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Abstract

We propose a nonparametric extension to the
factor analysis problem using a beta process
prior. This beta process factor analysis (BP-
FA) model allows for a dataset to be decom-
posed into a linear combination of a sparse
set of factors, providing information on the
underlying structure of the observations. As
with the Dirichlet process, the beta process
is a fully Bayesian conjugate prior, which al-
lows for analytical posterior calculation and
straightforward inference. We derive a varia-
tional Bayes inference algorithm and demon-
strate the model on the MNIST digits and
HGDP-CEPH cell line panel datasets.

1. Introduction

Latent membership models provide a useful means for
discovering underlying structure in a dataset by elu-
cidating the relationships between observed data. For
example, in latent class models, observations are as-
sumed to be generated from one of K classes, with
mixture models constituting a classic example. When
a single class indicator is considered too restrictive, la-
tent feature models can be employed, allowing for an
observation to possess combinations of up to K latent
features.

As K is typically unknown, Bayesian nonparametric
models seek to remove the need to set this value by
defining robust, but sparse priors on infinite spaces.
For example, the Dirichlet process (Ferguson, 1973) al-
lows for nonparametric mixture modeling in the latent
class scenario. In the latent feature paradigm, the beta
process (Hjort, 1990) has been defined and can be used
toward the same objective, which, when marginalized,
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is closely related to the Indian buffet process (Griffiths
& Ghahramani, 2005; Thibaux & Jordan, 2007).

An example of a latent feature model is the factor anal-
ysis model (West, 2003), where a data matrix is de-
composed into the product of two matrices plus noise,

X = ΦZ + E (1)

In this model, the columns of the D × K matrix of
factor loadings, Φ, can be modeled as latent features
and the elements in each of N columns of Z can be
modeled as indicators of the possession of a feature for
the corresponding column of X (which can be given an
associated weight). It therefore seems natural to seek
a nonparametric model for this problem.

To this end, several models have been proposed that
use the Indian buffet process (IBP) (Knowles &
Ghahramani, 2007; Rai & Daumé, 2008; Meeds et al.,
2007). However, these models require MCMC infer-
ence, which can be slow to converge. In this paper, we
propose a beta process factor analysis (BP-FA) model
that is fully conjugate and therefore has a fast varia-
tional solution; this is an intended contribution of this
paper. Starting from first principles, we show how the
beta process can be formulated to solve the nonpara-
metric factor analysis problem, as the Dirichlet process
has been previously shown to solve the nonparametric
mixture modeling problem; we intend for this to be a
second contribution of this paper.

The remainder of the paper is organized as follows. In
Section 2 we review the beta process in detail. We
introduce the BP-FA model in Section 3, and discuss
some of its theoretical properties. In Section 4 we de-
rive a variational Bayes inference algorithm for fast
inference, exploiting full conjugacy within the model.
Experimental results are presented in Section 5 on syn-
thetic data, and on the MNIST digits and HGDP-
CEPH cell line panel (Rosenberg et al., 2002) datasets.
We conclude and discuss future work in Section 6.
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2. The Beta Process

The beta process, first introduced by Hjort for survival
analysis (Hjort, 1990), is an independent increments,
or Lévy process and can be defined as follows:

Definition: Let Ω be a measurable space and B its σ-
algebra. Let H0 be a continuous probability measure
on (Ω,B) and α a positive scalar. Then for all disjoint,
infinitesimal partitions, {B1, . . . , BK}, of Ω the beta
process is generated as follows,

H(Bk) ∼ Beta(αH0(Bk), α(1−H0(Bk))) (2)

with K →∞ and H0(Bk) → 0 for k = 1, . . . ,K. This
process is denoted H ∼ BP (αH0).

Because of the convolution properties of beta random
variables, the beta process does not satisfy the Kol-
mogorov consistency condition, and is therefore de-
fined in the infinite limit (Billingsley, 1995). Hjort ex-
tends this definition to include functions, α(Bk), which
for simplicity is here set to a constant.

