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Abstract
The purpose of this paper is three-fold. First,
we formalize and study a problem of learning
probabilistic concepts in the recently proposed
KWIK framework. We give details of an algo-
rithm, known as the Adaptive k-Meteorologists
Algorithm, analyze its sample-complexity up-
per bound, and give a matching lower bound.
Second, this algorithm is used to create a new
reinforcement-learning algorithm for factored-
state problems that enjoys significant improve-
ment over the previous state-of-the-art algorithm.
Finally, we apply the Adaptive k-Meteorologists
Algorithm to remove a limiting assumption in an
existing reinforcement-learning algorithm. The
effectiveness of our approaches is demonstrated
empirically in a couple benchmark domains as
well as a robotics navigation problem.

1. Introduction
Imagine that you just moved to a new town that has multi-
ple (k) radio and TV stations. Each morning, you tune in to
one of the stations to find out what the weather will be like.
Which of the k different meteorologists making predictions
every morning is the most trustworthy? Let us imagine that,
to decide on the best meteorologist, each morning for the
first M days you tune in to all k stations and write down the
probability that each meteorologist assigns to the chances
of rain. Then, every evening you write down a 1 if it rained,
and a 0 if it didn’t. Can this data be used to determine who
is the best meteorologist?

In the example above, each meteorologist is allowed to pre-
dict the chances of rain, rather than the binary outcome of
whether it will rain. Such predictions are termed prob-
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abilistic concepts (Kearns & Schapire, 1994; Yamanishi,
1992). They extend the notion of deterministic concepts
by allowing an instance or example to belong to a class
with certain probability. While Kearns and Schapire (1994)
study PAC-learning of probabilistic concepts, this paper
considers learning in the recently proposed KWIK frame-
work (Li et al., 2008).

The first contribution of this paper is to formalize two
KWIK learning problems, known as the k-Meteorologists
and the Adaptive k-Meteorologists, expand an algorithmic
idea introduced by Li et al. (2008), and give a polyno-
mial sample-complexity upper bound for the resulting algo-
rithms. Furthermore, a new matching lower bound is given
indicating the optimality of our algorithms.

The second and third contributions are to demonstrate how
the algorithm for the (Adaptive) k-Meteorologists Problem
can be applied to two important problems in reinforcement
learning: structure learning of factored problems, and fea-
ture selection in a robot application.

First, we consider the problem of learning in a factored-
state Markov decision process (MDP) where the transi-
tion dynamics are represented by a Dynamic Bayes Net-
work or DBN (Dean & Kanazawa, 1989; Boutilier et al.,
1999) for which we do not know the structure but have
an upper bound on its in-degree. Strehl et al. (2007) pro-
posed SLF-Rmax, the first algorithm to solve this prob-
lem that is PAC-MDP (Strehl et al., 2006b). Based on
the solution to the Adaptive k-Meteorologists Problem, we
develop a new PAC-MDP algorithm known as Met-Rmax

which improves SLF-Rmax’s sample complexity for struc-
ture discovery from Õ(n2D) to Õ(nD), where n is the
number of factors in the DBN and D the maximum in-
degree. Empirical experiments in the Stocks-trading do-
main (Strehl et al., 2007) and the System Administrator do-
main (Guestrin et al., 2003) demonstrate the superior sam-
ple efficiency of our new approach.

Second, we present the problem of a robot that has to
decide which of multiple sensory inputs is relevant for
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capturing an environment’s transition dynamics. Leffler
et al. (2007) introduced the RAM-Rmax algorithm, which
assumes that a classifier is provided that permits cluster-
ing different states according to their effects on transition
dynamics, and leverages that knowledge to learn very ef-
ficiently. In this paper, we eliminate this assumption and
introduce an algorithm called SCRAM-Rmax that uses our
solution to the k-Meteorologists problem to enable the
agent to learn the relevant sensory input from experience
while acting online. In the example we consider, should the
robot cluster states according to its camera readings of sur-
face color, surface texture, its IR sensor reading, or some
combination of them? In robot-navigation environments,
the number of possible state classifiers could be as large as
the number of sensors on the robot. As in the structure-
learning problem, we replace the requirement that a single
structure has to be provided as input by the assumption that
a whole family of possible structures is available to be con-
sidered, and use the k-Meteorologists to choose the struc-
ture that best models the environment’s dynamics.

