
Robot Trajectory Optimization using Approximate Inference

Marc Toussaint mtoussai@cs.tu-berlin.de

TU Berlin, Franklinstr 28/29 FR6-9, 10587 Berlin, Germany

Abstract

The general stochastic optimal control (SOC)
problem in robotics scenarios is often too
complex to be solved exactly and in near
real time. A classical approximate solu-
tion is to first compute an optimal (de-
terministic) trajectory and then solve a lo-
cal linear-quadratic-gaussian (LQG) pertur-
bation model to handle the system stochas-
ticity. We present a new algorithm for this
approach which improves upon previous algo-
rithms like iLQG. We consider a probabilis-
tic model for which the maximum likelihood
(ML) trajectory coincides with the optimal
trajectory and which, in the LQG case, re-
produces the classical SOC solution. The al-
gorithm then utilizes approximate inference
methods (similar to expectation propaga-
tion) that efficiently generalize to non-LQG
systems. We demonstrate the algorithm on a
simulated 39-DoF humanoid robot.

1. Introduction

Trajectory optimization is a key problem in robotics,
in particular when the time needed for optimization
is critical. For instance, in interactive scenarios with
a human, robots need to react on dynamic changes of
the environment and the optimization time should be
no more than the temporal duration of the movement
itself so that an online sequencing is in principle pos-
sible. The aim of this work is to push the performance
of trajectory optimization algorithms a little further
using approximate inference techniques.

The transfer of inference methods to stochastic con-
trol and Reinforcement Learning (RL) problems has a
long history. Examples in the context of decision mak-
ing and RL include the early work on inference in in-
fluence diagrams (Cooper, 1988; Shachter, 1988), the
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relation between expectation-maximization and (im-
mediate reward) RL observed by (Dayan & Hinton,
1997), Attias’ (2003) inference approach to planning,
and an EM approach to solving MDPs and POMDPs
(Toussaint et al., 2006). In the control literature, the
relation between stochastic optimal control (SOC) and
inference (Kalman estimation) is long known for the
special LQG case (e.g., Stengel, 1986). However, one
of the most interesting and not fully solved questions
in the field is how this transfer can be generalized to
non-LQG problems – we will discuss such work in some
more detail below.

In this paper we do not try to propose an exact and
general reformulation of SOC problems as an infer-
ence problem. Instead, in its present form (focusing
on Gaussian messages), our approach aims at a local
approximate solution to the SOC problem that is fast
to compute. This is in the tradition of the classical
SOC literature (see, e.g, Bryson & Ho, 1969; Sten-
gel, 1986), where the LQG case is typically introduced
as a (variational) model to control perturbations from
an optimal trajectory. That is, the general non-linear
SOC problem is approximately solved by first comput-
ing an optimal trajectory for the noise-free system, and
then deriving a local LQG model of the perturbations
around this optimal trajectory. As long as the system
is not perturbed too far from the optimal trajectory,
the corresponding linear quadratic regulator (LQR) is
a reasonable solution to the SOC problem. The 2nd
stage of computing the local LQR is analytically solved
by the Ricatti equations (see below); the main prob-
lem arises with the non-linear trajectory optimization
problem in the first stage.

The trajectory optimization problem can be solved,
e.g., by gradient methods (typically with a spline-
based trajectory encoding, e.g., (Chen, 1991; Zhang
& Knoll, 1995; Schlemmer & Gruebel, 1998)) or by
sequential quadratic programming (SQP) schemes. In
every iteration of SQP one devices a quadratic approx-
imation of the objective (cost) function – the optimum
of which can be computed using the Ricatti equations.
Hence, SQP typically involves iterating LQG solution
methods. An instance of such an algorithm is iLQG
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(Todorov & Li, 2005). An aspect of such methods
which will contrast to our approach is that in each SQP
iteration one computes a global trajectory x0:T (by
“global” we mean “over the full time interval 0..T”)
and a global LQG approximation. Our framework will
naturally lead to iterative updates of local messages
rather than a global trajectory.