Like the Dirichlet process, the beta process can be
written in set function form,

H(ω) =
∞∑

k=1

πkδωk
(ω) (3)

with H(ωi) = πi. Also like the Dirichlet process,
means for drawing H are not obvious. We briefly dis-
cuss this issue in Section 2.1. In the case of the beta
process, π does not serve as a probability mass func-
tion on Ω, but rather as part of a new measure on
Ω that parameterizes a Bernoulli process defined as
follows:

Definition: Let the column vector, zi, be infinite and
binary with the kth value, zik, generated by

zik ∼ Bernoulli(πk) (4)

The new measure, Xi(ω) =
∑

k zikδωk
(ω), is then

drawn from a Bernoulli process, or Xi ∼ BeP (H).

By arranging samples of the infinite-dimensional vec-
tor, zi, in matrix form, Z = [z1, . . . , zN ], the beta
process is seen to be a prior over infinite binary matri-
ces, with each row in the matrix Z corresponding to a
location, δω.

2.1. The Marginalized Beta Process and the
Indian Buffet Process

As previously mentioned, sampling H directly from
the infinite beta process is difficult, but a marginal-
ized approach can be derived in the same manner as
the corresponding Chinese restaurant process (Aldous,
1985), used for sampling from the Dirichlet process.

We briefly review this marginalization, discussing the
link to the Indian buffet process (Griffiths & Ghahra-
mani, 2005) as well as other theoretical properties of
the beta process that arise as a result.

We first extend the beta process to take two scalar
parameters, a, b, and partition Ω into K regions of
equal measure, or H0(Bk) = 1/K for k = 1, . . . ,K.
We can then write the generative process in the form
of (3) as

H(B) =
K∑

k=1

πkδBk
(B)

πk ∼ Beta (a/K, b(K − 1)/K) (5)

where B ∈ {B1, . . . , BK}. Marginalizing the vector π
and letting K → ∞, the matrix, Z, can be generated
directly from the beta process prior as follows:

1. For an infinite matrix, Z, initialized to all zeros,
set the first c1 ∼ Po(a/b) rows of z1 to 1. Sample
the associated locations, ωi, i = 1, . . . , c1, inde-
pendently from H0.

2. For observationN , sample cN ∼ Po
(

a
b+N−1

)
and

define CN ≡
∑N

i=1 ci. For rows k = 1, . . . , CN−1

of zN , sample

zNk ∼ Bernoulli

(
nNk

b+N − 1

)
(6)

where nNk ≡
∑N−1

i=1 zik, the number of previous
observations with a 1 at location k. Set indices
CN−1 +1 to CN equal to 1 and sample associated
locations independently from H0.

If we define

H(ω) ≡
∞∑

k=1

nNk

b+N − 1
δωk

(ω) (7)

thenH ∼ BP (a, b,H0) in the limit asN →∞, and the
exchangeable columns of Z are drawn iid from a beta
process. As can be seen, in the case where b = 1, the
marginalized beta process is equivalent to the Indian
buffet process (Thibaux & Jordan, 2007).

This representation can be used to derive some inter-
esting properties of the beta process. We observe that
the random variable, CN , has a Poisson distribution,
CN ∼ Po

(∑N
i=1

a
b+i−1

)
, which provides a sense of

how the matrix Z grows with sample size. Further-
more, since

∑N
i=1

a
b+i−1 → ∞ as N → ∞, we can

deduce that the entire space of Ω will be explored as
the number of samples grows to infinity.
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Figure 1. Estimation of π from 5000 marginal beta process
runs of 500 samples each, with various a, b initializations.

We show in Figure 1 the expectation of π calculated
empirically by drawing from the marginalized beta
process. As can be seen, the a, b parameters offer flex-
ibility in both the magnitude and shape of π and can
be tuned.

2.2. Finite Approximation to the Beta Process

As hinted in (5), a finite approximation to the beta
process can be made by simply setting K to a large,
but finite number. This approximation can be viewed
as serving a function similar to the finite Dirichlet dis-
tribution in its approximation of the infinite Dirichlet
process for mixture modeling. The finite representa-
tion is written as

H(ω) =
K∑

k=1

πkδωk
(ω)

πk ∼ Beta(a/K, b(K − 1)/K)

ωk
iid∼ H0 (8)

with the K-dimensional vector, zi, drawn from a fi-
nite Bernoulli process parameterized by H. The full
conjugacy of this representation means posterior com-
putation is analytical, which will allow for variational
inference to be performed on the BP-FA model.

