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Abstract
We consider Gaussian multiresolution (MR)
models in which coarser, hidden variables serve
to capture statistical dependencies among the
finest scale variables. Tree-structured MR mod-
els have limited modeling capabilities, as vari-
ables at one scale are forced to be uncorre-
lated with each other conditioned on other scales.
We propose a new class of Gaussian MR mod-
els that capture the residual correlations within
each scale usingsparse covariance structure.
Our goal is to learn a tree-structured graphi-
cal model connecting variables across different
scales, while at the same time learning sparse
structure for the conditional covariance within
each scale conditioned on other scales. This
model leads to an efficient, new inference algo-
rithm that is similar to multipole methods in com-
putational physics.

1. Introduction

Multiresolution (MR) models (Willsky, 2002) provide
compact representations for encoding statistical dependen-
cies among a large collection of random variables. In MR
models, variables at coarser resolutions serve as common
factors for explaining statistical dependencies among finer
scale variables. For example, suppose that we would like
to discover the dependency structure of the monthly returns
of 100 different stocks by looking at pairwise correlations.
It is likely that the covariance matrix will be full, i.e., the
monthly return of one stock is correlated to all other99
stocks, because stock prices tend to move together driven
by the market situation. Therefore, it is more informative
to introduce a hidden variable corresponding to the market
and then model the residual covariance (after conditioning
on the market) among the individual companies. This ap-
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proach can be extended to multiple resolutions - represent-
ing the market, divisions, industries, and individual compa-
nies at each scale from the coarsest to the finest.

One approach in MR modeling is to use tree-structured
graphical models in which nodes at any scale are connected
to each other only through nodes at other scales (see Fig-
ure 1). While such tree models allow efficient inference
and learning algorithms, they have a significant and well-
known limitation that variables at any of the scales arecon-
ditionally uncorrelatedwhen conditioned on neighboring
scales. In our stock return example, the Standard Industrial
Classification (SIC) system, a hierarchy widely-used in fi-
nance, places Microsoft and Apple in different branches of
the tree because the former belongs to the business service
industry in the services division while the latter belongs to
the computer equipment industry in the manufacturing di-
vision. Tree-based modeling methods will assume that the
monthly returns of Microsoft and Apple are uncorrelated
conditioned on the market, which is likely not true.

A variety of methods (Bouman & Shapiro, 1994; Choi &
Willsky, 2007) have been proposed to include additional
edges - either inter-scale or within the same scale - to
the MR tree model and to consider an overall sparse MR
graphical model. We propose a different approach to ad-
dress the limitation of MR tree models. Since the role of
coarser scales in an MR model is to capture most of the cor-
relations among the finer scale variables through coarser
scales, shouldn’t theresidualcorrelation at each scale be
(approximately)sparse? In other words, the residual cor-
relation of any node (conditioned on coarser nodes) is con-
centrated completely on a small number of nodes at that
scale. This suggests that theconditional correlations at
each scale (when conditioned on the neighboring scales)
should be sparse. Based on this idea, we can model that
conditioned on the market and industries, Microsoft is cor-
related with Apple and possibly with a few other companies
such as Google or IBM.

Such models lead to efficient inference algorithms that are
fundamentally different from standard graphical model in-
ference algorithms. We use the sparse tree structurebe-
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Figure 1.Examples of MR tree models for a one-dimensional
process (left) and for a two-dimensional process (right). Shaded
nodes represent original variables at the finest scale and white
nodes represent hidden variables at coarser scales.
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Figure 2.(a) A sparse graphical model and (b) the sparsity pattern
of the corresponding information matrix.

tweenscales, to propagate information from scale-to-scale,
and then perform residual filteringwithin each scale using
the sparse conditional covariance structure. In addition, we
develop methods forlearningsuch models given data at the
finest scale. The structure optimization within each scale
can be formulated as a convex optimization problem.