2. KWIK Learning Probabilistic Concepts
Probabilistic concepts are a useful generalization of deter-
ministic concepts and are able to capture uncertainty in
many real-life problems, such as the weather broadcast-
ing example described in the previous section. Formally,
a probabilistic concept h is a function that maps an input
space X to the output space Y = [0, 1]; h : X 7→ Y .
In the meteorologist example, every x ∈ X corresponds
to the features that can be used to predict chances of rain,
and h(x) indicates the probability that x is in the con-
cept, namely, the chances that it will rain on that day.
The hypothesis class H is a set of probabilistic concepts:
H ⊆ (X → Y ).

2.1. The KWIK Model

Using tools from statistical learning theory, Kearns and
Schapire (1994) study how to learn probabilistic concepts
in the PAC model (Valiant, 1984). Below, we formulate a
related problem in the recently proposed KWIK model (Li
et al., 2008). KWIK stands for Knows What It Knows. It
is a computational supervised-learning model that requires
self-awareness of prediction errors and is useful in learning
problems such as reinforcement learning and active learn-
ing where active exploration can impact the training exam-
ples the learner is exposed to.

Two parties are involved in this learning process. The
learner runs a learning algorithm and makes predictions;
while the environment, which represents an instance of a
KWIK learning problem, provides the learner with inputs
and observations. A KWIK “run” proceeds as follows:

• The hypothesis class H , accuracy parameter ε, and
confidence parameter δ are known to both the learner
and the environment.

• The environment selects a target concept h∗ ∈ H .
• For timestep t = 1, 2, 3, . . .,

– The environment selects an input xt ∈ X in an
arbitrary way and informs the learner. The target
value yt = h∗(xt) is unknown to the learner.

– The learner predicts an output ŷt ∈ Y ∪ {⊥}
where ⊥ indicates that the learner is unable to
make a good prediction of yt.

– If ŷt = ⊥, the learner makes a stochastic obser-
vation zt ∈ Z = {0, 1} of the output yt: zt = 1
with probability yt and 0 otherwise.

We say that H is KWIK-learnable if there exists an algo-
rithm A with the following property: for any 0 < ε, δ < 1,
two requirements are satisfied with probability at least 1−δ
in a whole run ofA according to the KWIK protocol above:

1. (Accuracy Requirement) If ŷt 6= ⊥, it must be ε-
accurate: |ŷt − yt| < ε;

2. (Sample Complexity Requirement) The total number
of⊥s predicted during the whole run, denoted ζ(ε, δ),
is bounded by a function polynomial in 1/ε and 1/δ.

We call ζ(ε, δ) a sample complexity of A. Furthermore,
H is efficiently KWIK-learnable if the per-timestep time
complexity of A is polynomial in 1/ε and 1/δ.

2.2. The (Adaptive) k-Meteorologists Problems

The (Adaptive) k-Meteorologists Problems consider ef-
ficient learning of probabilistic concepts in the KWIK
framework. In the k-Meteorologist Problem, the learner
is given a finite set of k probabilistic concepts: H =
{h1, h2, . . . , hk}, where hi : X → Y for all i = 1, . . . , k.
The task of KWIK-learning a target concept h∗ ∈ H can
be understood as one of identifying the true but unknown
concept from a set of k candidates following the learning
process defined formally in the previous subsection.

A related problem is extensively studied in expert algo-
rithms (see, e.g., Cesa-Bianchi et al. (1997)), where the
learner always makes a prediction ŷt ∈ [0, 1] based on the
predictions of all meteorologists. The goal of the learner
is to make predictions so that the number of mistakes she
makes (more generally, the loss she suffers) is not much
larger than the best meteorologist or the best combinations
of the meteorologist, in hindsight. In contrast, a KWIK
algorithm must output ⊥ (“I don’t know”) when its pre-
diction may be incorrect. This feature is essential in the
reinforcement-learning problems we will consider.
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In some learning problems, the candidate concepts, hi, are
not provided as input. Instead, they have to be learned by
the learner itself. This motivates a more general version of
the k-Meteorologists Problem, which we term as the Adap-
tive k-Meteorologists Problem. Here, the learner is given k
classes of hypotheses, H1, . . . , Hk, and also provided with
k sub-algorithms, A1, . . . ,Ak, for KWIK-learning these
classes. The goal of the learner is to make use of these
sub-algorithms to KWIK-learn the union of these hypothe-
sis classes: H = H1 ∪ · · · ∪Hk.