We briefly mention that a stick-breaking construction
of the beta process has recently been derived (Paisley
& Carin, 2009), allowing for exact Bayesian inference.
A construction for the Indian buffet process has also
been presented (Teh et al., 2007), though this method
does not extend to the more general beta process. We
will use the finite approximation presented here in the
following sections.

3. Beta Process Factor Analysis

Factor analysis can be viewed as the process of mod-
eling a data matrix, X ∈ RD×N , as the multiplication
of two matrices, Φ ∈ RD×K and Z ∈ RK×N , plus an
error matrix, E.

X = ΦZ + E (9)

Often, prior knowledge about the structure of the data
is used, for example, the desired sparseness properties
of the Φ or Z matrices (West, 2003; Rai & Daumé,
2008; Knowles & Ghahramani, 2007). The beta pro-
cess is another such prior that achieves this sparseness,
allowing for K to tend to infinity while only focusing
on a small subset of the columns of Φ via the sparse
matrix Z.

In beta process factor analysis (BP-FA), we model the
matrices Φ and Z as N draws from a Bernoulli process
parameterized by a beta process, H. First, we recall
that draws from the BeP-BP approximation can be
generated as

zik ∼ Bernoulli(πk)
πk ∼ Beta(a/K, b(K − 1)/K)

φk
iid∼ H0 (10)

for observation i = 1, . . . , N and latent feature (or
factor) k = 1, . . . ,K. In the general definition, H0

was unspecified, as was the use of the latent member-
ship vector, zi. For BP-FA, we let H0 be multivariate
normal and the latent factors be indicators of linear
combinations of these locations, which can be written
in matrix notation as Φzi, where Φ = [φ1, . . . , φK ].
Adding the noise vector, εi, we obtain observation xi.
The beta process can thus be seen as a prior on the
parameters, {π,Φ}, with iid Bernoulli process samples
composing the expectation matrix, E[X] = ΦZ for the
factor analysis problem.

As an unweighted linear combination might be too
restrictive, we include a weight vector, wi, which re-
sults in the following generative process for observation
i = 1, . . . , N ,

xi = Φ(zi ◦ wi) + εi

wi ∼ N (0, σ2
wI)

zik ∼ Bernoulli(πk)
πk ∼ Beta(a/K, b(K − 1)/K)
φk ∼ N (0,Σ)
εi ∼ N (0, σ2

nI) (11)

for k = 1, . . . ,K and all values drawn independently.
The symbol ◦ represents the Hadamard, or element-
wise multiplication of two vectors. We show a graphi-
cal representation of the BP-FA model in Figure 2.
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Figure 2. A graphical representation of the BP-FA model.

Written in matrix notation, the weighted BP-FA
model of (11) is thus a prior on

X = Φ(Z ◦W ) + E (12)

Under this prior, the mean and covariance of a given
vector, x, can be calculated,

E[x] = 0

E[xxT ] =
aK

a+ b(K − 1)
σ2

wΣ + σ2
nI (13)

Letting K → ∞, we see that E[xxT ] → a
bσ

2
wΣ + σ2

nI.
Therefore, the BP-FA model remains well-defined in
the infinite limit. To emphasize, compare this value
with z removed, where E[xxT ] = Kσ2

wΣ + σ2
nI. The

coefficient a
b is significant in that it represents the ex-

pected number of factors present in an observation
as K → ∞. That is, if we define mi ≡

∑∞
k=1 zik,

where zi ∼ BeP (H) and H ∼ BP (a, b,H0), then by
marginalizing H we find that E[mi] = a

b .

Another important aspect of the BP-FA model is that
the π vector enforces sparseness on the same subset of
factors. In comparison, consider the model where zi

is removed and sparseness is enforced by sampling the
elements of wi iid from a sparseness inducing normal-
gamma prior. This is equivalent to learning multi-
ple relevance vector machines (Tipping, 2001) with a
jointly learned and shared Φ matrix. A theoretical is-
sue with this model is that the prior does not induce
sparseness on the same subset of latent factors. As
K → ∞, all factors will be used sparsely with equal
probability and, therefore, no factors will be shared.
This is conceptually similar to the problem of drawing
multiple times from a Dirichlet process prior, where in-
dividual draws are sparse, but no two draws are sparse
on the same subset of atoms. We note that the hierar-
chical Dirichlet process has been introduced to resolve
this particular issue (Teh et al., 2006).

