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Abstract
Large margin learning of Continuous Density
HMMs with a partially labeled dataset has
been extensively studied in the speech and
handwriting recognition fields. Yet due to the
non-convexity of the optimization problem,
previous works usually rely on severe approx-
imations so that it is still an open problem.
We propose a new learning algorithm that
relies on non-convex optimization and bun-
dle methods and allows tackling the original
optimization problem as is. It is proved to
converge to a solution with accuracy ε with a
rate O(1/ε). We provide experimental results
gained on speech and handwriting recogni-
tion that demonstrate the potential of the
method.

1. Introduction
Hidden Markov Models (HMMs) have been widely
used for automatic speech recognition and handwriting
recognition . Continuous Density HMMs (CDHMMs)
are particularly suited for dealing with sequences of
real-valued feature vectors that one gets after typ-
ical front-end processing in signal processing tasks.
CDHMMs usually exploit Gaussian mixture models
to describe the variability of observations in a state.
HMM parameters are learnt with the Expectation-
Maximization algorithm (EM) to maximize the joint
likelihood of observation and of hidden state se-
quences.

Training is performed based on a partially labeled
training set, that is a set of observation sequences
together with the corresponding classes (classification
case) or with the corresponding unit sequences (seg-
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mentation case). This is the usual setting in speech or
handwriting recognition tasks, where one never gets
the complete sequence of states corresponding to an
observation sequence in the training stage. In test, seg-
mentation is performed through Viterbi decoding that
maps an observation sequence into a state sequence.
Based on the underlying semantics of the states (e.g.
passing through the three states of the left-right HMM
corresponding to a particular phone means this phone
has been recognized), the sequence of states translates
into a sequence of labels (e.g. phones).

This typical use of HMMs is very popular since it is
both simple and efficient, and it scales well with large
corpus. However, this learning strategy does not fo-
cus on what we are primarily concerned with, namely
minimizing the classification (or the segmentation) er-
ror rate. Hence, a number of attempts have been made
to develop discriminative learning methods for HMMs.
First studies, in the speech recognition field, aimed at
optimizing a discriminative criterion such as the Min-
imum Classification Error (MCE) (Juang & Katagiri,
1992) or the Maximum Mutual Information (MMI) cri-
terion (Woodland & Povey, 2002).

Recently, a promising direction has been explored
with the development of margin-based methods for
sequences (Taskar et al., 2004; Tsochantaridis et al.,
2004). However these works mainly deal with fully su-
pervised learning. There is still work to do to extend
these works to the learning of CDHMMs with par-
tially labeled data. Building on these seminal works
a few approaches have been proposed for large margin
learning of HMMs, especially in the speech recogni-
tion community (Sha & Saul, 2007; Jiang & Li, 2007)
(see (Yu & Deng, 2007) for a review). However none
of these works actually handle the whole problem of
max-margin learning for HMM parameters in the stan-
dard partially labeled setting. (Jiang & Li, 2007) fo-
cuses on correctly predicted examples near the decision
boundary only, while (Sha & Saul, 2007) mainly fo-
cuses on the fully supervised case, where the sequence
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of states corresponding to the training sequences are
determined by a traditionally trained HMM system via
Maximum Likelihood Estimation (MLE).

Here we propose a new method for discriminative
learning of CDHMM models in the complex unlabeled
setting. The main difficulty one encounters when for-
mulating the maximum margin learning of CDHMM
with partially labeled data lies in the non-convexity
of the optimization problem. While (Sha & Saul,
2007) consider a simpler and convex problem we build
on non-convex optimization ideas and investigate here
the direct optimization of the non-convex objective
function using bundle methods (Kiwiel, 1985; Hiriart-
Urruty & Lemarechal, 1993). Our contributions are:

• A new fast optimization method that can han-
dle non-convex, non-differentiable function, with
a theoretical analysis of its convergence rate.

• Experimental results showing the method is well
adapted for large margin training of CDHMMs.

We first present the maximum margin training formal-
ization in the general case of structured outputs and
for HMM learning in particular. Then we show how
such a learning problem may resume to a non-convex
optimization problem that may be solved with a vari-
ant of bundle methods that we propose, for which we
provide a detailed analysis convergence. Finally we
provide experimental results on speech and on hand-
writing recognition that show first the performance of
the classifiers and second the efficiency of the optimiza-
tion method.

