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Abstract

The Precision-Recall (PR) curve is a widely
used visual tool to evaluate the performance
of scoring functions in regards to their capaci-
ties to discriminate between two populations.
The purpose of this paper is to examine both
theoretical and practical issues related to the
statistical estimation of PR curves based on
classification data. Consistency and asymp-
totic normality of the empirical counterpart
of the PR curve in sup norm are rigorously
established. Eventually, the issue of build-
ing confidence bands in the PR space is con-
sidered and a specific resampling procedure
based on a smoothed and truncated version of
the empirical distribution of the data is pro-
moted. Arguments of theoretical and compu-
tational nature are presented to explain why
such a bootstrap is preferable to a ”naive”
bootstrap in this setup.

1. Introduction

Although the ROC curve remains the golden stan-
dard in a wide variety of applications, ranging from
anomaly detection in signal analysis to medical diagno-
sis, through credit-risk screening, for evaluating how a
test statistic performs in regards to its capacity of dis-
crimination between two populations, the Precision-
Recall (PR) curve has recently received much atten-
tion in the machine-learning literature, through the
development of statistical learning procedures tailored
for the bipartite ranking problem. When the distri-
bution of the pooled population is highly skewed, i.e.
when the theoretical proportion of positive instances
is (very) small, which is often the case in Informa-
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tion Retrieval (IR) applications, PR curves offer a
scale-adapted graphical display that permit to visual-
ize much more easily ranking performance, see (Man-
ning & Schutze, 1999) or (Raghavan et al., 1989) for
instance.

The goal of bipartite ranking consists of determining
a test statistic with a PR curve ”as high as possible”
everywhere and assessing the performance of a given
candidate from training data is thus of prime impor-
tance. However, although PR analysis is a more and
more popular tool in IR applications, crucial questions
related to its statistical estimation have not been ad-
dressed yet. It is hence the purpose of this paper to
investigate the statistical properties of empirical coun-
terparts of the PR curve from the asymptotic angle.
Beyond consistency and asymptotic normality issues,
we tackle the problem of building confidence bands for
the PR curve of a given scoring function s(x) or parts
of it in a fully data-driven fashion. Given the complex-
ity of the asymptotic law of the (centered) empirical
PR curve, we suggest to plot confidence bands in the
PR space equipped with the sup norm by means of
a resampling procedure, following in the footsteps of
(Horvath et al., 2008) and (Bertail et al., 2008) where
the bootstrap paradigm is applied to the construc-
tion of ROC confidence bands, see also (Macskassy
& Provost, 2004) and (Macskassy et al., 2005) for a
pointwise approach. The main novelty lies in the fact
that the specific resampling method proposed here per-
mits to remedy the possible computational difficulties
caused by an extreme degree of asymmetry between
the two populations forming the training data sam-
ple. Asymptotic validity of this bootstrap procedure
is proved by means of the limit results previously es-
tablished for the empirical PR curve.

The rest of the article is structured as follows. In Sec-
tion 2, notations are first set out and key notions of
PR analysis are recalled. Nonparametric estimation of
the PR curve of a given scoring function based on clas-
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sification data is tackled in Section 3 from a functional
perspective. The statistical procedure we propose for
bootstrapping PR curves is presented in Section 4,
together with the theoretical results establishing its
asymptotic validity. Eventually, technical details are
deferred to the Appendix.

2. Preliminaries

Here we briefly describe the issue of bipartite rank-
ing and recall the related key concepts of PR analysis.
We also set out the notations that shall be needed
throughout the paper.

2.1. The bipartite framework

In the bipartite ranking problem, the matter is to order
all the elements X of a set X by degree of relevance,
given a binary label information Y. Consider a sys-
tem with binary random output Y, taking values in
{−1, 1}, and a random input X, valued in a (generally
high-dimensional) feature space X . In the subsequent
analysis, the distribution of the pair (X, Y) is either
described by the triplet (p,G,H) where p = P(Y =
+1) ∈ (0, 1) is the theoretical proportion of positive
instances, and G and H respectively denote the con-
ditional distribution of X given Y = +1 and given
Y = −1, or else by (µ, η) where µ denotes the marginal
distribution of X and η(x) = P{Y = +1 | X = x}, x ∈ X ,
is the regression function. Here and throughout, we
assume that G and H are equivalent. Equipped with
these notation, we point out that µ = pG + (1 − p)H
and dG/dH(X) = ((1 − p)η(X))/(p(1 − η(X)). The
probabilistic setup is the same as for standard binary
classification but the goal is different. In the context
of IR applications, one is concerned by ordering all
the documents x of the list X by degree of relevance
for a particular query, rather than simply classifying
them as relevant or not. This amounts to assign to
each document x in X a score s(x) indicating its de-
gree of relevance for this specific query. The chal-
lenge is thus to build a scoring function s : X → R
from sampling data, so as to rank the observations x
by increasing order of their score s(x) as accurately
as possible: the higher the score s(X) is, the more
likely one should observe Y = +1. We denote by
S = {s : X → R measurable} the set of all scoring
functions.