2. Preliminaries

Let x ∼ N (µ, Σ) be a jointly Gaussian random vector
with a mean vectorµ and a positive-definite covariance
matrix Σ. If the variablesx are Markov with respect to
a graphG = (V, E), the inverse of the covariance matrix
J = Σ−1 (also called the information, or precision ma-
trix) is sparse with respect toG. That is,Js,t 6= 0 if and
only if {s, t} ∈ E (Lauritzen, 1996). Figure 2(a) shows
one example of a sparse graph, and the sparsity pattern of
the corresponding information matrixJ is shown in Fig-
ure 2(b). The graph structure implies thatx1 is uncorre-
lated withx5 conditionedon x2. For any subsetA ⊂ V,
let \A ≡ {s ∈ V, s /∈ A} be its complement. The infor-
mation matrix of the conditional distributionp(xA|x\A) is
the submatrixof J with rows and columns corresponding
to elements inA. In Figure 2(b), the information matrix of
the conditional distributionp(x1, x2, x3, x4|x5) is the sub-
matrixJ(1 : 4, 1 : 4), which is a tri-diagonal matrix.

Conjugate Graphs Consider a distribution with the spar-
sity pattern of thecovariance matrixgiven as in Figure
3(a). Its information matrix will, in general, be a full ma-
trix, and the corresponding graphical model will be fully
connected as shown in Figure 3(b). We introduceconju-
gate graphs1 to illustrate the sparsity structure of a covari-

1This term is motivated by conjugate processes - two
processes with covariances that are inverses of one another. This
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Figure 3.(a) Sparsity pattern of a covariance matrix and (b) the
corresponding graphical model. (c) Conjugate graph encoding
the sparsity structure of the covariance matrix in (a).

ance matrix. Specifically, in the conjugate graph, when two
nodes are not connected with aconjugateedge, they areun-
correlatedwith each other. We use red solid lines to display
graphical model edges, and blue dotted lines to represent
conjugate edges. Figure 3(c) shows the corresponding con-
jugate graph for a distribution with covariance structure as
in Figure 3(a). From the conjugate graph, we can identify
thatx1 is uncorrelated withx3, x4, andx5.

3. Multiresolution Models with Sparse
In-scale Conditional Covariance

We propose a class of MR models with tree-structured con-
nections between different scales and sparseconditional
covariance structure at each scale. We definein-scale con-
ditional covarianceas the conditional covariance between
two variables (in the same scale)when conditioned on vari-
ables at other scales(or equivalently, variables at scales
above and below, but not the variables at the same scale).
Note that this is different from the more commonly used
concept ofpairwise conditional covariance, which refers
to the conditional covariance between two variables when
conditioned onall other variables(including other vari-
ables within the same scale). An information matrix (i.e.,
a graphical model) is sparse with respect to the pairwise
conditional covariance structure. We illustrate the sparsity
of the in-scale conditional covariance using the conjugate
graph. Thus, our model has a sparse graphical model for
inter-scale structure and a sparse conjugate graph for in-
scale structure. In the rest of the paper, we refer to such
an MR model as a Sparse In-scale Conditional Covariance
Multiresolution (SIM) model.

Figure 4(b) shows an example of a SIM model:conditioned
on scale1 (variablex1) and scale3 (variablesx5 through
x10), x2 is uncorrelatedwith x4. This is different fromx2

andx4 being uncorrelated without conditioning on other
scales (the marginal covariance is nonzero), and also dif-
ferent from the corresponding element in the information
matrix being zero (the pairwise conditional covariance is
nonzero). Indeed, the graphical model representation of
the model in Figure 4(b) is a densely connected graphical
structure within each scale as shown in Figure 4(c).

graph is also called acovariance graph(Cox & Wermuth, 1996).
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Figure 4.Examples of MR models. (a) An MR model with a sparse graphical structure. (b) A SIM model with sparse conjugate graph
within each scale. (c) A graphical model corresponding to the model in (b).
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Figure 5.Decomposition of a SIM model into a sparse hierarchi-
cal structure connecting different scales and a sparse conjugate
graph at each scale. Shaded matrices are dense, and non-shaded
matrices are sparse.