2. Large Margin Learning and HMMs
In this section, we address the problem of learning a
model for structured outputs based on partially la-
beled data. Although our method is quite general we
mainly focus here on the special case of learning a
model for sequence segmentation based on partially
labeled training sequences, which fits our case study
of maximum margin learning for HMMs.

2.1. Large Margin Learning for Structured
Outputs with Partially Labeled data

We consider a training set that consists of K input-
output pairs (x1,y1), ..., (xK ,yK) ∈ X × Y where
xi = (xi1, xi2, ..., xiT ) ∈ (Rd)T is an observation se-
quence and yi = (yi1, yi2, ..., yiL) ∈ LL is the corre-
sponding label sequence (with L ≤ T ). We consider
hidden variables (z1, z2, ..., zK) where zi stands for
the missing variables corresponding to the ith train-
ing sample. For instance if we wish to learn a HMM

for speech recognition, zi might be the full state se-
quence corresponding to the ith speech signal xi while
yi is the corresponding sequence of phones.

We are interested in learning a discriminant function
F : X × Y → R over input-output pairs which can be
used to predict the output y for an input x:

h(x,w) = argmax
y∈Y

F (x,y,w) (1)

where w denotes the parameter vector to be learned.
In the case of partially labeled data, the discrimi-
nant function F (x,y,w) may take various forms such
as F (x,y,w) = maxz g(x,y, z,w) where g(x,y, z,w)
stands for an elementary discriminant function. For
instance g might be a linear function g(x,y, z,w) =
〈Φ(x,y, z),w〉 with Φ(x,y, z) being a feature vector.

Following previous works (Tsochantaridis et al., 2004;
Taskar et al., 2004), learning an optimal h may be
done by solving the following soft margin problem:

min
w,ξ

λ
2 ‖w‖2 +

∑
i ξ
i

s.t. F (xi,yi,w)≥F (xi,y,w)+∆(yi,y)−ξi ∀i∀y6=yi

ξi≥0 ∀i

(2)

where ∆(yi,y) terms allow taking into account differ-
ences between labellings (Cf. (Taskar et al., 2004)).
The equivalent unconstrained problem is:

minw
λ
2 ‖w‖

2+
∑

i
maxy(F (xi,y,w)+∆(yi,y)−F (xi,yi,w))︸ ︷︷ ︸

f(w)
(3)

where f(w) is the primal objective function. A variant
consists in using a softmax instead of a max in (3):

maxy(F (xi,y,w)+∆(yi,y)−F (xi,yi,w))
≈max

[
0,
(
log
∑

y 6=yi
eF (xi,y,w)+∆(yi,y)

)
−F (xi,yi,w)

] (4)

2.2. Application to CDHMMs

We consider standard CDHMMs with Gaussian mix-
ture as probability density function (pdf) within each
state. The pdf over observation frame x ∈ Rd within
a state s is defined as a Gaussian mixture:

p(x|s) =
∑M

m=1 ps,mNs,m(x) (5)

where ps,m stands for the prior probability of the mth

mixture in state s, and Ns,m stands for the Gaus-
sian distribution whose mean vector is noted µs,m and
whose covariance matrix is noted Σs,m.

Ns,m(x) = 1
(2π)d/2|Σs,m|1/2 e

− 1
2 (x−µs,m)>Σs,m−1(x−µs,m)
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A N states HMM is defined with a set of parame-
ters w = {Π,A,µ,Σ}. Using standard notations,
Π stands for the initial state probabilities, A for
transition probabilities, µ for all mean vectors µ =
{µs,m|m ∈ [1,M ], s ∈ [1, N ]}, and Σ for all covariance
matrices, Σ = {Σs,m|m ∈ [1,M ], s ∈ [1, N ]}.