2.3. Solution

The k-Meteorologists Problem is a special case of the
Adaptive k-Meteorologists Problem where every hypoth-
esis class Hi contains exactly one hypothesis: Hi = {hi}.
For the sake of simplicity, we start with the simpler k-
Meteorologists Problem to explain the intuition of our algo-
rithm, and then provide detailed pseudo-code descriptions
for the adaptive version.

The major challenge in the k-Meteorologists Problem is
that the learner only observes stochastic binary labels while
she is required to make predictions about the label proba-
bilities. A natural idea is to get sufficient labels for the same
input x and then estimate Pr(z = 1|x) by the relative fre-
quency. But since inputs may be drawn adversarially, this
approach must have a sample complexity of Ω(|X|).
Here, we expand an idea outlined by Li et al. (2008) to
avoid the dependence on the size of X . Suppose zt ∈
{0, 1} is the label acquired in timestep t. Define the
squared error of meteorologist hi to be et = (hi(xt)−zt)2.
We may maintain cumulative squared prediction errors for
individual meteorologists. It can be shown that the target
probabilistic concept, h∗, will have the smallest squared er-
ror on average. If any concept hi has a much larger cumu-
lative error than another concept hj , it follows that hi 6= h∗

with high probability.

Algorithm 1 provides a solution to the Adaptive k-
Meteorologists Problem, in which the additional parame-
ter m will be specified in Theorem 1. Essentially, the al-
gorithm runs all the k sub-algorithms simultaneously and
does all

(
k
2

)
pairwise comparisons among the k probabilis-

tic concepts. If any probabilistic concept returns ⊥, the al-
gorithm outputs ⊥ and obtains a stochastic observation zt

to allow the sub-algorithms to learn (Lines 7–9). Now sup-
pose no probabilistic concept returns⊥. If the set of predic-
tions is consistent then an accurate prediction can be made
(Line 12) although the algorithm does not know which con-
cept is h∗. Otherwise, the algorithm outputs ⊥ and then
acquires a label which contributes to distinguishing at least
one pair of meteorologists (Lines 15–21). A candidate con-
cept is removed if there is statistically significant evidence
that it is worse than another concept (Line 19).

Algorithm 1 The Adaptive k-Meteorologists Algorithm.
1: Input: ε, δ, m, H1, . . . ,Hk, A1, . . . ,Ak.
2: Run each subalgorithmAi with parameters ε

8 and δ
k+1 .

3: R ← {1, 2, . . . , k}.
4: cij ← 0 and ∆ij ← 0 for all 1 ≤ i < j ≤ n.
5: for t = 1, 2, 3, . . . do
6: Obtain xt and run each Ai to get its prediction, ŷti.
7: if ŷti = ⊥ for some i ∈ R then
8: Let ŷt = ⊥ and observe zt ∈ Z.
9: Send zt to all subalgorithms Ai with ŷti = ⊥.

10: else
11: if |ŷti − ŷtj | ≤ ε for all i, j ∈ R then
12: Let ŷt = (maxi∈R ŷti + mini∈R ŷti)/2.
13: else
14: Let ŷt = ⊥ and observe zt.
15: for all i, j ∈ R such that |ŷti − ŷtj | ≥ ε

2 do
16: cij ← cij + 1.
17: ∆ij ← ∆ij + (ŷti − zt)2 − (ŷtj − zt)2.
18: if cij ≥ m then
19: R ← R \ {I} where I = i if ∆ij > 0 and

I = j otherwise.
20: end if
21: end for
22: end if
23: end if
24: end for

2.4. Analysis

This section gives matching upper and lower sample-
complexity bounds for Algorithm 1. We only give proof
sketches here, but complete details are found in Li (2009).