In contrast, an MR model with a sparse graphical model
structure within each scale is shown in Figure 4(a). Such a
model does not enforce sparse covariance structure within
each scale conditioned on other scales: conditioned on
scales above and below,x2 andx4 are correlated unless we
condition on the other variables at the same scale (namely
variablex3). In Section 6, we demonstrate that SIM mod-
els lead to better modeling capabilities and faster inference
than MR models with sparse graphical structure.

The SIM model, to our best knowledge, is the first ap-
proach to enforce sparse conditional covariance at each
scale explicitly in MR modeling. A majority of the previ-
ous approaches to overcoming the limitations of tree mod-
els (Bouman & Shapiro, 1994; Choi & Willsky, 2007) fo-
cus on constructing an overall sparse graphical model struc-
ture (as in Figure 4(a)). A different approach based on a
directed hierarchy of densely connected graphical models
is proposed in (Osindero & Hinton, 2007), but it does not
have a sparse conjugate graph at each layer and requires
mean-field approximations unlike our SIM model.

Desired Structure of the Information Matrix Here, we
specify the desired sparsity structure for each submatrix of
the information matrix of a SIM model. First, we partition
the information matrixJ of a SIM model by scale as shown
in Figure 5 (corresponding to a model with3 scales). The
submatrixJ[m1,m2], corresponding to the graphical struc-
ture between scalesm1 andm2, is sparse since the inter-
scale graphical model has a tree structure. The submatrix
J[m] corresponds to the information matrix of thecondi-

tional distribution at scalem conditioned on other scales
(see Section 2). As illustrated in Figure 4(c), a SIM model
has a densely connected graphical model within each scale,
so J[m] in general is not a sparse matrix. Theinverseof
J[m], however, is sparse since we have a sparse conditional
covariance matrix within each scale. The matrixJ can
be decomposed as a sum ofJh, corresponding to the hi-
erarchical inter-scale tree structure, andJc, corresponding
to the conditional in-scale structure. LetΣc ≡ (Jc)−1.
SinceJc is a block-diagonal matrix (with each block cor-
responding to variables in one scale), its inverseΣc is also
block-diagonal with each diagonal block equal to(J[m])−1.
Hence,Σc is a sparse matrix, whereasJc is not sparse
in general. Therefore, the information matrixJ of a SIM
model can be decomposed as a sum of a sparse matrix and
the inverse of a sparse block-diagonal matrix:

J = Jh + (Σc)−1. (1)

Each nonzero entry inJh corresponds to an interscale edge
connecting variables at different scales. The block diagonal
matrix Σc has nonzero entries corresponding toconjugate
edges within each scale. In the next section, we take advan-
tage of sparsity inbothJh andΣc for efficient inference.

4. Inference Exploiting Sparsity in Markov
and Covariance Structure

Let x be a collection of random variables with a prior dis-
tributionN (0, J−1), andy be a set of noisy measurements:
y = Cx + v whereC is a selection matrix, andv is a zero-
mean Gaussian noise vector with a diagonal covariance ma-
trix R. Thus, we have in our setup noisy measurementsy
available at a subset of the nodes corresponding to the vari-
ablesx. Then, the MAP estimatêx is given as follows:

x̂ = argmax
x

p(x|y) = E[x|y] = (J + Jp)−1h (2)

whereJp ≡ CT R−1C is a diagonal matrix, andh ≡
CT R−1y. If J corresponds to a tree-structured model, (2)
can be solved with linear complexity. If the prior model is
not a tree, solving this equation directly by matrix inver-
sion requiresO(N3) computations whereN is the number
of variables. We review a class of iterative algorithms in
Section 4.1, and propose a new and efficient inference al-
gorithm that solves (2) for our SIM model in Section 4.2.
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4.1. Iterative Algorithms Based on a Matrix Splitting