In the LQG case, the similarity between the Ricatti
equations and Kalman’s equation for state estima-
tion is referred to as “Kalman duality” (Stengel, 1986;
Todorov, 2008) – but it strictly holds only in the LQG
case. The crucial question is how to generalize this du-
ality to the non-LQG case. Todorov (2008) introduces
a special case of SOC problems which can be solved
via inference (see also (Kappen et al., 2009)). An al-
ternative to seeking an exact duality is to focus on op-
timal trajectories and consider a probabilistic model
for which the ML solution coincides with the optimal
trajectory (Todorov, 2008). We follow this latter ap-
proach and will utilize approximate inference meth-
ods to efficiently find the ML trajectory and the local
LQG solution around this trajectory. In previous work
(Toussaint & Goerick, 2007) we applied the same idea
for a special case of coupled task and joint space plan-
ning. In this paper we focus on the general theory and
SOC case.

In the next section we will briefly introduce the frame-
work of SOC, the LQG case and the SQP method
iLQG. In section 3 we formulate the general probabilis-
tic model. We derive an exact Gaussian message pass-
ing algorithm for the special LQG case and show how
it is related to the Ricatti equations. Then we general-
ize to the non-LQG case based on Expectation Prop-
agation (Minka, 2001b). Finally, section 4 presents an
evaluation on a simulated humanoid reaching problem.

2. Stochastic optimal control

We consider a discrete time stochastic controlled sys-
tem of the form

xt+1 = ft(xt, ut) + ξ , ξ ∼ N (0, Qt) , (1)

with time step t, state xt ∈ Rn, control ut ∈ Rm,
and Gaussian noise ξ of covariance Q. We also use
the notation P (xt+1 |ut, xt) = N (xt+1 | ft(xt, ut), Qt),
where

N (x|a,A) ∝ exp{−1
2

(x− a)> A-1 (x− a)} (2)

is a Gaussian over x with mean a and covariance A.
For a given state-control sequence x0:T , u0:T we define
the cost as

C(x0:T , u0:T ) =
T∑
t=0

ct(xt, ut) . (3)

The optimal value function Jt(x) gives the expected
future cost when in state x at time t for the best con-
trols and obeys the Bellman optimality equation

Jt(x) = min
u

[
ct(x, u) +

∫
x′
P (x′ |u, x) Jt+1(y)

]
. (4)

There are two versions of stochastic optimal control
problems: The open-loop control problem is to find
a control sequence u∗1:T that minimizes the expected
cost. The closed-loop (feedback) control problem is to
find a control policy π∗t : xt 7→ ut (that exploits the
true state observation in each time step and maps it to
a feedback control signal) that minimizes the expected
cost.

The linear quadratic gaussian (LQG) case plays an
important role as a perturbation model or as an ingre-
dient in iterative solution methods. LQG is a linear
control process with Gaussian noise,

P (xt+1 |xt, ut) = N (xt+1 |Atxt + at +Btut, Qt) ,

and quadratic costs,

ct(xt, ut) = x>tRtxt − 2r>txt + u>tHtut . (5)

The LQG process is defined by matrices and vectors
A0:T , a0:T , B0:T , Q0:T , R0:T , r0:T , H0:T . As a conven-
tion, in the remainder of this paper we will drop the
subscript t for A, a,B,Q,R, r,H – wherever a sub-
script is missing we refer to time t.