2.2. True PR curves

A standard way of measuring the ranking performance
of a given scoring function s consists of plotting its

precision-recall (PR) curve:

t ∈ Ds 7→ (P{s(X) ≥ t | Y = +1}, P{Y = +1 | s(X) ≥ t}) ,
(1)

where Ds = {t ∈ R : µ({x : s(x) ≥ t}) > 0}. The
quantity precs(t)

def
= P{Y = +1 | s(X) ≥ t} represents

the precision of the test based on the thresholded di-
agnostic statistic s(X) for discriminating between the
composite hypotheses H0 : Y = −1 and H1 : Y = +1
(i.e. H0 : X ∼ H and H1 : X ∼ G), while its power
βs(t)

def
= P{s(X) ≥ t | Y = +1} is generally termed

recall or true positive rate. We also consider the false
positive rate αs(t)

def
= P{s(X) ≥ t | Y = −1} and write:

∀t ∈ Ds, precs(t) =
pβs(t)

pβs(t) + (1− p)αs(t)
.

The PR space is the set of all achievable points
{(αs(t), βs(t)); (s, t) ∈ S × R}. For notational con-
venience, we introduce the conditional cumulative dis-
tribution functions (cdf) of s(X) denoted by Gs(t) =
1−βs(t) andHs(t) = 1−αs(t). We consider the subset
S0 of scoring functions s(x) such that the equivalent
distributions Hs and Gs are continuous. In the case
where s ∈ S0, the PR curve matches with the graph
of the càd-làg (right-continuous, left-limit) mapping:

PRs : β ∈ (0, 1) 7→ pβ

pβ+ (1− p)α(s, β)
, (2)

where α(s, β)
def
= 1−Hs ◦G−1

s (1−β) for all β ∈ (0, 1),
F−1(α) = inf{x ∈ R/ F(x) ≥ α} denotes the generalized
inverse of any cdf F. We point out that the curve PRs
is continuous as soon as Gs is strictly increasing and,
in the case where Hs = Gs (i.e. the scoring function
s(x) has no capacity to discriminate between the two
populations), we have PRs ≡ p. Notice additionally
that limβ→1 PRs(β) = p (the distributions Gs and Hs
have the same support) and, as β→ 0, PRs(β) has a
finite limit pl(s)/(pl(s) + 1 − p), when the (possibly
infinite) limit l(s) = limt→∞ dGs/dHs(t) exists, the
latter being determined by the right tail behavior of
the distributions Hs and Gs: in particular, if (1 −
Gs(t))/(1−Hs(t))→∞ as t→∞, l(s) =∞ and PRs
has limit value 1 def= PRs(0) as β → 0. In addition,
PRs and the mapping β ∈ (0, 1) 7→ α(s, β)/β vary
in the opposite direction: PRs is thus non increasing
as soon as the mapping β ∈ (0, 1) 7→ α(s, β) is convex
(i.e. the likelihood ratio dGs/dHs(s(X)) is monotone).

Given the goal pursued in the bipartite ranking, it
would be desirable that the scoring function is such
that the positive instances tend to have higher scores
than the negative ones, or, more formally, that Gs is
stochastically larger than Hs: ∀t ∈ Ds, 1 − Hs(t) ≤



Nonparametric Estimation of the Precision-Recall Curve

1 − Gs(t). This boils down to assume that s(x)’s PR
curve is above the horizontal line β ≡ p everywhere in
the PR space. This is naturally not sufficient in prac-
tice and, actually, one would like to select a scoring
function s so that Gs is ”as stochastically larger” than
Hs as possible, provided a rigorous meaning can be
given to such an attempt of quantification. The con-
cept of PR curve permits to formalize this precisely.