Observe that every ⊥ output by Algorithm 1 is either from
some sub-algorithm (Line 8) or from the main algorithm
when it gets inconsistent predictions from different proba-
bilistic concepts (Line 14). Thus, the sample complexity of
Algorithm 1 is at least the sum of the sample complexities
of those sub-algorithms plus the additional ⊥s required to
figure out the true h∗ among the k candidates. The follow-
ing theorem formalizes this observation:

Theorem 1 Let ζi(·, ·) be a sample complexity of sub-
algorithm Ai. By setting m = O

(
1
ε2 ln k

δ

)
, the sample

complexity of Algorithm 1 is at most

ζ∗ (ε, δ) = O

(
k

ε2
ln

k

δ

)
+

k∑

i=1

ζi

(
ε

8
,

δ

k + 1

)
.

Proof: (sketch) The proof has four steps. First, we show
that the squared error of the target hypothesis must be the
smallest on average. Second, if some hypothesis is ε

8 -
accurate (as required by Line 2 in Algorithm 1), its aver-
age squared error is still very close to the average squared
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error of the predictions of h∗. Third, by setting m appropri-
ately (as given in the theorem statement), we can guarantee
that only sub-optimal hypotheses are eliminated in Line 19
with high probability, by Hoeffding’s inequality. Finally,
the condition in Line 15 guarantees that the total number of
⊥s outputted in Line 14 is bounded by the first term in the
desired bound of the theorem. 2

Theorem 1 indicates that the additional sample complexity
introduced by Algorithm 1, compared to the unavoidable
term,

∑
i ζi, is on the order of k

ε2 ln k
δ . The following the-

orem gives a matching lower bound (modulo constants),
implying the optimality of Algorithm 1 in this sense.

Theorem 2 A sample-complexity lower bound for the k-
Meteorologists Problem is

ζ∗ (ε, δ) = Ω
(

k

ε2
ln

k

δ

)
.

Proof: (sketch) The proof is through a reduction from
2-armed bandits (Mannor & Tsitsiklis, 2004) to the k-
Meteorologists Problem. The idea is to construct input–
observation pairs in the KWIK run so that the first k−1 hy-
potheses, h1, . . . , hk−1, have to be eliminated one by one
before the target hypothesis, h∗ = hk, is discovered. Each
elimination of hi (for i < k) can be turned into identifying
a sub-optimal arm in a 2-armed bandit problem, which re-
quires Ω( 1

ε2 ln 1
δ ) sample complexity (Mannor & Tsitsiklis,

2004). Based on this lower bound, we may prove this theo-
rem by requiring that the total failure probability in solving
the k-Meteorologists Problem is δ. 2

3. Structure Learning in Factored-state MDPs
Efficient RL algorithms for flat MDPs (Kearns & Singh,
2002; Brafman & Tennenholtz, 2002; Kakade, 2003; Strehl
et al., 2006a; Strehl et al., 2006b)) have superlinear or
quadratic dependence on the number of states, rendering
them unsatisfactory for large-scale problems. In many real-
life problems of interest, however, special structures can be
leveraged to avoid an explicit dependence on the number of
states. In this section, we consider problems where the dy-
namics and reward structures of the MDP can be succinctly
modelled as a DBN. Efficient RL algorithms like factored
E3 (Kearns & Koller, 1999) and Factored-Rmax (Strehl,
2007) have a sample complexity that is independent of the
number of states, but assume the structure of the DBN is
known.

In this section, we introduce Met-Rmax, an algorithm for
factored-state MDPs whose transition dynamics are repre-
sented by a DBN with unknown structure but known max-
imum in-degree D. Met-Rmax shows a significant im-
provement in the sample complexity of structure discovery
over SLF-Rmax, the state-of-the-art algorithm proposed by

Strehl et al. (2007). Empirical evidence is provided in Sec-
tion 3.3. The assumption that D is known is a common
one in the structure-discovery literature for Bayes networks
(e.g., Abbeel et al. (2006)), and is used by both SLF-Rmax

and Met-Rmax. It is an open question how to discover DBN
structure efficiently under weaker assumptions.

3.1. Met-Rmax

The Met-Rmax algorithm follows the same structure as
SLF-Rmax but replaces one of its subroutines by the Adap-
tive k-Meteorologists Algorithm. We refer the reader
to Strehl et al. (2007) for details of SLF-Rmax and we
just note that the example they provide for an “admissi-
ble algorithm for the Structure-Learning problem” (Strehl
et al., 2007) is replaced in Met-Rmax by the Adaptive k-
Meteorologists Algorithm. We only explain here how we
use the Adaptive k-Meteorologists as an admissible struc-
ture learner.