The LQG case allows us to derive an exact backward
recursion, called Ricatti equation, for the computation
of the value function. The value function will always
be a quadratic form of the state. Assume that at time
t+1 the optimal value function can be expressed as

Jt+1(x) = x>Vt+1x− 2v>t+1x (6)

for some matrix Vt+1 and some vector vt+1. Apply-
ing equation (4) in a straight-forward manner one can
derive that Jt(x) is of the form

Jt(x) = x>Vtx− 2x>vt + terms independent of x ,

Vt = R+A>Vt+1A−KVt+1A (7)

vt = r +A>(vt+1 − Vt+1a)−K(vt+1 − Vt+1a) (8)

K := A>V>t+1(Vt+1 +B->HB-1)-1 ,

and the minimization in (4) is given by

u∗t (x) = −(H +B>Vt+1B)-1B>(Vt+1(Ax+ a)− vt+1) .
(9)

Equations (7)-(9) are the Ricatti equations (Stengel,
1986). (Using the Woodbury identity it can be rewrit-
ten in other forms.) Initialized with VT = RT and
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Algorithm 1 iLQG
1: Input: initial trajectory x0:T , convergence rate α,

control costs H0:T , functions At(x), at(x), Bt(x),
Rt(x), rt(x)

2: Output: trajectory x0:T , LQR V0:T , v0:T
3: repeat
4: access RT (xT ), rT (xT )
5: VT ← RT , vT ← rT

6: for t = T − 1 to 0 do // bwd Ricatti recursion
7: access At(xt), at(xt), Bt(xt), Rt(xt), rt(xt)
8: compute Vt and vt using (7,8)
9: end for

10: for t = 0 to T − 1 do // fwd control recursion
11: compute u∗t (xt) using (9)
12: xt+1 ← (1− α)xt+1 + α[Atxt + at +Btu

∗(xt)]
13: end for
14: until convergence

vT = rT this gives a backward recursion to compute
the value function Jt at each time step. The linear
quadratic regulator (LQR) in (9) gives the optimal
control policy, i.e., a solution to the closed-loop prob-
lem in the LQG case. Note that the optimal control
and path is independent of the process noise Q.

As mentioned in the introduction, the LQG case is
classically introduced as a perturbation model around
an optimal trajectory of the deterministic system
(Bryson & Ho, 1969; Stengel, 1986). Alternatively, the
LQG case can also be applied as a means to find this
optimal trajectory: Optimizing the trajectory x0:T can
be addressed in the manner of sequential quadratic
programming, where one starts with a guess of x0:T ,
then computes a 2nd order approximation of the cost
around this initialization, uses an exact solver (LQG
in this case) to jump to the optimum of this 2nd or-
der approximation, and iterates. This method, termed
iLQG by (Todorov & Li, 2005), computes a (locally)
optimal trajectory and as an aside also provides the
corresponding LQR around this trajectory which can
be used to handle perturbations. Algorithm 1 makes
this procedure explicit and includes an additional con-
vergence rate parameter which increases robustness
greatly.

3. Probabilistic inference approach

The classical approach to design a good trajectory is
to define a cost function (e.g., penalizing collisions, re-
warding goals) and minimize the expected cost given a
stochastic control model. An alternative take on defin-
ing what a good trajectory is to condition a proba-
bilistic trajectory model on desired criteria (e.g., con-
ditioning on not observing collision, conditioning on
reaching a goal) and consider the problem of inferring
the posterior distribution of trajectories conditioned
on these criteria. In general these two ways of defining

optimality are not fully equivalent (there is yet no gen-
eral version of Kalman’s duality known) – but both are
interesting definitions of optimality. Accordingly, the
formulation we present below will not in all respects
be equivalent to the problem of expected cost mini-
mization, but we can ensure that the ML trajectory of
the conditioned probabilistic model coincides with the
optimal trajectory in the classical case.

Let us introduce an additional binary random variable
zt in the process with conditional probability

P (zt =1 |ut, xt) = exp{−ct(xt, ut)} . (10)

As mentioned in the introduction, this idea has a long
history (Cooper, 1988; Shachter, 1988; Dayan & Hin-
ton, 1997). Shachter and Peot (1992) even mention
work by Raiffa (1969) and von Neumann & Morgen-
stern (1947) in this context. In our definition (10), the
costs ct(xt, ut) play the role of the neg-log-probability
of zt = 1, in accordance to the typical identification
of energy with neg-log-probability – which differs from
the above cited approaches in which a binary random
variable with probability proportional to reward or
utility is defined. The neg-log approach will lead us
directly to an inference version of LQG for which we
can exploit approximate inference techniques.