The joint probability p(x,y|w) of an input-output pair
x = (x1, ..., xT ) and y = (y1, ..., yL) may be computed
by summation over two sets of hidden variables: the se-
quence of states (called segmentation) s = (s1, ..., sT );
and the sequence of numbers of Gaussian components
(in Gaussian mixtures) responsible for the observa-
tions of x, m = (m1, ...,mT ). In fact s runs over the
set S(y) of segmentations matching y:

p(x,y|w) =
∑

s∈S(y)
∑

m p(x,y, s,m|w) (6)

where, using notation ps,m(x) def= ps,mNs,m(x):

p(x,y, s,m|w) = πs1ps1,m1(x1)
∏T
t=2 ast−1,stpst,mt(xt)

In practice one often uses the approximation
p(x,y|w) ≈ maxs p(x,y, s|w) or even:

p(x,y|w) ≈ maxs,m p(x,y, s,m|w) (7)

HMM max margin training can be easily cast in the
formalism of previous section by defining the following
score function, and considering z = (s,m):

g(x,y, s,m,w) = log p(x,y, s,m|w)
F (x,y,w) = maxs∈S(y),m g(x,y, s,m,w) (8)

or the following softmax variant:

F soft(x,y,w) = log

 ∑
s∈S(y),m

eg(x,y,s,m,w)

 (9)

2.3. Solving the large margin HMM training
optimization problem

In the context of our study solving the unconstrained
problem Eq. (3) raises a major problem since f(w) is
naturally non-convex. For instance if F (x,y,w) =
maxz g(x,y, z,w) and assuming g is linear, then
F (x,y,w) is a convex function. Yet f(w) is not convex
because of the −F (xi,yi,w) terms which are concave.
Alternatively the constrained form in Eq. (2) raises
problems too since there does not exist any efficient
algorithm to solve such a non-convex problem with an
exponential number of constraints.

Some previous works overcome the difficulty by consid-
ering a smaller sized problem, e.g. through a heuristic
selection (based on Viterbi-like decoding and N-best

lists) of a subset of training samples together with a
subset of candidate labelings (see (Yu & Deng, 2007)
for a review). This is a first step but further approxi-
mations are needed to solve the problem. For instance
(Jiang & Li, 2007) also relies on an additional convex
relaxation before solving the problem with semi defi-
nite programming. At the end the impact of successive
approximations and simplifications is difficult to mea-
sure and the robustness of the method is questionable.

A more direct solution has been proposed in (Sha,
2006) which is based on primal optimization (Eq.
(3)) and convex relaxation ideas. These authors pro-
posed to overcome the non-convexity of f by lin-
earizing function g (as in Eq. (8)) and by simplify-
ing concave terms −F (xi,yi,w) in the following way.
They remove the maximization in the computation
of F (xi,yi,w) by using an oracle (A Generative Sys-
tem learnt with MLE) providing a guess sigs,mi

gs for
argmaxs,m[g(xi,yi, s,m,w)]. Hopefully, using the or-
acle trick the objective function becomes convex in w:
fo(w)=λ

2 ‖w‖
2+
∑

i
maxy(F (xi,y,w)+∆(yi,y)−g(xi,yi,sigs,m

i
gs,w))

(10)

At the end, the quality of the solution is not clear since
there are no guarantees that such an oracle provides
relevant information for learning the discriminant sys-
tem. Such a limitation has been stressed in (Sha, 2006)
where the more complex HMMs topology is (i.e. the
stronger the oracle approximation is) the less interest-
ing discriminant training is.

3. Non-Convex Optimization Algorithm
We consider the optimization problem below which in-
cludes the maximum margin HMM learning problem
as a special case (Cf. Eq. (3), (8)):

min
w

f(w) = λ

2 ‖w‖
2 +R(w) (11)

where R(w) is an upper bound of the empirical risk
that we want to minimize.

Our algorithm is inspired by a recent variant of bun-
dle methods for minimizing convex regularized risk in
machine learning problems (Teo et al., 2007; Joachims,
2006). This variant has two main advantages, the first
one being its very good convergence rate, the second
one being its relevant stopping criterion, namely the
gap between the objective and the minimum of the
approximated problem. Our algorithm inherits both
advantages, but is also able to solve non-convex prob-
lems. The approach described in (Teo et al., 2007)
solves the general optimization problem in Eq. (11)
whatever R(w) provided that it is convex. We briefly
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describe now the method in the case where R(w) is
convex. It relies on the cutting plane technique, where
a cutting plane of R(w) at w′ is defined as:

cw′(w) = 〈aw′ ,w〉+ bw′

s.t. cw′(w′) = R(w′)
and ∂wcw′(w′) ∈ ∂wR(w′)

(12)

Here aw′ ∈ ∂wR(w′) is a subgradient of R(w) at w′
and bw′ = R(w′) − 〈aw′ ,w′〉. Such a cutting plane
cw′(w) is a linear lower bound of the risk R(w) and
λ
2 ‖w‖2 + cw′(w) is a quadratic lower bound of f(w).