A partial order on S0. As a matter of fact, the
PR curve indeed induces a partial order on the set
of scoring functions S0. Let (s1, s2) ∈ S20 , we will
say that the scoring function s1 is more accurate than
s2 if and only if its PR curve is above the one of s2
everywhere, i.e. ∀β ∈ (0, 1), PRs1(β) ≥ PRs2(β):
for any fixed recall, s1 yields a better precision. In
regards to this functional performance criterion, the
class of optimal scoring functions is the set of in-
creasing transforms of the regression function: S∗ =
{ψ ◦ η, ψ strictly increasing}. Indeed, it follows from
Neyman-Pearson’s lemma that the test based on the
likelihood ratio statistic φ(X) = dG/dH(X), or equiv-
alently based on η(X) = (1−p)φ(X)/(p+(1−p)φ(X)),
is uniformly more powerful among all unbiased tests:
for a given power (recall) β ∈ (0, 1), it has minimum
type I error, α(η, β) namely, and thus maximum pre-
cision: ∀β ∈ (0, 1),

PR∗(β)
def
= PRη(β) ≥ PRs(β),

for all s ∈ S. We set G∗ = Gη and H∗ = Hη and
suppose that these distributions are absolutely con-
tinuous with respect to Lebesgue measure. We recall
from (Clémençon & Vayatis, 2008) that:

φ(X) =
1− p

p
· η(X)

1− η(X)
=
dG∗

dH∗
(η(X)).

Thus, limβ→0 PR∗(β)=1 as soon as the essential
supremum of η(X) is equal to 1, or equivalently the
one of the likelihood ratio φ(X) is equal to +∞. We
point out in addition that PR∗ is non increasing, since
the likelihood ratio dG∗/dH∗(η(X)) is monotone.

Hence, the performance of a scoring function s ∈ S0
depends on the closeness between PRs(β) and PR∗(β)
for all β ∈ (0, 1). It can be thus naturally quantified
by measuring the deviation between its PR curve and
PR∗ in sup norm.

Remark 1 (PR analysis vs. ROC analysis) Re-
call that the ROC curve of a scoring function s ∈ S
is the PP -plot t ∈ R 7→ (αs(t), βs(t)). When
s ∈ S0, it is actually the graph of the function
α ∈ (0, 1) 7→ ROC(s, α) = 1 − Gs ◦ Hs(1 − α) and

one may show that it is concave iff the likelihood ratio
dGs/dHs(s(X)) is monotone (PRs is then non increas-
ing). As for PR curves, all such curves are dominated
by ROC∗ = ROC(s∗, .), s∗ ∈ S∗, in the ROC space.
The major difference lies in the fact that the rate of
positive instances p is not involved in the definition of
the ROC curve and when the latter is very small for
instance, a graphical display of ROC(s, .) may yield a
wrong judgement about s(x)’ discrimination capacity,
see (Davis & Goadrich, 2006).

2.3. Empirical PR curve estimates.

In practice, learning strategies for selecting a good
scoring function are based on training data Dn =
{(Xi, Yi)}1≤i≤n and should thus rely on accurate em-
pirical estimates of the true PR curves. Let s ∈ S.
Denote the empirical versions of Hs(t) and Gs(t) by

Ĥs(t) =
1

n−

∑
1≤j≤n, Yj=−1

K(t− s(Xj)),

Ĝs(t) =
1

n+

∑
1≤j≤n, Yj=+1

K(t− s(Xj)),

where n+ =
∑n
j=1 I{Yi = +1} = n− n− is the number

of positive instances among the sample (distributed
as the binomial Bin(n, p)) and K(u) denotes the step
function I{u ≥ 0}. As discussed in (Davis & Goadrich,
2006), if empirical estimation of the PR curve of s(x) is
based on the definition given in (1), one faces the ques-
tion of how to interpolate the points (β̂s,i, p̂recs,i),
1 ≤ i ≤ n, where: ∀i ∈ {1, . . . , n},

α̂s,i = 1− Ĥs(s(Xi)), β̂s,i = 1− Ĝs(s(Xi)),

and p̂recs,i = n+β̂s,i/(n+β̂s,i + n−α̂s,i). We point
out that, in the situation where Hs and Gs are contin-
uous distributions, given the representation (2), it is
natural to consider as statistical version of the curve
PRs the graph {(β, P̂Rs(β); β ∈ (0, 1)}, where:

∀β ∈ (0, 1), P̂Rs(β) =
n+β

n+β+ n−α̂(s, β)
, (3)

with α̂(s, β) = 1− Ĥs ◦ Ĝs(1− β).