Clearly, for a single state-control trajectory x0:T , u0:T ,
the log-likelihood

logP (z0:T =1 |x0:T , u0:T ) = −C(x0:T , u0:T ) (11)

is the negative classical cost (3) – hence an ML tra-
jectory coincides with the classical optimal trajectory.
However, taking the expectation over trajectories,

logP (z0:T =1)

= log Eu0:T ,x0:T {
T∏

t=0

P (zt =1 |ut, xt)}

≥ Eu0:T ,x0:T {log
T∏

t=0

P (zt =1 |ut, xt)} (12)

= Eu0:T ,x0:T {−
T∑

t=0

ct(ut, xt)}

= −Eu0:T ,x0:T {C(u0:T , x0:T )} , (13)

we find that likelihood maximization is in general not
equivalent to expected cost minimization. In the LQG
case there exists a concise relation, as we show in the
next section.

3.1. LQG case and equivalence to Ricatti

In the LQG case the costs ct(xt, ut) are quadratic in xt

and ut as given by (5). In terms of the binary random
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variable zt this translates to Gaussian probabilities

P (zt =1 |xt) ∝ N [xt | rt, Rt] , (14)
P (ut) = N [ut | 0, H] , (15)

where we interpreted the quadratic cost over ut as a
prior and let zt only depend on xt (which is equiva-
lent but more convenient than a uniform prior over ut

and P (zt = 1 |ut, xt) ∝ N [xt | rt, Rt]N [ut | 0, H]). The
bracket notation

N [x|a,A] ∝ exp{−1
2
x> A x+ x>a} (16)

denotes a Gaussian over x in canonical form, with pre-
cision matrix A and mean A−1a.

We can simplify by integrating out the control ut,

P (xt+1 |xt)
=
∫

u
du N (xt+1 |Axt + a+But, Q) N [ut | 0, H]

= N (xt+1 |Axt + a,Q+BH-1B>) . (17)

Consider the problem of computing the posterior dis-
tribution P (x0:T | z0:T =1) over state trajectories con-
ditioned on that we permanently observe zt = 1. In-
ference is a standard forward-backward process. We
prefer to derive this inference process in terms of a
message passing algorithm1 because this will allow us
most directly to generalize the algorithm to the non-
linear case.

Theorem 1. The messages in the LQG process de-
fined by equations (17) and (14) are

µxt-1→xt(xt) = N (xt | st, St) (20)

st = at-1 +At-1(S-1
t-1 +Rt-1)-1(S-1

t-1st-1 + rt-1)

St = Q+Bt-1H
-1B>t-1 +At-1(S-1

t-1 +Rt-1)-1A>t-1
µxt+1→xt(xt) = N (xt | vt, Vt) (21)

vt = −A-1
t at +A-1

t (V -1
t+1 +Rt+1)-1(V -1

t+1vt+1 + rt+1)

1We briefly recap the definition of messages in pair-wise
factor graphs; see (Yedidia et al., 2001; Murphy, 2002;
Minka, 2001a) for a thorough introduction. Given two
random variables Xi and Xj coupled by a pair-potential
fij(Xi, Xj), the message passing equations are

µj→i(Xi) =
X
Xj

fC(Xi, Xj)
Y

k:k 6=i

µk→j(Xj) , (18)

where k indicates variables coupled to j other than i. Given
all incoming messages to a variable, the posterior marginal
belief is given as their product,

bi(Xi) :=
Y

j

µj→i(Xi) . (19)

Vt = A-1
t [Q+BtH

-1B>t + (V -1
t+1 +Rt+1)-1]A->

t

µzt→xt
(xt) = N [xt | rt, Rt] (22)

The straight-forward derivation of these messages is
given in the appendix.