The bundle method aims at iteratively building an in-
creasingly accurate piecewise quadratic lower bound
of the objective function. Starting with an initial
(e.g. random) solution w1, one first determines the
solution w2 minimizing the approximation problem
g1(w) = λ

2 ‖w‖2 + cw1(w). Then a new cutting plane
cw2 is built and one looks for the minimum w3 of
the more accurate approximation problem g2(w) =
λ
2 ‖w‖2 + max(cw1(w), cw2(w)). More generally at it-
eration t, one adds a new cutting plane at the current
solution wt, and looks for the solution wt+1 minimiz-
ing the new approximated problem:

wt+1 = argminw gt(w)
vt = minw gt(w)
with gt(w) = λ

2 ‖w‖2 + maxj=1..t {cj(w)}
(13)

where, in the convex case, cj(w) ≡ cwj
(w) is defined

as in Eq. (12). We use the notation cj(w) rather than
cwj (w) to stress that cj(w) is built from solution wj

in iteration j but does not necessarily coincide with
cwj

(w) as we will see below in the non-convex case.

At iteration t the minimization of the approximated
problem in Eq. (13) can be solved by quadratic pro-
gramming. Note that by construction of the quadratic
lower bound gt(w) the minimum of the approximated
problem vt = gt(wt+1) increases every iteration. It
may be shown that the gap between the minimum ob-
served value of the objective function and the mini-
mum of the approximated problem, f(w)− gt(wt+1),
decreases towards zero and that it requires O(1/λε)
iterations to reach a gap less than ε (Teo et al., 2007).

Handling non-convex risk function

Unfortunately, the approach in (Teo et al., 2007) can-
not be used for non-convex problems since the min-
imization of the approximated problem may lead to
a local maximum w. Figure 1b illustrates a situation
where the method designed for convex cases yields such
an improper solution. Consider we get the two cutting
planes computed at w1 and w2 after two iterations.

Then minimizing the approximated problem gives w3
which is a local maximum.

The problem comes from the fact that a cutting plane
of a non-convex function is not necessarily a lower
bound, which leads to a poor approximation (see Fig-
ure 1a). Indeed the linearization error (R(w)−cw′(w))
of a cutting plane cw′ at a point w may be negative,
meaning that the function is overestimated at that
point. In the following we will say in such a case that
there is a conflict between cw′ and w.

Figure 1. Cutting planes and linearization errors

Standard solution to overcome conflicts is to lower any
new cutting plane cwt

(w) = 〈awt
,w〉+ bwt

that gives
negative linearization errors for the solutions wj at
previous iterations (Kiwiel, 1985). This may be done
by tuning offset bwt . However, this approach does
not guarantee any more the improvement of vt, as the
change in the cutting plane parameters changes the
approximated problem. This is the reason why the
convergence rate of standard bundle methods is not
guaranteed, and usually slow in practice.

Instead, our algorithm handles non-convex risk while
still preserving the good convergence rate O(1/λε), it
is described in Algorithm 1. One key idea lies in that
rather than solving all conflicts between a new cut-
ting plane and all previous solutions, we focus on the
conflict of the new cutting plane cwt

w.r.t the best
observed solution up to now, w∗t (see line 4). Fun-
damentally we allow eventual overestimation at other
previous solutions and focus on the area of the best
observed solution by considering there is a conflict if
and only if condition (14) is not satisfied:

cwt
(w∗t ) = 〈awt

,w∗t 〉+ bwt
≤ R(w∗t ) (14)

A second main idea lies in the modification procedure
of cwt

in case of conflict where cwt
is adjusted into

ct. Finally the next solution wt+1 is found by mini-
mization of the approximated problem Eq. (13) like in
the convex case but where cj denotes now either the
“true” cutting plane cwj computed at iteration j (Cf.
Eq. (12)), or its modified version in case there was a
conflict at iteration j.
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Solve Conflict

In case of conflict we look for a modified cutting plane
that satisfies both Eq. (14) and Eq. (15):

λ

2 ‖wt‖2 + ct(wt) ≥ f(w∗t ) (15)

whose interest will appear later in the convergence
analysis subsection. Note that cwt always satisfies (15)
by definition of w∗t , so that ct also satisfies (15) in case
there is no conflict.