As described above, the optimal estimates in Gaussian
models can be computed by solving a linear equation
Ax̂ = h whereA ≡ (J + Jp). Many iterative linear
system solvers are based on the idea of a matrix splitting:
A = M − K. Let us re-write the original equation as
Mx̂ = h + Kx̂. Assuming thatM is invertible, we obtain
the following iterative update equations:

x̂new = M−1(h + Kx̂old) (3)

wherex̂old is the value of̂x at the previous iteration, and
x̂new is the updated value at the current iteration. The ma-
trix M is called apreconditioner, and (3) corresponds to the
preconditioned Richardson iterations (Golub & Van Loan,
1990). If solving the equationMx̂ = z for a fixed vectorz
is easy, each iteration can be performed efficiently. There
are a variety of ways in which splittings can be defined. For
example, Gauss-Jacobi iterations set the preconditionerM
as a diagonal matrix with diagonal elements ofA, and em-
bedded tree (ET) algorithms (Sudderth et al., 2004) split
the matrix so thatM has a tree structure.

4.2. Efficient Inference in SIM Models

We use the matrix splitting idea in developing an efficient
inference method for our SIM model. Recall that the in-
formation matrix of the SIM model can be decomposed as
in (1). Our goal is to solve the equation(Jh + (Σc)−1 +
Jp)x̂ = h whereJh, Σc, andJp are all sparse matrices.
We alternate between two inference steps corresponding
to inter-scalecomputation andin-scalecomputation in the
MR model. Our inter-scale computation, called thetree
inference stepexploits sparse Markov structure connecting
different scales, while ourin-scale inference stepexploits
sparse in-scale conditional covariance structure.

Tree Inference In this step, we select the inter-scale tree
structure as the preconditioner in (3) by settingM = Jh +
Jp + D, whereD is a diagonal matrix added to ensure that
M is positive-definite.2

(Jh + Jp + D)x̂new = h− (Σc)−1x̂old + Dx̂old (4)

With the right-hand side vector fixed, solving the above
equation is efficient sinceM has a tree structure. On the
right-hand side,Dx̂ can be evaluated easily sinceD is di-
agonal, but computingz ≡ (Σc)−1x̂ directly is not effi-
cient because(Σc)−1 is a dense matrix. Instead, we eval-
uatez by solving the matrix equationΣcz = x̂. The ma-
trix Σc (in-scale conditional covariance) is sparse and well-
conditioned in general; hence the equation can be solved

2In (3), M needs to be invertible, but(Jh + Jp) is singular
since the diagonal elements at coarser scales (without measure-
ments) are zero. We useD = (diag(Σc))−1 wherediag(Σc) is
a diagonal matrix with diagonal elements ofΣc.

efficiently. In our experiments, we use just a few Gauss-
Jacobi iterations (see Section 4.1) to computez.

In-scale Inference This step selects the in-scale structure
to perform computations by settingM = (Σc)−1.

x̂new = Σc(h− Jhx̂old − Jpx̂old) (5)

Evaluating the right-hand side only involves multiplica-
tions of a sparse matrixΣc and a vector, sôxnew can be
computed efficiently. Note that although we use a sim-
ilar method of splitting the information matrix and itera-
tively updatingx̂ as in the Richardson iteration (3), our al-
gorithm is efficient for a fundamentally different reason.
In the Richardson iteration (specifically, the ET algorithm)
and in our tree-inference step, solving the matrix equation
is efficient because it is equivalent to solving an inference
problem on a tree model. In our in-scale inference step, the
preconditioner selected actually corresponds to a densely
connected graphical model, but since it has a sparse conju-
gate graph, the update equation reduces to a sparse matrix
multiplication.

The concept of performing local in-scale computations can
be found in multipole methods (Greengard & Rokhlin,
1987) that use multiple scales to solve partial differential
equations. Multipole methods assume that after a solution
is computed at coarser resolutions, onlylocal terms need to
be modified at finer resolutions. The SIM model is aimed at
providing a precise statistical framework leading to infer-
ence algorithms with solid advantages analogous to those
of multipole methods.