Smoothed PR curve estimates. In order to ob-
tain a smoother estimate of a supposedly regular curve
PRs, one may consider smoothed versions G̃s(x) and
H̃s(x) of the class cdf’s. A typical choice consists
of picking, instead of the step function I{u ≥ 0}, a
function K(u) of the form

∫
v≥0Kh(u − v)dv, with

Kh(u) = h−1K(h−1 · u) where K ≥ 0 is a regular-
izing Parzen-Rosenblatt kernel (i.e. a bounded square
integrable function such that

∫
K(v)dv = 1) and h > 0

is the smoothing bandwidth.
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3. Consistency and asymptotic law

Throughout this section, the scoring function s ∈ S0
is fixed. Let Z = s(X) and denote by hs(x) and
gs(x) the densities of the class distributions Hs and
Gs, by P the joint distribution of (Z, Y) on R ×
{−1,+1} and by P̂n its empirical version based on
the sample Dn = {(Zi, Yi)}1≤i≤n where Zi = s(Xi)
for all i ∈ {1, . . . , n}. Equipped with these nota-
tions, we have P(dz, y) = pI{y = +1}Hs(dz) + (1 −

p)I{y = −1}Gs(dz) and P̂n(dz, y) = (n+/n)I{y =

+1}Ĥs(dz) + (1− n/n+)I{y = −1}Ĝs(dz).

The purpose of this section is to investigate the asymp-
totic properties of the random function β ∈ (0, 1) 7→
P̂R(β) as an estimator of the curve PRs, as the sample
size n tends to infinity. The next theorem reveals it
is strongly consistent and establishes a strong approx-
imation result for the PR fluctuation process:

Rn(β) =
√
n
(

P̂Rs(β) − PRs(β)
)
, β ∈ (0, 1). (4)

Although it is not directly useful from a practical per-
spective, this limit result plays a crucial role in under-
standing the asymptotic behavior of the empirical PR
curve and of its bootstrap counterpart, as will be seen
in the next section. The technical assumptions listed
below are required. Let ε ∈ (0, 1/2) be fixed.

H1 The slope of the function β 7→ α(s, β) is bounded
on [ε, 1− ε]:

sup
β∈[ε,1−ε]

hs(G
−1
s (β))

gs(G
−1
s (β))

<∞. (5)

H2 the density gs is differentiable and

∀β ∈ (ε, 1− ε), gs(G
−1
s (β)) > 0, (6)

and there exists γ > 0 such that

sup
β∈(ε,1−ε)

d log(gs ◦G−1
s (β))

dβ
≤ γ <∞. (7)

Theorem 1 (Strong approximation) Suppose
that assumptions H1 − H2 are fulfilled. Then,

(i) the empirical PR curve is strongly consistent, uni-
formly over [ε, 1− ε]:

sup
β∈[ε,1−ε]

|P̂Rs(β) − PRs(β)|→ 0 a.s. as n→∞,
(ii) there exist two independent sequences of brown-

ian bridges {B
(n)
1 (β)}β∈(0,1) and {B

(n)
2 (β)}β∈(0,1)

and a normal r.v. W, independent from those
sequences, such that we almost-surely have, uni-
formly over [ε, 1− ε]: as n→∞,

Rn(β) = Z(n)(β)+o

(
(log logn)ρ1(γ) logρ2(γ) n√

n

)
,

(8)
where, with ap =

√
1− p/p,

Z(n)(β) =
PRs(β)2

β
{
ap

p
α(s, β)W+

a2p
√
p
hs(Gs(1− β))

gs(Gs(1− β))
B

(n)
1 (β)+apB

(n)
2 (α(s, β))},

and ρ1(γ) = 0, ρ2(γ) = 1, if γ < 1
ρ1(γ) = 0, ρ2(γ) = 2, if γ = 1

ρ1(γ) = γ, ρ2(γ) = γ− 1+ ε, ε > 0, if γ > 1.

The proof is deferred to the appendix section. The
strong approximation result stated in (ii) implies that
the PR fluctuation process {Rn(β)}β∈[ε,1−ε] converges
weakly, in the space (D([ε, 1 − ε]), ||.||∞) of càd-làg
functions equipped with the sup norm, to the law of
the gaussian stochastic process {Z(1)(β)}β∈[ε,1−ε].
Remark 2 (On assumptions) Hypothesis H2 is a
standard assumption for obtaining a strong approxi-
mation for the quantile process {G−1

s (β)} involved in
PRs’s definition, see (Csorgo & Revesz, 1981).