Algorithm 2 guarantees that the new cutting plane ct
with parameters at and bt satisfies condition (14) and
(15). First it tries to solve the conflict by tuning bt
while fixing at = awt

. The two conditions (14) and
(15) may be rewritten as:

bt ≤ R(w∗t )− 〈awt ,w∗t 〉 = U
bt ≥ f(w∗t )− λ

2 ‖wt‖2 − 〈awt ,wt〉 = L
(16)

which defines an upper bound U and a lower bound
L of bt. If L ≤ U any value in (L,U) works (in our
implementation we set bt = L). It may happen that
L > U , then tuning bt is not enough. We must adjust
both bt and the normal vector at to make sure that
the conflict is solved (see Line 5 in Algorithm 2). The
chosen values of at and bt define a new cutting plane
that trivially satisfies condition (15). It also satisfies
condition (14) as we show now.

〈at,w∗t 〉+ bt
= 〈at,w∗t 〉+ f(w∗t )− λ

2 ‖wt‖2 − 〈at,wt〉
= R(w∗t ) + 〈at + λ

2 (w∗t + wt),w∗t −wt〉
(17)

where we used the definition of objective function
f(w∗t ) = λ

2 ‖w∗t ‖2 +R(w∗t ). Then, we substitute −λw∗t
for at (Cf. Line 5) and obtain

〈at,w∗t 〉+ bt = R(w∗t )− λ
2 ‖w∗t −wt‖2

≤ R(w∗t )
(18)

Convergence Analysis

Our algorithm improves in two ways over previous
standard non-convex bundle methods. First, it gen-
erates a sequence wt that converges to a solution w∗
where f(w∗) ≤ f(wt)∀t, which is not guarantied with
standard methods that may generate (stationary) clus-
ter points, not necessarily better than previous solu-
tions. Second, we provide below an upper bound on
the convergence rate of our algorithm which converges
with O(1/ε) rate, one cannot derive such a rate for
standard bundle methods. Experimentally, after hav-
ing reached “a moderate gap”(which is fast) no con-
flicts arise and our algorithm behaves like (Teo et al.,

Algorithm 1 Non-Convex Cutting Plane
1: Input: w1, λ, ε
2: for t = 1 to ∞ do
3: Define cwt according to Eq. (12)
4: w∗t = argminwj∈{w1,...wt} f(wj)
5: if condition (14) is not satisfied then
6: ct = SolveConflict(w∗t ,wt, cwt

)
7: else ct = cwt

8: Compute wt+1 and vt according to Eq. (13)
9: gapt = f(w∗t )− vt

10: if gapt ≤ ε then return w∗t
11: end for

Algorithm 2 SolveConflict
1: Input: w∗t ,wt, cwt

with parameters (awt
, bwt

)
2: Output: ct with parameters (at, bt)
3: Compute L,U according to (16)
4: if L ≤ U then [at, bt] = [awt , L] else
5: [at, bt] = [−λw∗t , f(w∗t )− λ

2 ‖wt‖2 − 〈at,wt〉]

2007). One can assume f(w) being locally convex
then, which would make it converge to a local min-
imum.

We first recall a result from (Teo et al., 2007) which
is needed in our proof (Lemma 3.1). Then Lemma
3.2 determines a lower bound on the decrease of the
gap every iteration. Finally, Theorem 3.1 proves that
Algorithm 1 converges to a solution with accuracy ε
with a rate O(1/λε).
Lemma 3.1. (Teo et al., 2007) The minimum of
1
2qx

2 − lx with q, l > 0 and x ∈ [0, 1] is bounded from
above by − l

2 min(1, l/q).