5. Learning MR Models with Sparse In-scale
Conditional Covariance

5.1. Log-determinant Maximization

Suppose that we are given a target covarianceΣ∗ and
wish to learn a sparse graphical model that best approxi-
mates the covariance. The target covariance matrix may
be specified exactly when the desired statistics of the ran-
dom process are known, or may be the empirical covariance
computed from samples. One possible solution is to thresh-
old each element of(Σ∗)−1 so that small values are forced
to zero, but often, this results in an invalid covariance ma-
trix that is not positive-definite. Thus, standard approaches
in Gaussian graphical model selection solve the following
log-determinant optimization problem to find an approxi-
mate covariance matrix:

Σ̂ = argmax
ΣÂ0

log det Σ

s.t. |Σi,j − Σ∗i,j | ≤ γi,j , ∀i, j (6)

whereγi,j is a nonnegative regularization parameter. It
can be shown that the solution of the above problem has
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a sparse inverse, which is a sparse graphical model approx-
imation (Banerjee et al., 2006).

We now turn the tables and consider the problem of approx-
imating a target distribution with a distribution that has a
sparsecovariancematrix (as opposed to a sparse informa-
tion matrix as above). We again use the log-determinant
problem, but now in the information matrix domain:

Ĵ = argmax
JÂ0

log det J

s.t. |Ji,j − J∗i,j | ≤ γi,j , ∀i, j (7)

whereJ∗ is a target information matrix. The solution̂J has
a sparse inverse, leading to a sparse covariance approxima-
tion. In our MR modeling approach, we apply this sparse
covariance approximation method to model the conditional
distribution at each scale conditioned on other scales.

5.2. Learning a SIM Model

Suppose that we are given a target covarianceΣ∗F of the
variables at the finest scale. Our objective is to introduce
hidden variables at coarser scales and learn a SIM model,
so that when we marginalize out all coarser scale variables,
the marginal covariance at the finest scale is approximately
equal toΣ∗F . Our learning procedure consists of three steps.
First, we learn the inter-scale part of the SIM model (i.e.,
Jh in Figure 5) by learning an MR tree approximation.
Next, a sparse in-scale conditional covarianceΣc is learned
by solving a convex optimization problem similar to (7),
but before this step, we compute the target information ma-
trix (for the full process acrossall scales) which plays the
same role asJ∗ in (7).

Step 1. Learning the inter-scale modelJh To begin
with, we select an MR tree structure (without any in-scale
connections) withadditional hiddenvariables at coarser
scales and the original variables at the finest scale. For
some processes, there exists a natural hierarchical struc-
ture: for example, the MR tree models in Figure 1 for regu-
lar one-dimensional or two-dimensional processes, and the
hierarchy defined by the Standard Industrial Classification
(SIC) system for the stock returns. For problems in which
the hierarchical structure is not clearly defined, any clus-
tering algorithm can be applied to group variables together
and insert one coarser scale variable per group. Once the
structure is fixed, we apply the EM algorithm to choose the
parameters that best match the given target covarianceΣ∗F
for the finest scale variables. This procedure is efficient for
a tree-structured model and converges to a local maximum.

Step 2: Finding the target information matrix J∗

From Step 1, we have an information matrixJtree corre-
sponding to an MR tree model. Note thatJtree has a struc-
ture as in Figure 5 and thus can be written as (Jh + Jc)

except thatJc is a diagonal matrix. This diagonal in-
scale conditional structure results in artifacts that corre-
spond to inaccurate matching of finest-scale covariances,
so we fixJh and modifyJc in the remaining steps. The
goal of this step is to compute the target information matrix
J∗ = Jh +Jc∗ so that the finest scale submatrix of(J∗)−1

is exactly equal to the given target covarianceΣ∗F . In other
words, we design a matrixJc∗ such that(Jh + Jc∗) be-
comes an “exact” target MR model in which the marginal
covariance at the finest scale equals the given target co-
varianceΣ∗F . We describe the detailed computation in the
Appendix (see also (Choi et al., 2009)).