Remark 3 (On pointwise limit results) Freezing
the precision β ∈ [ε, 1 − ε], the asymptotic behavior
of the recall estimator P̂Rs(β) is described by the fol-
lowing pointwise limit result, obtained as a direct con-
sequence of Theorem 1’s part (ii): as the sample size
n tends to infinity, we have the convergence in distri-
bution

√
n
(

P̂Rs(β) − PRs(β)
)⇒ N (0, σ2s(β)

)
,

where the asymptotic variance is given by

σ2s(β) =
(1− p)PRs(β)4α(s, β)2

β2p3

+
(1− p)2β(1− β)h2s(Gs(1− β))

g2s(Gs(1− β))p3

+
(1− p)α(s, β)(1− α(s, β))

p2
. (9)

4. Confidence bands for PR curves

Beyond consistency of the empirical PR curve in sup
norm and the asymptotic normality of the PR fluctua-
tion process, we now tackle the question of construct-
ing confidence bands for the true PR curve. Truth
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should be said, the complex, though explicit, form for
the limiting gaussian law of the fluctuation process
Rn given in Theorem 1 can hardly be used for this
purpose: indeed, simulating an empirical counterpart
of the limit process would require to estimate in par-
ticular the densities of the distributions Hs(dz) and
Gs(dz). Such computational difficulties strongly ad-
vocate for using the bootstrap approach introduced
by (Efron, 1979). The latter suggests to consider,
as an estimate of the law of the fluctuation process
{Rn(β)}β∈[ε,1−ε], the conditional law given the data
sample Dn = {(Zi, Yi)}1≤i≤n of the bootstrapped PR
fluctuation process

R∗n =
{√
n(PR∗s(β) − P̂Rs(β))

}
β∈(0,1)

,

where PR∗s is the PR curve corresponding to a sample
D∗n = {(Z∗i , Y

∗
i )}1≤i≤n of i.i.d. random pairs, with a

common distribution P̃n close to Pn.

The barrier to implementing the bootstrap in this
setup is twofold. Firstly, due to a possible extreme
asymmetry between the positive and negative popu-
lations within the pooled sample Dn, which situation
precisely justifies the use of PR analysis for evaluating
the performance of a scoring function, resampling the
data in a naive fashion, by drawing with replacement
among Dn, may yield a bootstrap sample containing
no positive instances with overwhelming probability.
Secondly, the PR fluctuation process is a functional
of the the quantile process {Ĝ−1

s (β)}β∈[0,1]. It is well-
known that the naive bootstrap (i.e. resampling from
the raw empirical distribution) generally provides bad
approximations of the distribution of empirical quan-
tiles in practice: the rate of convergence of the boot-
strap distribution estimate for a given quantile is of or-
der OP(n−1/4) (Falk & Reiss, 1989), whereas the rate
of the gaussian approximation is n−1/2. The boot-
strap procedure we describe next permits to overcome
both difficulties.

4.1. The PR bootstrap algorithm

Here we describe an algorithm for building a confi-
dence band at level 1 − δ ∈ (0, 1) in the PR space
from sampling data Dn = {(Zi, Yi); 1 ≤ i ≤ n}. Let
p̃ ∈ (0, 1). It is performed in four steps described in
the pseudocode Algorithm 1.

Similarly to what has been suggested by (Bertail et al.,
2008) and (Horvath et al., 2008) for ROC curves,
the algorithm above implements a smoothed version
of the bootstrap method. In a similar fashion to
what is recommended for ROC curves, we propose
to implement a smoothed version of the bootstrap al-
gorithm in order to improve the approximation rate

of supβ∈[ε,1−ε] |Rn(β)|’s distribution. Here this boils
down to resampling the data from a smoothed version
of the empirical distribution Pn.

Algorithm 1 Precision-Recall bootstrap

1. Based on Dn, compute the empirical class cdf esti-
mates Ĝs and Ĥs, as well as their smoothed ver-
sions G̃s and H̃s. Plot the PR curve estimate:
∀β ∈ (0, 1),

P̂Rs(β) =
p̂nβ

p̂nβ+ (1− p̂n)(1− Ĥs ◦ Ĝ−1
s (1− β))

.

2. From the smooth distribution estimate

P̃n(dz, y) = p̃I{y = +1}G̃s(dz)

+ (1− p̃)I{y = −1}H̃s(dz),

draw an i.i.d. bootstrap sample D∗n =
{(Z∗i , Y

∗
i )}1≤i≤n conditioned on Dn.

3. Based on D∗n, compute the bootstrap versions of
the empirical class cdf estimates:

G∗s(z) =
1

n∗+

∑
1≤i≤n, Y∗i=+1

I{Z∗i ≤ z},

H∗s(z) =
1

n∗−

∑
1≤i≤n, Y∗i=−1

I{Z∗i ≤ z},

where n∗+ =
∑n
i=1 I{Y∗i = +1} = n − n∗−. Set

p∗n = n∗+/n and plot the bootstrap PR curve

PR∗s(β) =
p∗nβ

p∗nβ+ (1− p∗n)(1−H∗s ◦G∗−1s (1− β))
.