Lemma 3.2. Approximation gap decrease:

gapt−1 − gapt ≥ min(gapt−1

2 ,
(gapt−1)2λ

8G2 ) (19)

where the approximation gap is defined as gapt =
f(w∗t ) − vt, and where G is an upper bound on the
norm of cutting planes direction parameters ai.
Proof. The approximation problem (13) at iteration t
can be rewritten as follows:

vt = minw,ξ
λ
2 ‖w‖2 + ξ

s.t. 〈aj ,w〉+ bj ≤ ξ j = 1..t (20)

where ξ is a slack variable. The solution is given by a
saddle point of the Lagrangian that must be minimized
wrt. parameters w, ξ and maximized wrt. Lagrange
multipliers. One gets easily the dual form:
vt = maxα∈Rt Dt(α) = −λ2 ‖

αAt
λ ‖

2 + αBt
s.t αi ≥ 0 ∀i = 1..t∑

i=1..t αi = 1
(21)
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where At = [a1; ...; at] and Bt = [b1; ...; bt] and α
stands for the vector of Lagrange multipliers (of length
t at iteration t). Let αt be the solution maximizing
Dt(α)1. The primal solution, which may be obtained
using saddle point optimality conditions (of Lagrange
duality), is: wt+1 = −αtAtλ , with: vt = Dt(αt).

Unfortunately vt cannot be computed explicitly since
it is the result of a quadratic program. However, we
may interestingly study the dual Dt for a subspace
of α values, along the segment line between αstart =
[αt−1, 0] and αend = [0, .., 0, 1]. It is easy to verify that
any point along this segment

α(η) = ηαstart + (1− η)αend η ∈ [0, 1] (22)

is feasible. Note also that Dt(αstart) = Dt−1(αt−1) =
vt−1, which implies naturally that vt ≥ vt−1.

Substituting Eq. (22) into Eq. (21) and noting that
At = [At−1; at], Bt = [Bt−1; bt], we get a quadratic
form (in η) for Dt(α(η)):

Dt(α(η)) = − 1
2λ‖at − αt−1At−1‖2η2

+
( 1
λ‖αt−1At−1‖2 − αt−1Bt−1

+ 1
λ 〈at, αt−1At−1〉+ bt

)
η

− 1
2λ‖αt−1At−1‖2 + αt−1Bt−1

(23)

This expression may be simplified by using that αt−1
was the solution of the dual approximation problem
at iteration t − 1, hence wt = −αt−1At−1

λ and vt−1 =
Dt−1(αt−1). Then:

Dt(α(η)) = − 1
2λ‖at + λwt‖2η2

+
(
λ
2 ‖wt‖2 + 〈at,wt〉+ bt − vt−1

)
η

+vt−1
= − 1

2qη
2 + lη + vt−1

with q = 1
λ‖at +λwt−1‖2 and l = λ

2 ‖wt‖2 + 〈at,wt〉+
bt − vt−1. Note that Eq.(15)⇒ l ≥ f(w∗t )− vt−1.

We consider now two cases. If l ≤ 0, and using that
vt−1 ≤ vt, one gets f(w∗t ) ≤ vt−1 ≤ vt which yields
gapt ≤ 0 ≤ gapt−1 − min( gapt−1

2 , (gapt−1)2λ
8G2 ) assum-

ing naturally that gapt−1 > ε > 0 since convergence
was not reached at iteration t−1 (otherwise algorithm
would have stopped). Note that we never observed
such a singular case l ≤ 0 in our experiments but its
study is required to complete the proof.

The case where l > 0 is not as simple and we rely
on Lemma 3.1 for bounding the minimum of vt−1 −
Dt(α(η)) ≡ 1

2qη
2 − lη:

minη∈[0,1] vt−1 −Dt(α(η)) ≤ − l
2 min(1, l/q)

1We used solvers from the STPR toolbox available at
http://cmp.felk.cvut.cz/cmp/software/stprtool/

Next, since ∀η ∈ [0, 1], vt ≥ Dt(α(η)):

−vt ≤ −vt−1 − l
2 min(1, l/q)

Adding f(w∗t ) to both sides, using l ≥ f(w∗t )− vt−1:

f(w∗t )− vt ≤ f(w∗t )− vt−1

− f(w∗t )−vt−1
2 min(1, f(w∗t )−vt−1

q ) (24)

Now note that x − x
2 min(1, x/q) is monotonically in-

creasing ∀q > 0. Also f(w∗t ) is monotonically decreas-
ing so that f(w∗t )− vt−1 ≤ f(w∗t−1)− vt−1 = gapt−1.
Putting this together:

gapt ≤ gapt−1 − gapt−1
2 min(1, gapt−1/q) (25)

Finally we show that q ≤ 4G2/λ. Actually, q = 1
λ‖at+

λwt−1‖2 = 1
λ‖at+αt−1At−1‖2 where ‖αt−1At−1‖ ≤ G

because ∀i‖ai‖ ≤ G and
∑
i=1..t−1 α

i
t−1 = 1. Finally

‖at − αt−1At−1‖2 ≤ 4G2 and we get q ≤ 4G2/λ.