Step 3: Obtaining sparse in-scale conditional covari-
ance Consider the target information matrix computed
from Step 2: J∗ = Jh + Jc∗. The inter-scale partJh

is a tree model butJc∗ is not sparse and does not have a
sparse inverse (i.e.,Σc∗ ≡ (Jc∗)−1 is not sparse). We find
a SIM model that approximatesJ∗ by solving the follow-
ing problem:

Ĵ = argmax
JÂ0

∑
m

log detJ[m]

s.t. |Ji,j − J∗i,j | ≤ γi,j , ∀{i, j} ∈ Einscale

Ji,j − J∗i,j = 0 ∀{i, j} ∈ Einter (8)

whereJ[m] is the in-scale information matrix at scalem
andEinscale andEinter are the set of all possible in-scale
and inter-scale edges, respectively. If we look at the terms
involving scalem (i.e., elements of the matrixJ[m]), the
above problem maximizes the log-determinant ofJ[m] sub-
ject to element-wise constraints. Therefore, as in Section
5.1, the log-det terms ensure that eachĴ[m] has a sparse
inverse, which leads to a sparse in-scale conditional covari-
ance, and thus a sparse conjugate graph.

The problem in (8) is convex and can be efficiently solved
using general techniques for convex optimization (Löfberg,
2004). The regularization parameterγi,j is chosen by a
heuristic method (see (Choi et al., 2009)).

6. Experimental Results

In this section, we present the modeling and inference per-
formance of our SIM model. The results are compared with
a single-scale approximate model where we learn a sparse
graphical model using (6) without introducing hidden vari-
ables, a tree-structured MR model, and a sparse MR model
of the form introduced in (Choi & Willsky, 2007) that has
sparse graphical model structure at each scale. We measure
the modeling accuracy of approximate models by comput-
ing the divergence between the specified target distribution
and the approximate distribution learned.3

3For MR models we use the marginal distribution at the finest
scale to compute this divergence.
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Figure 6.The structure of the SIM model approximation for Stock data.

Table 1.Top4 strongest conjugate edges at Scale3 of Figure 6.
Sign SIC code Industry Group Representative Companies

+
13 Oil and Gas Extraction Schlumberger
29 Petroleum Refining Exxon Mobile, Chevron

+
35 Machinery And Computer Equipment Dell, Apple, IBM, Xerox
36 Other Electrical Equipment Except Computer EquipmentTI, Intel, GE

+
20 Food And Kindred Products Coca Cola, Heinz
28 Chemicals And Allied Products Dow Chemical, Johnson & Johnson

+
35 Machinery And Computer Equipment Dell, Apple, IBM, Xerox
73 Business Services Microsoft, Oracle

6.1. Stock Returns

Our first experiment is modeling the dependency structure
of monthly stock returns. We compute the empirical co-
variance using the monthly returns from1990 to 2007, and
learn a SIM model approximation for the84 companies in
the S&P100 stock index4 using the hierarchy defined by
the Standard Industrial Classification (SIC) system.5 Our
MR models have4 scales, representing the market,6 divi-
sions,26 industries, and84 individual companies, respec-
tively, at scales from the coarsest to the finest.

Figure 6 shows the first three scales of the SIM model ap-
proximation. At Scale3, we show the SIC code for each
industry (represented by two digits) and in the parenthesis
denote the number of individual companies that belong to
that industry (i.e., number of children). We show the finest
scale of the SIM model using the sparsity pattern of thein-
scale conditional covariancein Figure 7(c). Often, indus-
tries or companies that are closely related have a conjugate
edge between them. For example, the strongest conjugate
edge at Scale3 is the one between the Oil and Gas Ex-
traction industry (SIC code13) and the Petroleum Refining
industry (SIC code29). Table 1 shows4 conjugate edges
at Scale3 in the order of their absolute magnitude (i.e., the
top4 strongest in-scale conditional covariance).