4. Get the bootstrap confidence bands at level 1−δ de-
fined by the ball of center P̂R and radius r(δ)/

√
n

in D([ε, 1− ε]), with r(δ) defined by

E∗
[
γn · I

{
sup

β∈[ε,1−ε]

|R∗n(β)| ≤ r(δ)

}]
= 1− δ,

where the importance function is given by

γn =

(
p̂n

p̃

)n∗+
·
(
1− p̂n

1− p̃

)n−n∗+

,

denoting by E∗[.] the conditional expectation
given the original data Dn.
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The heuristics underlying the gain in accuracy result-
ing from the smoothing stage is as follows: when based
on a smooth distribution, the bootstrap PR curve and
the original one share similar regularity properties: in
particular, an asymptotic result analogous to the one
given in part (ii) of Theorem 1 holds for the bootstrap
curve, with a limit law close to the one of Z(1), pro-
vided the instrumental distribution is close to P.

Importance bootstrap resampling is also implemented
through Algorithm 1, see subsection 5.4.6 in (Shao &
Tu, 1995). The principle consists of sampling novel
data from a distribution, different from the raw distri-
bution, or its smoothed version P̂n(dz, y) = p̂nI{y =

+1}G̃s(dz)+ (1− p̂n)I{y = −1}H̃s(dz) in our case, un-
der which positive instances are observed with much
larger probability, making the situation where the
bootstrap sample is formed of observations with nega-
tive labels solely less frequent, or even rare. Here the
procedure simply consists of replacing the empirical
rate of positive instances p̂n = n+/n in P̂n(dz, y)’s
formula by a constant p̃ (equal to 1/2 say), yielding
the instrumental sampling distribution P̃n(dz, y). The
resulting biased bootstrap statistics based on pairs
(Z∗, Y∗) sampled from P̃n(dz, y) will be then corrected
by a multiplicative factor, the importance function γn.

Before turning to the theoretical properties of this al-
gorithm, a few remarks are in order.

Remark 4 (Monte-Carlo simulation) From a
practical perspective, the true smoothed bootstrap dis-
tribution must be approximated too, through a Monte-
Carlo approximation scheme. A computationally con-
venient way of performing such a smoothed resam-
pling consists of drawing B ∼ n bootstrap samples,
of size n, with replacement in the original data and
then adding to each drawn data an independent cen-
tered gaussian r.v. of variance h2. This is equiva-
lent to drawing bootstrap data from a smooth esti-
mate P̃n(dz, dy) computed using a gaussian kernel
Kh(u) = (2πh2)−1/2 exp(−u2/(2h2)), see Silverman
& Young (1987).

Remark 5 (Tuning parameters) Implementation
of Algorithm 1 requires to select two tuning parame-
ters essentially: the constant p̃ involved in the impor-
tance sampling (IS) step and the bandwidth h related
to the smoothing stage. When using a gaussian regu-
larizing kernel Kh (or the trick recalled in Remark 4
above), one should classically pick h = hn ∼ n−1/5

in order to minimize the mean square error. Concern-
ing the IS parameter p̃, a practical strategy consists in
choosing it so as to minimize the variance of the result-
ing Monte-Carlo estimate. Owing to space limitation,
here we refer to (Bucklew, 2003) for further details on

variance reduction techniques.

4.2. Asymptotic validity - Convergence rate

Here we establish the asymptotic validity of the boot-
strap distribution estimate output by Algorithm 1. In
order to formulate the result rigorously, we introduce
further notation. Let

Hn,ε(t) = P

{
sup

β∈[ε,1−ε]

|Rn(β)| ≤ t

}

be the the root’s cumulative distribution function and

Hbootn,ε (t) = E∗
[
γn · I

{
sup

β∈[ε,1−ε]

R∗n(β)| ≤ t

}]

its bootstrap counterpart, produced by Algorithm 1.
In the subsequent analysis, the kernel K used in the
smoothing step is supposed to be either gaussian or
else of the form I{u∈[−1,+1]}.

Theorem 2 (Asymptotic accuracy) Assume that
the assumptions of Theorem 1 are satisfied. Suppose
in addition that smoothed versions of the cdfs G̃ and H̃
are computed at step 1 using a scaled kernel Khn(u)
with hn ↓ 0 as n → ∞ in a way that nh3n → ∞ and
nh5n log2 n→ 0. Then, we have as n→∞:

sup
t∈R+

|Hn,ε(t) −Hbootn,ε (t)| = oP

(
log(h−1

n )√
nhn

)
,

where the notation Un = oP(an) designates a random
variable such that Un/an converges to 0 in probability.