Theorem 3.1. Algorithm 1 produces an approxima-
tion gap below ε after T steps where :

T ≤ T0 + 8G2/λε− 2
with T0 = 2log2

λ‖w1+a1/λ‖
G − 2 (26)

and converges with a rate O(1/λε).

Proof. Consider the two quantities occurring in Eq.
(19), gapt−1/2 and λgap2

t−1/8G2. We first show that
the situation where gapt−1/2 > λgap2

t−1/8G2 (i.e.
gapt−1 > 4G2/λ) may only happen a finite number
of iterations, T0. Actually if gapt−1 > 4G2/λ Lemma
3.2 shows that gapt ≤ gapt−1/2 and the gap is at least
divided by two every iteration. Then gapt−1 > 4G2/λ
may arise for at most T0 = log2(λgap1/4G2)+1. Since
gap1 = λ

2 ‖w1+a1/λ‖2 (it may be obtained analytically
since the approximation function in the first iteration
is quadratic), T0 = 2log2

λ‖w1+a1/λ‖
G − 2.

Hence after at most T0 iterations the gap decrease
obeys gapt−gapt−1 ≤ −gap2

t−1/8G2 ≤ 0. To estimate
the number of iterations required to reach gapt ≤ ε,
we follow an idea from (Teo et al., 2007) and in-
troduce a function u(t) which is an upper bound of
gapt. Solving differential equation u′(t) = − λ

8G2u
2(t)

with boundary condition u(T0) = 4G2/λ gives u(t) =
− 8G2

λ(t+2−T0) ≥ gapt ∀t ≥ T0. Solving u(t) ≤ ε ⇐⇒
t ≥ 8G2/λε + T0 − 2, the solution is reached with ac-
curacy ε within

[
T0 + 8G2/λε− 2

]
iterations.

4. Experiments
We provide experimental results on speech and on on-
line handwritten digit recognition and analyze experi-
mentally the convergence behavior of our method.
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Automatic Speech Recognition

We performed experiments on the TIMIT database
with the standard splitting into train, development
and test data. The signal was preprocessed using the
procedure described in (Sha & Saul, 2007). There are
3696 utterances and over 1 million frames in the train-
ing set. A left-right HMM with one to three states
and Gaussian mixture probability densities was build
for each of 48 phonetic classes. We followed standard
conventions in mapping the 48 phonetic labels down
to 39 broader phone categories and error rates were
computed as the sum of substitution, deletion, and in-
sertion error rates from the alignment process.

We naturally compared our algorithms with a non
discriminant system (MLE) (trained with the HTK
Toolkit). In addition this MLE system is used during
the training of discriminant systems both for initial-
ization and for regularization. Actually we used the
regularization term λ

2 ‖w−wMLE‖2 which experimen-
tally performs slightly better than λ

2 ‖w‖2. Moreover,
using ‖w−wMLE‖2 for regularization term leads to a
bigger optimal value of λ than using ‖w‖2, which re-
duces considerably the number of training steps (and
also the number of cutting planes required to approx-
imate well the objective function). We implemented
two variants of our method (non-convex optimization
or NCO), one uses the hard-max (NCO-H) and the
other one (NCO-S) uses the soft-max version over all
possible labellings (see Eq. (4),(9)), this latter version
is implemented with a Forward-Backward procedure.
Also, we used the hamming distance for ∆(yi,y).

Experimentally NCO-S is about 10 times slower than
NCO-H which is 2 times slower than MLE training, we
give hints now. Actually learning cost mainly decom-
poses into two terms, computing frames probabilities
and dynamic programming. In exprimental settings
such as in speech recognition the first term dominates
and is similar for NCO and MLE methods if training
sentences include many different phones. Besides, to
reach a gap < 1%, NCO-H requires about two times
more iteration than MLE requires to converge. Finally
NCO-H training is 2 times slower than MLE.