Let us assume the transition dynamics of a factored-state
MDP are represented by a DBN with n binary factors
and maximum in-degree D. For any given factor fi and
action a, we must consider as possible parents all

(
n
D

)
subsets of factors. Each parent set itself specifies a hy-
pothesis sub-class (corresponding to Hi in Adaptive k-
Meteorologists), and every hypothesis in this sub-class can
be KWIK-learned (Li et al., 2008; Li, 2009). We thus sim-
ply initialize Algorithm 1 with k =

(
n
D

)
“meteorologists”,

each trying to predict the outcome of fi under action a
based on the corresponding parent subset.

3.2. Analysis

The sample complexity of the state-of-the-art structure-
discovery algorithm, due to Strehl et al. (2007), is

O

(
k2

ε2
ln

k

δ

)
,

where k =
(

n
D

)
= O(nD) is the number of possible parents

in the DBN. Hence, Theorem 1 suggests the improvement
of our algorithm is on the order of O(nD) which is substan-
tial if n or D is large. Section 3.3 provides empirical evi-
dence showing superiority of Met-Rmax over SLF-Rmax.

Using the theoretical tools of Strehl et al. (2007), we can
show that Met-Rmax is PAC-MDP with a sample complex-
ity of exploration (Kakade, 2003)

κ = O

(
nD+3AD

ε3(1− γ)6
ln

nA

δ
ln

1
ε(1− γ)

)
.

That is, if we run Met-Rmax for infinitely many timesteps,
then with probability at least 1− δ, the non-stationary pol-
icy1 in the visited states is ε-optimal except for at most

1The learner’s action-selection policy changes over time as the
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κ many timesteps. Therefore, Met-Rmax is a provably
sample-efficient reinforcement-learning algorithm that is
able to efficiently explore the environment (modelled as a
DBN) and discover the structure of its dynamics. Inter-
ested readers are referred to complete details and exten-
sions studied by Li (2009).

3.3. Experiments

We present experiments in two domains from the literature
that are commonly represented as factored-state MDPs:
Stock trading (Strehl et al., 2007) and System Administra-
tor (Guestrin et al., 2003).

Exact planning (that is, finding an optimal policy) in an
MDP modelled as a DBN is computationally hard although
efficient and effective approximate methods have been de-
veloped. Since the present paper focuses on sample-
complexity issues, we chose value iteration to compute op-
timal value functions and policies in our experiments.

3.3.1. STOCK-TRADING DOMAIN

This domain was introduced by Strehl et al. (2007) to illus-
trate their approach. We use the same domain and the same
parameters to show how Met-Rmax solves the same prob-
lem but improves performance, in correspondence with the
new bound presented in section 3.2.

As in Strehl et al. (2007), we ran experiments on an in-
stance of the domain consisting of 3 sectors and 2 stocks
per sector. We used the same parameters used by the au-
thors (m = 10 for Factored-Rmax, m = 20 and ε1 = 0.2
for SLF-Rmax). The parameter m indicates the number
of samples required by each meteorologist before it as-
sumes its prediction is known. A parameter search over
a coarse grid was conducted for Met-Rmax, and the results
presented use m = 7, which is the smallest value of m for
which the algorithm converges to an optimal policy. Each
experiment was repeated 10 times and the results averaged
with confidence intervals plotted.

Figure 1 shows the reward accumulated by each agent per
step of experience. As expected, the fastest algorithm to
converge to a near-optimal policy and maximize reward is
Factored-Rmax, which receives the DBN structure as in-
put. SLF-Rmax converges to a near-optimal policy after
a number of additional steps, presumably needed to infer
the underlying structure. Met-Rmax, converges to the same
policy significantly faster. In fact, the performance of Met-
Rmax (where the structure has to be learned) and that of
Factored-Rmax (where the structure is given as input) is
within margin of error in this particular example.

learner experiences state transitions. It is thus a non-stationary
policy rather than a stationary policy (Puterman, 1994).
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Figure 1. Cumulative reward on each timestep for the three algo-
rithms on the Stock-trading domain: Factored-Rmax was given
the DBN structure, while Met-Rmax and SLF-Rmax were not.

3.3.2. SYSTEM ADMINISTRATOR

As a second empirical example, we applied Met-Rmax to
the System Administrator problem introduced by Guestrin
et al. (2003). Once again, we compare Factored-Rmax,
where the structure of the DBN is provided as input, against
both Met-Rmax and SLF-Rmax.