The backward messages are closely related to the Ri-
catti equation as we will show below. However, note
that there is no counterpart of the forward messages in
the classical approaches. This is crucial. The forward
messages are necessary to estimate a proper posterior
belief of a state and this belief will play an important
role in approximate methods below. Concerning the
backward messages, let us define

V̄t+1 = V -1
t+1 +Rt+1 (23)

v̄t+1 = V -1
t+1vt+1 + rt+1 , (24)

which corresponds to a backward message (in canoni-
cal representation) which has the cost message already
absorbed. Using a special case of the Woodbury iden-
tity,

(A-1 +B)-1 = A−A(A+B-1)-1A , (25)

the bwd messages can be rewritten as

V -1
t+1 = A>[V̄ -1

t+1 +Q+BH-1B>]-1A

= A>V̄t+1A−KV̄t+1A (26)

K := A>V̄t+1[V̄t+1 + (Q+BH-1B>)-1]-1

V -1
t vt = −A>V̄t+1at +A>v̄t+1 +KV̄t+1at −Kv̄t+1

= A>(v̄t+1 − V̄t+1at)−K(v̄t+1 − V̄t+1at) (27)

V̄t = Rt + (A>−K)V̄t+1A (28)

v̄t = rt + (A>−K)(v̄t+1 − V̄t+1at) (29)

They correspond exactly to the Recatti equations (7),
(8) except for the dependence on Q which interacts
directly with the control cost metric H.

3.2. Approximate inference in the non-LQG
case

Let X be a random variable for which we can express
the belief

b(X) =
∏

i

ti(X) (30)

as a product of incoming messages ti(X). Expectation
Propagation (Minka, 2001b) is a method to iteratively
improve the messages (and thereby the belief) when
they are bound to be approximate. Let F be a family
of distributions. We constrain every approximate mes-
sage t̂i ∈ F to be in this family of distributions, and
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hence also the approximate belief b̂ ∈ F . We update a
message t̂i in such a way that the updated belief b̂′ is
as close as possible to “when we would use the exact
message”, i.e.,

b̂′ = argmin
q∈F

D
( b̂
t̂i
ti
∣∣∣∣ q) (31)

where the left argument of the KL-divergence is the
belief when we would replace the approximate message
t̂i by the exact message. The updated message t̂′i that
corresponds to this updated belief b̂′ is

b̂′ =
b̂

t̂i
t̂′i , t̂′i =

t̂i

b̂
argmin

q∈F
D
( b̂
t̂i
ti
∣∣∣∣ q) (32)

In the case of robot trajectory optimization, the ex-
act messages ti that arise in typical problems are too
complex to be expressed analytically. For instance,
when conditioning a collision variable to no-collision,
the implied message over the configuration space is
extremely complex and, of course, discontinuous. In
practice, the trajectory optimization process will be
based on a (physical) simulator. In this paper we
assume that this simulator can only provide us with
the local approximations of the dynamics and costs
around a specific configuration x in terms of the sys-
tem matrices (or vectors) At(x), at(x), Bt(x), Rt(x),
rt(x). Better simulators could potentially provide us
with better, more precise messages that could be em-
ployed in an EP framework. Our assumption implies
that all messages are Gaussian, as for the LQG case,
but the crucial question is which x has been selected,
i.e., around which robot configuration we quadratize/
linearize the system. We deviate from iLQG which
iterates between globally (for all times t = 0 : T ) lin-
earizing around a current trajectory x0:T , and then
uses the Ricatti equation to recompute a better trajec-
tory. In our framework we can locally update messages
at a certain time step in analogy to EP until we reach
local convergence before we move on to another time
step. In principle, as with EP, we can freely choose
the order in which to update messages including the
time steps to focus on.

We first initialize all messages µxt-1→xt
, µxt+1→xt

,
µzt→xt

(xt) for all times t to one, except for
µx−1→x0(x) = δx0x which encodes conditioning on the
known start state. Then, for a certain time step t, we
iterate updating all three messages as follows:

(1) Choose a point of approximation x̂t depending on
the mode argmaxxt

b(xt) of the belief and compute the
system matrices At(x̂t), at(x̂t), Bt(x̂t), Rt(x̂t), rt(x̂t)
at this point.