We compared our methods to three competitive dis-
criminant methods, the large margin convex formula-
tion of (Sha & Saul, 2007) (named Oracle), and two
benchmark discriminant methods, Conditional Maxi-
mum Likelihood (CML) and Minimum Classification
Error (MCE). Table 1 shows phone error rates of all
these methods for one-state HMM per phone. Note
that Oracle, MCE and MMI results are taken from
(Sha, 2006) and correspond to the same experimental
setting. These results clearly show first that discrim-

Table 1. Phone error rates with single state phone HMMs
(N = 1) and mixtures of M Gaussian laws per state.

M MLE NCO-H NCO-S Oracle CML MCE
1 44.75 31.44 31.02 31.2 36.4 35.6
2 39.54 29.70 30.21 30.8 34.6 34.5
4 36.06 29.13 29.30 29.8 32.8 32.4
8 34.46 28.29 29.11 28.2 31.5 30.9

Table 2. Phone error rates with multi-state phone HMMs.

N M MLE NCO-H Oracle(Sha, 2006)
2 states 1 38.21 29.57 Not Available
2 states 2 34.14 27.99 NA
2 states 4 32.00 27.67 NA
2 states 8 31.25 27.58 NA
3 states 1 36.70 28.70 37.8
3 states 2 31.92 27.93 32.6
3 states 4 30.28 27.40 NA
3 states 8 29.55 27.61 NA

inant approaches significantly outperform MLE train-
ing, and second that large margin approaches (NCO
and Oracle) significantly outperform the two other dis-
criminant methods. Note also that the two variants
of our method NCO-H and NCO-S perform similarly.
Since NCO-H is much faster we report only NCO-H
results in the following. Table 2 shows results with
a few states per left-right phone HMM, for the two
most efficient techniques (NCO and Oracle) only. Note
that (Sha, 2006) only report results for 3 states HMM
with a small number of gaussians. As may be seen in
these experiments the oracle method is not able to ex-
ploit the increasing complexity of the models while our
method can take advantage of the number of states to
reach lower error rates. We believe that this success
comes from the original non-convex formulation.

On-line Handwriting Recognition

On-line handwriting signals are temporal sequences of
the position of an electronic pen captured through a
digital tablet. We used a part of the Unipen interna-
tional database with a total of 15k digit samples, 5k
samples for training and 10k samples for testing. We
trained a five states left-right CDHMM for each digit.

Table 3 reports classification error rates of three sys-
tems, namely MLE, the Oracle method and NCO-H.
Again, one can see that our method reaches the best
results whatever M the number of Gaussian in Gaus-
sian mixtures. NCO-H is shown to significantly out-
perform the Oracle based method showing that our
algorithm has been able here too to efficiently learn
from partially labeled training samples.
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Table 3. Handwritten digit recognition error rates (N = 5)

M MLE Oracle NCO-H
1 13.50 2.01 1.53
2 10.50 1.70 1.33
3 9.48 1.82 1.53
4 15.02 1.74 1.56

Convergence

Finally, we analyze experimentally the convergence
rate of our algorithms (on speech recognition exper-
iments). In these experiments learning is performed
until the approximation gap becomes less than 1% of
the objective function, which is enough to reach an op-
timal error-rate. Figure 2a plots the evolution of the
error rate on the development set and on the test set
against the learning iteration number. It is seen that
the error rate remains stable after about 50 iterations.

Figure 2b shows the evolution of the approximation
gap (in log scale) as a function of the iteration number,
with different values of the regularization parameter
λ. For clarity reasons we plot a normalized gap which
is computed by dividing the gap by the number of
frames in the training set. Note that the convergence
rate depends directly on the value of λ as observed in
(Teo et al., 2007), which is not the case in traditional
bundle methods. This comes naturally from the use
of a regularization term. More importantly, this figure
shows that the convergence rate is actually closer to
O(log(1/ε)) than to our theoretical proven O(1/ε).

(a) (b)

Figure 2. Training LMHMM with 3 states and 4 Gaussians
for speech recognition

5. Conclusion
We described a new method for maximum margin
learning of CDHMMs, that allows learning with par-
tially labeled training sets, which is still an open
problem. We showed how this optimization problem
may be cast as a non-convex optimization problem for
which we propose a method based on bundle meth-

ods and cutting planes. We provided a convergence
proof and reported experimental results on speech and
handwritten digit recognition showing improved re-
sults over state of the art algorithms.
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