Figure 7(a) shows the sparsity pattern of theinformation
matrix of a single-scale approximation. Note that the cor-
responding graphical model has densely connected edges

4We disregard16 companies listed on S&P100 after1990.
5http://www.osha.gov/pls/imis/sicmanual.html

among companies that belong to the same industry, because
there is no hidden variable to capture the correlations at a
coarser resolution. Figure 7(b) shows the information ma-
trix at the finest scale of a sparse MR model approximation
(Choi & Willsky, 2007). Although the graphical model is
sparser than the single-scale approximation, some of the
companies still have densely connected edges. This sug-
gests that the SIM model structure is a more natural repre-
sentation for capturing in-scale statistics. As shown in the
caption of Figure 7, the SIM model approximation provides
the smallest divergence of all approximations.

6.2. Fractional Brownian Motion

We consider fractional Brownian motion (fBm) with Hurst
parameterH = 0.3 defined on the time interval(0, 1] with
the covariance function:Σ(t1, t2) = 1

2 (|t1|2H + |t2|2H −
|t1 − t2|2H). Figure 8 shows the covariance realized by
each model using64 time samples. Our SIM approxima-
tion in Figure 8(d) is close to the original covariance in
Figure 8(a), while the single-scale approximation in Fig-
ure 8(b) fails to capture long-range correlations and the tree
model covariance in Figure 8(c) appears blocky.

Fig. 9(a) displays a 256-point sample path using the exact
statistics and (b) displays noisy observations of (a), which
are only available on (0,1/3] and (2/3,1]. Fig. 9 (c-e) show
the estimates based on the approximate single-scale model,
the MR tree model (with5 scales), and the SIM model, re-
spectively, together with the optimal estimate based on the
exact statistics. The estimate based on our SIM model ap-
proximation is close to the optimal estimate and does not
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Figure 7.Stock returns modeling example. Sparsity pattern of the
information matrix of (a) the single-scale (122.48), and (b) the
sparse MR approximation (28.34). (c) Sparsity pattern of the in-
scale conditional covariance of the SIM approximation (16.36).
All at the finest scale. We provide the divergence between the
approximate and the empirical distribution in the parenthesis. The
tree approximation has divergence 38.22.
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Figure 8.Covariance for fBm-64. (a) Original model, (b) Single-
scale approximation, (c) Tree approximation, (d) SIM model.

have blocky artifacts unlike the estimate based on the MR
tree model. The sparse MR model of (Choi & Willsky,
2007) does not lead to blocky artifacts either, but we ob-
serve that the SIM model can achieve a smaller divergence
with a smaller number of parameters than the sparse MR
model (see Table 2). Note that the number of parameters
(number of nodes plus the number of (conjugate) edges) in
the SIM model is much smaller than in the original model
and in the approximate single-scale model.

6.3. Polynomially Decaying Covariance for a 2-D Field

We consider a collection of256 Gaussian random vari-
ables arranged spatially on a16 × 16 grid. The variance
of each variable is given byΣxs = 1.5 and the covari-
ance between each pair of variables is given byΣxs,xt =
d(s, t)−

1
2 , where d(s, t) is the spatial distance between

nodess andt. Such processes with polynomially-decaying
covariance have long-range correlations (unlike processes
with exponentially-decaying covariance), and are usually
not well-modeled by a single-scale sparse graphical model.
The original graphical structure (corresponding to the in-
verse of the specified covariance matrix) is fully connected,
and the single-scale approximation of it is still densely con-
nected with each node connected to at least31 neighbors.
Fig. 10 shows theconjugategraph of the SIM model ap-
proximation within each scale. We emphasize that these
conjugate edges encode the in-scale conditional correlation
structure among the variables directly, so each node is only
locally correlated when conditioned on other scales.