(2) Recompute the messages using this local approxi-
mation and equations (20-22).

Algorithm 2 Approximate inference control (AICO)
1: Input: start state x0, control costs H0:T , functions

At(x), at(x), Bt(x), Rt(x), rt(x), convergence rate α,
threshold θ

2: Output: trajectory x0:T

3: initialize s0 = x0, S-1
0 = 1e10, v0:T = 0, V -1

0:T = 0,
r0:T = 0, R0:T = 0, k = 0

4: repeat
5: for t = 1 : T do // forward sweep
6: update st and St using (20)
7: if k = 0 then
8: x̂t ← st

9: else
10: x̂t ← (1− α)x̂t + αbt
11: end if
12: access At(x̂t), at(x̂t), Bt(x̂t), Rt(x̂t), rt(x̂t)
13: update rt and Rt using (22)
14: update vt and Vt using (21)
15: update bt and Bt using (19)
16: if |x̂t − bt|2 > θ then
17: t← t− 1 // repeat this time slice
18: end if
19: end for
20: for t = T − 1 : 0 do // backward sweep
21: ..same updates as above...
22: end for
23: k ← k + 1
24: until convergence

(3) Compute the current belief over xt,

b(xt) = µxt-1→xt(xt) µxt+1→xt(xt) µrt→xt(xt) .

Algorithm 2 is an explicit instantiation of this infer-
ence scheme which we call Approximate Inference Con-
trol (AICO).

4. Experiments

We test the methods iLQG, AICO, and spline-based
gradient optimization on some standard robot motion
problems under multiple task constraints. In this sec-
tion we briefly explain the cost term ct(xt) that is im-
plied by these constraints. We assume to have three
different kinematic mappings φi : x 7→ yi which map
the robot state x to different task variables yi which
are the following:

y1 ∈ R3 is the robot’s finger tip position. We will
constrain this to be close to a goal position for t = T .

y2 ∈ R2 is the robot’s center of gravity projected on the
horizontal plane. We will constrain this to be close to
zero throughout the trajectory which implies keeping
balance over the foot support.

y3 ∈ R is a scalar measuring collision danger; more
precisely, if dj is the shortest distance between a pair
j of collidable objects, then y3 =

∑
j θ(dj − ε)2, with

the heavy-side function θ and margin ε=0.02 meter.
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Figure 1. The two reaching problem scenarios. Top: Start
postures; bottom: example final postures.

We will constrain this to be close to zero throughout
the trajectory.

Our simulator allows us to compute φi(x) and its Ja-
cobian Ji(x) for any state. We assume we are given
targets y∗i,0:T in each task space and (time-dependent)
precisions %i,t by which we want to follow the task
targets. Given a point of approximation x̂t and Ĵi =
Ji(x̂t) we define

ct(xt, ut) =
3∑

i=1

%i,t[y∗i,t − φi(xt)]2 + u>tHtut

≈
3∑

i=1

%i,t[y∗i,t − φi(x̂t) + Ĵix̂t − Ĵixt]2 + u>tHtut

=
3∑

i=1

%i,t[x>t Ĵ
>
i Ĵixt − 2(y∗i,t − φi(x̂t) + Ĵix̂t)>Ĵixt

+ const] + u>tHtut (33)

Rt =
3∑

i=1

%i,tĴ
>
i Ĵi (34)

rt =
3∑

i=1

%i,tĴ
>
i (y∗i,t − φi(x̂t) + Ĵix̂t) (35)

We investigate simulated humanoid reaching problems
in 2 different scenarios. In the first scenario (Figure 1
left), starting from an upright posture the humanoid
needs to reach a target point (black dot) with his right
index finger which is far below a big obstacle in front
of his head. The scenario is interesting in that the

Table 1. For two reaching problems (1 & 2) and two cost
parameter settings (a & b) we instantiated 10 instances by
randomizing the target position. We give here the conver-
gence time (=time to reach a cost less than .01 larger than
the optimum) and cost with standard deviations.