Picking the bandwidth hn of order 1/(log2+η n1/5)
with η > 0 thus leads to an approximation error of
order n−2/5, up to log factors, for the bootstrap dis-
tribution estimate. This rate is slower than the one of
the gaussian approximation given in part (ii) of The-
orem 1, the PR bootstrap algorithm is however very
appealing from a computational angle. The construc-
tion of gaussian confidence bands from estimates of the
class densities gs(z) and hs(z) and simulated brownian
bridges is indeed very challenging to implement.

In addition, we point out that the gain acquired
through smoothing is significant in terms of conver-
gence rate. In absence of it, it may be easily shown
that the pointwise rate of approximation would have
been then of order O(n−1/4), due to the order of mag-
nitude of the fluctuations of the bootstrap quantile
G∗−1s (1−β) around its expected value Ĝ−1

s (1−β) given
the data Dn, see (Falk & Reiss, 1989). Eventually, we
underline that, in the pointwise setup (i.e. for a fixed
precision β ∈ [ε, 1 − ε]), the rate of convergence may
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be improved by bootstrapping a studentized version
of the deviation Rn(β). Given the complexity of the
asymptotic variance σ2s(β), see Eq. (9), a bootstrap
version of the square root of Rn(β)’s variance σ̂2s(β)
should naturally be prefered to a plug-in estimate as
renormalization factor. Precisely, if the standardiza-
tion σ̂2s(β) is computed by means of a smoothed boot-
strap with a bandwidth of order n−1/3 (different thus
from the one used in the resampling step of Algorithm
1), it may be established that Rn(β)/σ̂s(β)’s distribu-
tion is approximated by the resulting bootstrap dis-
tribution at the rate n−2/3, faster then than by the
gaussian approximation provided by the Central Limit
Theorem. Due to space limitations, details are omit-
ted here.

5. Conclusion

In the paper, we established statistical properties of
the Precision-Recall curve. We provided theoretical
arguments in favor of using PR curve constructed from
data as a proxy to the unknown expected PR curve
resulting from the underlying distribution of the data.
In particular, we showed consistency and established
the asymptotic approximation rate under the supre-
mum norm. We also proposed a practical algorithm
for building confidence bands of the PR curve based on
smoothed bootstrap and importance sampling. Even-
tually, the asymptotic validity of such a procedure is
proved for a careful tuning of the regularization pa-
rameter involved in the smoothing kernel.

Appendix - Technical Proofs

Proof of Theorem 1. In order to establish the re-
sult, we introduce Z+ = {Z+

n}n≥1 and Z− = {Z−
n}n≥1

two independent sequences of i.i.d. random variables
with distributions Gs and Hs respectively, as well
as {Yn}n≥1 a sequence of i.i.d. binary random vari-
ables, independent from Z+ and Z− and such that
p = P{Y1 = +1} = 1 − P{Yn = −1}. For all n ≥ 1

and z ∈ R, we set Ĝs,n(z) = 1
n

∑n
i=1 I{Z+

i ≤ t},
Ĥs,n(z) = 1

n

∑n
i=1 I{Z−

i ≤ t}, as well as α̂m,q(s, β) =

1 − Ĥs,m ◦ Ĝs,q(1 − β) for all (m,q) ∈ N∗2. Set also
Zn = Z+

n+
·I{Yn = +1}+Z−

n−
·I{Yn = −1} for all n ≥ 1,

we point out that the collection {(Zn, Yn)}n≥1 forms a
sequence of i.i.d. copies of the random pair (Z, Y) and,
equipped with these notations, we have: ∀β ∈ (0, 1),
α̂(s, β) = α̂n+,n−(s, β).

The proof is based on the following lemma, describing
the asymptotic behavior of the stochastic process:

rm,n(β) =
√
n (α̂m,n−m(s, β) − α(s, β)) , β ∈ (0, 1).

Lemma 3 Under assumptions H1−H2, if m→∞ in
a way that m/n→ p as n→∞, we have:

(i) supβ∈[ε,1−ε] |α̂m,n−m(s, β)−α(s, β)| →
n→∞ 0 a.s.,

(ii) there exists a probability space on which one
can define two independent sequences of brown-
ian bridges B(n)

1 and B(n)
2 such that we have, with

probability one, as n→∞,

rm,n(β) = z(n)(β)+o

(
(log logn)ρ1(γ)(logn)ρ2(γ)

√
n

)
,

uniformly over [ε, 1− ε], where: ∀n ≥ 1,

z(n)(β) = p−1/2hs(Gs(1− β))

gs(Gs(1− β))
B

(n)
1 (β)

+ (1− p)−1/2B
(n)
2 (α(s, β)).