We used the bidirectional ring topology instance of the
problem with 8 machines. The state is represented by 8
binary factors, representing whether or not each of the ma-
chines is running. The probability that a machine is running
at time t + 1 depends on whether itself and its two neigh-
bors are running at time t, so the in-degree of the DBN
representation for this problem is 3. There are 9 possible
actions: reboot the i-th machine, or do nothing. If machine
i is down at time t and reboot(i) is executed, it will be run-
ning at time t + 1 with probability 1. If the machine and
both its neighbors are running, there is a 0.05 probability
that it will fail at the next timestep. Each neighbor that is
failing at time t increases the probability of failure at time
t + 1 by 0.3. For example, if machine i is running but both
neighbors are down, there is a 0.65 chance that machine i
will be down at the next timestep. Each machine that is
running at time t accrues a reward of +1, and if the action
taken is reboot there is a penalty of −1.

A parameter search was performed for the three algorithms,
and the results shown correspond to m = 30 for Factored-
Rmax, m = 30 and ε1 = 0.2 for SLF-Rmax, and m = 50
for Met-Rmax.

Figure 2 shows the results. As expected, Factored-
Rmaxwas the fastest. Similar to the Stock-trading results,
Met-Rmaxwas able to discover the underlying DBN struc-
ture like SLF-Rmax but at a much faster rate.
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Figure 2. Cumulative reward on each timestep for the three al-
gorithms on the SysAdmin domain: Factored-Rmax (structure
given), Met-Rmax and SLF-Rmax.

4. Robot Sensory Feature Selection
Consider a robot-navigation domain, where the robot needs
to traverse different types of terrains that affect its dy-
namics. The robot might be equipped with multiple sen-
sors, each providing different types of perceptual inputs,
but only some of those inputs are relevant in determining
the terrain features that affect movement. The problem be-
comes a feature-selection problem: if the robot pays atten-
tion to all available features, the state space becomes too
big. It needs to select which features to pay attention to,
and those features need to be the correct ones. The essence
of our approach in this section is that we will assign one
“meteorologist” to each of the robot’s perceptual inputs, or
small set of inputs, and let the Adaptive k-Meteorologists
Algorithm select features automatically.

4.1. SCRAM-Rmax

As noted earlier, Leffler et al. (2007) introduced the Re-
locatable Action Models Rmax (RAM-Rmax) algorithm,
which assumes that a classifier provided as input permits
clustering different states according to their effects on tran-
sition dynamics. In our case, we will simply assume that
the maximum number D of potentially relevant sensory
features is provided, and we construct as many classifiers
as combinations of D sensors there are.

The Adaptive k-Meteorologists Algorithm will then simul-
taneously learn the correct subset of features and the right
predictions necessary to build an accurate action model
for each terrain. The resulting algorithm is called Sen-
sor Choosing for Relocatable Action Models-Rmax, or
SCRAM-Rmax for short.

SCRAM-Rmax uses the same exploration policy as Rmax

and the same action-selection policy as RAM-Rmax. The
only difference is that instead of providing a single state
clustering function (a classifier) as input, we initialize the
algorithm with k possible classifiers, each classifying states
according to the input of a different sensor or subsets of
sensors. When asked to predict a transition outcome based
on a given state s and action a, if any of the k classifiers
responds ⊥, we assume an optimistic outcome and guide
exploration towards taking action a. The observed out-
come is provided to the k classifiers as an example. After
enough experience is gathered, the most accurate classifier
according to the Adaptive k-Meteorologists algorithm will
be used.

4.2. Artificial-Dynamics Experiment

An experiment using a LEGO Mindstorm NXT R© robot
was performed to demonstrate the benefits of learning ac-
curate classifiers using SCRAM-Rmax. The robot was
made up of two wheels and a caster, and placed on a flat
surface with an overhead camera. Instead of setting up real
different terrains, we artificially designated different areas
of the surface as having different dynamics. The overhead
camera detects the robot’s position on the surface, and in-
forms it to a controller that decides how the robot moves
based on the action it chose. The robot is also provided
with artificial sensors, so that each sensor breaks the sur-
face into terrains a different way.