prob. method time (sec) cost

AICO(α=1,θ=.1) 3.52 ± 0.70 0.15 ± 0.03
1a AICO(α=.9,θ=.1) 3.24 ± 0.52 0.15 ± 0.03

AICO(α=.9,θ=∞) 3.56 ± 0.61 0.15 ± 0.03
iLQG(α=.8) 6.04 ± 1.14 0.15 ± 0.03

AICO(α=1,θ=.1) 2.24 ± 0.51 0.09 ± 0.01
1b AICO(α=.9,θ=.1) 2.15 ± 0.51 0.09 ± 0.01

AICO(α=.9,θ=∞) 2.29 ± 0.57 0.09 ± 0.01
iLQG(α=.8) 4.22 ± 1.79 0.09 ± 0.01

AICO(α=1,θ=.1) 4.18 ± 0.52 0.06 ± 0.01
2a AICO(α=.9,θ=.1) 2.33 ± 0.65 0.06 ± 0.01

AICO(α=.9,θ=∞) 4.09 ± 0.97 0.06 ± 0.01
iLQG(α=.8) 5.68 ± 0.92 0.06 ± 0.01

AICO(α=1,θ=.1) 3.26 ± 0.51 0.05 ± 0.00
2b AICO(α=.9,θ=.1) 2.32 ± 1.20 0.05 ± 0.00

AICO(α=.9,θ=∞) 2.68 ± 1.19 0.04 ± 0.00
iLQG(α=.8) 5.28 ± 0.88 0.05 ± 0.01

multiple criteria all are important: to reach the tar-
get without head collision, the robot should early on
move its head to the right; and to keep balance on
the left foot, the robot needs to stretch its right leg
behind and twist the hip a bit. In the second sce-
nario we investigate a more typical reaching problem:
with the hand initially below a table the robot needs
to move in a wide circle around the table to reach the
finger target position. In all experiments we consider
a trajectory of length 200. We investigated two sets of
precision parameters: In case (a) we chose %1,T = 105,
%1,0:T-1 = 10−4 (we require a high precision of 105 for
the final finger tip position, and practically no end-
effector precision during the intermediate trajectory)
and %2,0:T = %3,0:T = 105 (we require even higher pre-
cision in the collision and balance variable throughout
the trajectory). To investigate the effect of a weak “at-
tracting force” on the endeffector target we also con-
sidered parameters %1,T = 102 in case (b). To collect
statistics of the algorithms’ performance we randomize
the target position in each of 10 trials by adding 3D
Gaussian noise with 5cm standard deviation.

Figure 2 displays the optimization curves (i.e., the
cost of the current trajectory after each iteration in
iLQG, respectively cost of the ML trajectory after a
fwd or bwd sweep in AICO) over computation time for
both scenarios and parameter settings. We tried also
a faster convergence rate α = 0.9 for iLQG which lead
to divergence of the algorithm in some cases. Gen-
erally, we can observe that the inference approach is
converging fast – in particular it only needs very few
initial iterations to reach good solutions. A trajectory
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Figure 2. Cost over time during the optimization. Top: problem 1a&b; bottom: problem 2a&b. Costs are given in
log scale and scaled so that zero cost corresponds to the best solution found by any method. Standard deviations are
computed over 10 randomized problem instances – for better visibility in the log scaling, only upper errorbars indicating
the standard deviation are drawn.

with cost below 0.5 is with high probability collision
free. Although each sweep of AICO needs more com-
putation time than an iteration of iLQG, it converges
faster measured in computation time. Our interpreta-
tion is that the adaptation steps made by AICO when
updating a local belief are better estimates of the true
local optimum, presumably because also the forward
messages (including their uncertainty) are exploited.
The gradient-based method, which does not exploit lo-
cal 2nd order information, performs much worse, also
because the spline encoding restricts the space of tra-
jectories.