Proof of the lemma. This directly follows from
Theorems 2.1 and 2.2 in (Hsieh & Turnbull, 1996), see
also Theorem 1 in (Bertail et al., 2008), which results
are based on standard results in strong approximation
theory, refer to (Csorgo & Revesz, 1981). �

Now, for any β ∈ (0, 1) consider the mapping
Fβ(u, v) = βu/(βu + (1 − u)v) defined on (0, 1)2.
Notice that PRs(β) = Fβ(p, α(s, β)) and P̂Rs(β) =

Fβ(n+/n, α̂(s, β)). We also introduce P̂Rs,q(β) =
Fβ(n+/n, α̂m,n−m(s, β)). For all β ∈ [ε, 1 − ε],
the function Fβ is C2 on [ε, 1 − ε] × [0, 1] and one
may check that the norm of its Hessian matrix is
bounded on [ε, 1 − ε] × [0, 1], uniformly over β ∈
[ε, 1− ε]. Hence, combining a Taylor expansion of Fβ
at the first order with Lemma 3 and the Law of Iter-
ated Logarithm applied to the standardized binomial√
n/(p(1− p))(n+/n− p), we obtain that

√
n
(

P̂Rs,m(β) − PRs(β)
)

= Wn,m(s, β)

+ o

(
(log logn)2ρ1(γ)(logn)2ρ2(γ)

n

)
,

as m and n tend to infinity so that m/n ∼ p, where

Wn,m(s, β) =
√
n
(n+

n
− p
)
· ∂Fβ
∂u

(p, α(s, β))+

rm,n(β) · ∂Fβ
∂v

(p, α(s, β)).

One may then conclude the proof by using Lemma 3’s
second assertion, combined with Prohorov ’s theorem
(guaranteeing the existence of a version of Yn such that
(n+ − np)/

√
np(1− p) almost surely converges to a
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r.v. Z ∼ N (0, 1) independent from B(1) and B(2)) and
the fact that n+/n→ p a.s. as n→∞.

Proof of Theorem 2 (Sketch of). The proof re-
sults from the strong approximation stated in The-
orem 1, combined with a standard coupling argu-
ment. The main steps of the argument are as fol-
lows. Set g̃s(z) = dG̃s(z)/dz, h̃s(z) = dH̃s(z)/dz and
α̃s = 1 − H̃s ◦ G̃s. Let P∗ the conditional probability
given the data Dn and consider P̂∗ the equivalent prob-
ability measure defined by: ∀n ≥ 1, dP̂∗/dP |Fn= γn
where Fn is the σ-field generated by Dn. Note first
that, conditioned on Dn, by applying Theorem 1’s part
(ii) with P̂Rs as target curve (instead of PRs), one gets
that, with probability 1 under P̂∗, R∗n(β) is equivalent
to a stochastic process with same law as

Z(n)∗(β) =
P̃Rs(β)2

β

(
an√
p̂n
α̃(s, β)W+

a2n

√
p̂n
h̃s(G̃s(1− β))

g̃s(G̃s(1− β))
B

(n)
1 (β) + anB

(n)
2 (α̃(s, β))

)
,

with a remainder of order o( (log logn)ρ1(γ) logρ2(γ) n√
n

),
uniformly over [ε, 1 − ε]. In the last display, we have
set: an =

√
1− p̂n/p̂n. In addition, we a.s. have

h̃s(G̃
−1
s (1− β))

g̃s(G̃
−1
s (1− β))

−
hs(G

−1
s (1− β))

gs(G
−1
s (1− β))

= O

(
log(h−1

n )√
nhn

)
,

under the stipulated conditions, see (Giné & Guillou,
2002). In addition, from standard result on the mod-
ulus of continuity of the brownian bridge (Shorack &
Wellner, 1986), we a.s. have: as n→∞,

supα∈[0,1]|B
(n)
2 (αs(β)) − B

(n)
2 (α̃s(β))| = O

(
logn
n1/2

)
.

Applying then the Law of Iterated Logarithm to p̂n,
it follows that almost surely, uniformly over [ε, 1− ε],

Z(n)∗(α) = Z(n) +O

(
log(h−1

n )√
nhn

)
.

Since this results holds uniformly in β ∈ [ε, 1− ε], by
virtue of the continuous mapping theorem applied to
the function supβ∈[ε,1−ε](.), the result also holds in
distribution up to same order.
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