4.2.1. EXPERIMENTAL SETUP

Experiments in this section used four different classifiers,
as shown in Figure 3. Classifier 1 (Figure 3(a)) decom-
poses the surface into the correct terrains, the ones actually
matching the artificial dynamics we designed: when the
agent is in a state labeled as blue, actions a0, a1, a2, and
a3 result in the robot going left, right, forward and back-
ward, respectively. In a state labeled as yellow, the result-
ing behaviors are right, left, backward and forward, respec-
tively. The other three classifiers break the surface into ter-
rains that do not match the ones determining the dynamics.
The expectation is that the Adaptive k-Meteorologists Al-
gorithm will be able to detect the correct classifier while
learning the system’s dynamics.

We compared an agent running the SCRAM-Rmax algo-
rithm against three RAM-Rmax agents. Each of the RAM-
Rmax agents had a different terrain classifier as input. One
used Classifier 1, the correct one; another one used Clas-
sifier 2, an incorrect one; and the last one used a classi-
fier that combined the all four of the given classifiers (Fig-
ure 4), breaking the surface into lots of terrains. All algo-
rithms were given the goal location and had the parameters
m = 10 and γ = 1. The rewards were 1 for reaching the
goal, −1 for going out of bounds, and −0.025 for every
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Goal

(a) Classifier 1 (b) Classifier 2 (c) Classifier 3 (d) Classifier 4.

Figure 3. Several different classifiers of the artificial-dynamics environment given to the SCRAM-Rmax and RAM-Rmax algo-
rithms. (a)The actual classifier used to determine the robot’s dynamics. The arrowhead indicates the start state of the agent and the
ellipse indicates the goal location.(b),(c), and (d) show incorrect classifiers that were given as input to the different algorithms.

Figure 4. Combination of all features from Figure 3. By taking
the product of all features as a different cluster, we would get one
cluster for each different color in this figure.

other state-action pair. Since a RAM-Rmax agent with the
incorrect model could run indefinitely, the episode would
“time-out” if the agent had seen more than m experiences
in each type and took more than 50 steps. If a time-out oc-
curred, the episode would terminate and the agent would
receive a reward of −1.

4.2.2. RESULTS

Figure 5 shows the various agents’ performances. As
expected, the RAM-Rmax agent with the correct classi-
fier (Classifier 1) performed the best, learning a seem-
ingly optimal policy—receiving 0.75 for each episode. The
SCRAM-Rmax agent received the second best cumulative
reward by converging to the same policy after learning that
Classifier 1 was the most accurate clustering function. Next
in performance was the RAM-Rmax agent with the com-
bined classifier. While its cumulative reward was at one
point below −28, the agent eventually learned the optimal
policy and began receiving positive rewards. The agent that
performed the worst was the RAM-Rmax with the incorrect
classifier. This agent learned a very noisy dynamics model
and was not able to reach the goal. In fact, without a proper
dynamics model, the agent was often not able to go out of
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Figure 5. Cumulative Reward in the artificial-dynamics environ-
ment.

bounds to end the run, and frequently timed-out.

5. Conclusions
In this paper, we formalize and expand an existing idea
for solving the (Adaptive) k-Meteorologists Problems
to learn probabilistic concepts in the KWIK model (Li
et al., 2008). We give a complete algorithm, analyze its
sample-complexity upper bound, and provide a matching
lower bound. This algorithm is then used in two new
reinforcement-learning algorithms for structure discovery
and feature selection while actively exploring an unknown
environment.

The first algorithm, Met-Rmax, is highly efficient at struc-
ture learning and improves significantly on the previous
state-of-the-art algorithm, SLF-Rmax. The second algo-
rithm, SCRAM-Rmax, is able to discover relevant sensory
input and thus removes a limiting assumption in its prede-
cessor, RAM-Rmax. Superiority of both algorithms were
demonstrated in either benchmark problems and a robot
navigation problem.

Finally, we note that the Adaptive k-Meteorologist Algo-
rithm is very general and can be applied to KWIK-learn
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many functions. This includes not only probabilistic con-
cepts, but also real-valued functions. For instance, its capa-
bility of finding relevant sensory inputs can be combined
with a recently developed approach to KWIK-learning
Gaussian distributions (Brunskill et al., 2008), resulting in
a new, efficient algorithm in continuous-state problems.
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