1, 10, 100, 1000} using
cross validation.

7. Conclusions and Future Work

In this paper, we study the relationship between a
class of generalized eigenvalue problems in machine
learning and the least squares formulation. In par-
ticular, we show that a class of generalized eigenvalue
problems in machine learning can be reformulated as
a least squares problem under a mild condition, which
generally holds for high-dimensional data. The class of
problems include CCA, PLS, HSL, and LDA. Based on
the established equivalence relationship, various regu-
larization techniques can be employed to improve the
generalization ability and induce sparsity in the re-
sulting model. In addition, the least squares formu-
lation results in the efficient implementation based on
the iterative conjugate gradient type algorithms such
as LSQR. Our experimental results confirm the es-
tablished equivalence relationship. Results also show
that the performance of the least squares formulation
and the original generalized eigenvalue problem is very
close even when the assumption is violated. Our ex-
periments also demonstrate the effectiveness and scal-
ability of the least squares extensions.
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Figure 2. Computation time (in seconds) of the generalized
eigenvalue problem and the corresponding least squares
formulation on the Yahoo\Arts&Humanities data set as
the data dimensionality (top row) or the training sample
size (bottom row) increases. The x-axis represents the data
dimensionality (top) or the training sample size (bottom)
and the y-axis represents the computation time.

Unlabeled data can be incorporated into the least
squares formulation through the graph Laplacian,
which captures the local geometry of the data (Belkin
et al., 2006). We plan to investigate the effectiveness of
this semi-supervised framework for the class of gener-
alized eigenvalue problems studied in this paper. The
equivalence relationship will in general not hold for
low-dimensional data. However, it is common to map
the low-dimensional data into a high-dimensional fea-
ture space through a nonlinear feature mapping in-
duced by the kernel (Schölkopf & Smola, 2002). We
plan to study the relationship between these two for-
mulations in the kernel-induced feature space.
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Appendix

Proof of Theorem 1

Proof. It follows from Lemma 3 that the columns of
M1 ∈ R(n−1)×r are orthonormal. Hence there ex-
ists M2 ∈ R(n−1)×(n−1−r) such that M = [M1, M2] ∈
R(n−1)×(n−1) is orthogonal (Golub & Van Loan, 1996).
We can derive the eigen-decomposition of C†

XCS as:

C†
XCS =

(
XXT

)†
XSXT

=(U1Σ−2
1 UT

1 )U1Σ1V
T
1 (QUR)Σ2

R (QUR)T V1Σ1U
T
1

=U1Σ−1
1 V T

1 (QUR)Σ2
R (QUR)T

V1Σ1U
T
1

=U1Σ−1
1 M1Σ2

RMT
1 Σ1U

T
1

=U

[
In−1

0

]
Σ−1

1 [M1 M2]
[
Σ2

R 0
0 0n−1−r

] [
MT

1

MT
2

]

Σ1[In−1, 0]UT

=U

[
In−1

0

]
Σ−1

1 M

[
Σ2

R 0
0 0n−1−r

]
MT Σ1[In−1, 0]UT

=U

[
Σ−1

1 M
I

] [
Σ2

R
0n−r

] [
MT Σ1

I

]
UT . (16)

There are r nonzero eigenvalues, which are diag(Σ2
R),

and the corresponding eigenvectors are

Weig = U1Σ−1
1 M1 = U1Σ−1

1 V T
1 QUR. (17)

Proof of Theorem 2

Proof. When T̃ is used as the class indicator matrix,
it follows from Eq. (7) that the solution to the least
squares problem is

Wls = (XXT )†XT̃ T = (XXT )†XQUR

= U1Σ−2
1 UT

1 U1Σ1V
T
1 QUR = U1Σ−1

1 V T
1 QUR.

It follows from Eq. (17) that Wls = Weig .