We generate random noisy measurements using the speci-
fied statistics and compare the computation time to solve
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Figure 9.Estimation for fBm-256. (a) Sample-path using exact
statistics. (b) Noisy and sparse observations of (a), Estimation us-
ing (c) single-scale approximation, (d) tree model, and (e) SIM
model are shown in the dash-dot red lines, with the optimal esti-
mate based on exact statistics in the solid black line. The dashed
blue line shows plus/minus one standard deviation error bars.

Table 2.FBm-256 approximation
#var #param* Div. RMS**

Original 256 32896 0 0
Single 256 20204 3073 0.2738
Tree 341 681 80.4 0.1134

Sparse MR 341 1699 15.68 0.1963
SIM 341 1401 8.56 0.0672

* # nodes + # graphical or conjugate edges
** root-mean-square error w.r.t. the optimal estimate

the inference problem for the SIM model (using the in-
ference algorithm in Section 4.2), the original and the
single-scale approximate model (using the ET algorithm
described in Section 4.1), and the sparse MR model (using
the algorithm in (Choi & Willsky, 2007)). The SIM mod-
eling approach provides a significant gain in convergence
rate over other models as displayed in Figure 11.

7. Conclusion and Future Work

We propose a method to learn a Gaussian MR model with
sparse in-scale conditional covariance at each scale and
sparse inter-scale graphical structure connecting variables
across scales. By decomposing the information matrix of
the resulting MR model into a sparse matrix (information
matrix corresponding to inter-scale graphical structure) and
matrix that has a sparse inverse (in-scale conditional covari-
ance), we develop an efficient inference algorithm that ex-
ploits sparsity in both the Markov and covariance structure.
Our learning algorithm first learns a good MR tree model
that approximates the given target covariance at the finest
scale and then augments each scale with a sparse conjugate
graph using a convex optimization procedure based on log-
determinant maximization. While our focus in this paper is
on the Gaussian model, applying similar principles to dis-
crete models is also of interest, and under investigation.
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(a) (b) (c)
Figure 10.Conjugate graph at each scale of the SIM model for
polynomially decaying covariance approximation. (a) Scale3
(4× 4), (b) Scale4 (8× 8), (c) Scale5 (16× 16).
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Figure 11.Residual error vs. computation time to solve the infer-
ence problem in the polynomially decaying covariance example.

Appendix. Computing J∗ in Section 5.2

In an MR tree model, covariance at each scale can be rep-
resented in terms of the covariance at the next finer scale:

Σ[m] = AmΣ[m+1]A
T
m + Qm (9)

whereAm and Qm are determined byJtree.6 Since we
wish to find an MR model such that the covariance matrix
at the finest scale becomesΣ∗F , we setΣ[M ] = Σ∗F for the
finest scaleM and compute a target marginal covariance
for each scale in afine-to-coarseway using (9).

Let J∗ = Jtree. We modify J∗ in a coarse-to-fineway
to match the target marginal covariance at each scale as
obtained above (9). Suppose that we have replacedJ∗[1]
throughJ∗[m−1], and let us consider computingJ∗[m]. We
partitionJ∗ into 9 submatrices with the information matrix
at scalem at the center:

J∗ =




J∗c J∗c,[m] 0
J∗[m],c J∗[m] J∗[m],f

0 J∗f,[m] J∗f


 (10)

In order to set the marginal covariance at scalem equal to
the target covariance matrixΣ[m] in (9), we replaceJ∗[m] in
(10) with the following matrix

(Σ[m])−1 + J∗[m],c(J
∗
c )−1J∗c,[m] + J∗[m],f (J∗f )−1J∗f,[m]

and proceed to the next finer scale until we reach the finest
scale. The matrix inversion in the above equation requires
computation that is cubic in the number of variablesN .
Learning a graphical model structure typically involves at
leastO(N4) computation (Banerjee et al., 2006), so com-
putingJ∗[m] is not a bottleneck of the learning process.

6Let Bm = (Jtree)
−1
[m−1,m] andDm = (Jtree)

−1
[m]. Then,

Am = BmD−1
m andQm = Dm−1 −BmD−1

m BT
m.
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