Table 1 gives results for alternative parameter settings.
Here we measure the computation time until a tra-
jectory achieves a cost-above-optimum less than 0.01.
AICO consistently performs better than iLQG. The
smoothing (α < 1) and the repeated update of single
time slices (θ < ∞) significantly improve the perfor-
mance of AICO. iLQG does not converge one some
instances for α close to 1.

5. Conclusion

We presented an approach to use approximate infer-
ence methods for robot trajectory optimization and

stochastic control. Other than previous approaches
that tried to generalize Kalman’s duality fully to non-
LQG cases we aimed for a local approximate solution
of the SOC problem and formulated a probabilistic
trajectory model for which (1) the ML solution coin-
cides with the deterministic optimal trajectory, and (2)
the local Gaussian belief approximation is equivalent
to the LQG perturbation model around the optimal
trajectory. Based on this model we could derive an
approximate message update algorithm in analogy to
Expectation Propagation which outperforms previous
local approximate SOC algorithms like iLQG.

There are a number of possible extensions of the pro-
posed algorithm. When the simulator returns more
detailed information, e.g., on local collision planes,
more precise messages (e.g., products of discontin-
uous boundaries with Gaussians) can be computed
in the Expectation Propagation framework. Also
non-Gaussian belief approximations in the exponential
family can be integrated. Finally, better heuristics for
the order of message updates might further increase
efficiency.
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A. Message derivations

Proof. From equation (18) we have

µxt-1→xt(xt)

=
R

xt-1
dxt-1 P (xt |xt-1) µxt-2→xt-1(xt-1) µzt-1→xt-1(xt-1)

=
R

xt-1
dxt-1 N (xt |At-1xt-1 + at-1, Q+Bt-1H

-1B>t-1)

· N (xt-1 | st-1, St-1) N [xt-1 | rt-1, Rt-1]

Using the Gaussian product rule the last two terms gives
a Gaussian N (st-1 |R-1

t-1rt-1, St-1 + R-1
t-1) independent of xt

which we can subsume in the normalization. What remains
is

µxt-1→xt(xt)

∝
R

xt-1
dxt-1 N (xt |At-1xt-1 + at-1, Q+Bt-1H

-1B>t-1)

· N [xt-1 |S-1
t-1st-1 + rt-1, S

-1
t-1 +Rt-1]

=
R

xt-1
dxt-1 N (xt |At-1xt-1 + at-1, Q+Bt-1H

-1B>t-1)

· N (xt-1 | (S-1
t-1 +Rt-1)-1(S-1

t-1st-1 + rt-1), (S-1
t-1 +Rt-1)-1)

= N (xt |At-1(S-1
t-1 +Rt-1)-1(S-1

t-1st-1 + rt-1) + at-1

, Q+Bt-1H
-1B>t-1 +At-1(S-1

t-1 +Rt-1)-1A>t-1)

which gives the messages as in (20). Concerning
µxt+1→xt(xt) we have,

µxt+1→xt(xt)

=
R

xt+1
dxt+1 P (xt+1 |xt) µxt+2→xt+1(xt+1)

· µzt+1→xt+1(xt+1)

=
R

xt+1
dxt+1 N (xt+1 |Atxt + at, Q+BtH

-1B>t )

· N (xt+1 | vt+1, Vt+1) N [xt+1 | rt+1, Rt+1]

∝
R

xt+1
dxt+1 N (xt+1 |Atxt + at, Q+BtH

-1B>t )

· N [xt+1 |V -1
t+1vt+1 + rt+1, V

-1
t+1 +Rt+1]

= N (Atxt + at | (V -1
t+1 +Rt+1)-1(V -1

t+1vt+1 + rt+1)

, Q+BtH
-1B>t + (V -1

t+1 +Rt+1)-1)

= N (xt | −A-1
t at +A-1

t (V -1
t+1 +Rt+1)-1(V -1

t+1vt+1 + rt+1)

, A-1
t [Q+BtH

-1B>t + (V -1
t+1 +Rt+1)-1]A->

t )
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