4. Variational Bayesian Inference

In this section, we derive a variational Bayesian algo-
rithm (Beal, 2003) to perform fast inference for the
weighted BP-FA model of (11). This is aided by the
conjugacy of the beta to the Bernoulli process, where
the posterior for the single parameter beta process is

H|X1, . . . , XN ∼ BP

(
αH0 +

N∑
i=1

Xi

)
(14)

with Xi ∼ BeP (H) being the ith sample from a
Bernoulli process parameterized by H. The two-
parameter extension has a similar posterior update,
though not as compact a written form.

In the following, we define x−k
i ≡ xi−Φ−k(z−k

i ◦w−k
i ),

where Φ−k, z−k and w−k are the matrix/vectors with
the kth column/element removed; this is simply the
portion of xi remaining considering all but the kth

factor. Also, for clarity, we have suppressed certain
equation numbers and conditional variables.

4.1. The VB-E Step

Update for Z:
p(zik|xi,Φ, wi, z

−k
i ) ∝ p(xi|zik,Φ, wi, z

−k
i )p(zik|π)

The probability that zik = 1 is proportional to

exp[〈ln(πk)〉] ×

exp
[
− 1

2σ2
n

(
〈w2

ik〉〈φT
k φk〉 − 2〈wik〉〈φk〉T 〈x−k

i 〉
)]

where 〈·〉 indicates the expectation. The probability
that zik = 0 is proportional to exp[〈ln(1 − πk)〉]. The
expectations can be calculated as

〈ln(πk)〉 = ψ
( a
K

+ 〈nk〉
)
− ψ

(
a+ b(K − 1)

K
+N

)

〈ln(1− πk)〉 =

ψ

(
b(K − 1)

K
+N − 〈nk〉

)
− ψ

(
a+ b(K − 1)

K
+N

)

where ψ(·) represents the digamma function and

〈w2
ik〉 = 〈wik〉2 + ∆′(k)

i (15)
〈φT

k φk〉 = 〈φk〉T 〈φk〉+ trace(Σ′k) (16)

where 〈nk〉 is defined in the update for π, Σ′k in the
update for Φ, and ∆′(k)

i is the kth diagonal element of
∆′

i defined in the update for W .
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4.2. The VB-M Step

Update for π:
p(πk|Z) ∝ p(Z|πk)p(πk|a, b,K)

The posterior of πk can be shown to be

πk ∼ Beta

(
a

K
+ 〈nk〉,

b(K − 1)
K

+N − 〈nk〉
)

where 〈nk〉 =
∑N

i=1〈zik〉 can be calculated from the
VB-E step. The priors a, b can be tuned according
to the discussion in Section 2.1. We recall that∑N

i=1
a

b+i−1 is the expected total number of factors,
while a/b is the expected number of factors used by a
single observation in the limiting case.

Update for Φ:
p(φk|X,Φ−k, Z,W ) ∝ p(X|φk,Φ−k, Z,W )p(φk|Σ)

The posterior of φk can be shown to be normal with
mean, µ′k, and covariance, Σ′k, equal to

Σ′k =

(
1
σ2

n

N∑
i=1

〈zik〉〈w2
ik〉I + Σ−1

)−1

(17)

µ′k = Σ′k

(
1
σ2

n

N∑
i=1

〈zik〉〈wik〉〈x−k
i 〉

)
(18)

with 〈w2
ik〉 given in (15). The prior Σ can be set to

the empirical covariance of the data, X.

Update for W:
p(wi|xi,Φ, zi) ∝ p(xi|wi,Φ, zi)p(wi|σ2

w)

The posterior of wi can be shown to be multivariate
normal with mean, υ′i, and covariance, ∆′

i, equal to

∆′
i =

(
1
σ2

n

〈Φ̃T
i Φ̃i〉+

1
σ2

w

I

)−1

(19)

υ′i = ∆′
i

(
1
σ2

n

〈Φ̃i〉Txi

)
(20)

where we define Φ̃i ≡ Φ ◦ Z̃i and Z̃i ≡ [zi, . . . , zi]T ,
with the K-dimensional vector, zi, repeated D times.
Given that 〈Φ̃i〉 = 〈Φ〉 ◦ 〈Z̃i〉, we can then calculate

〈Φ̃T
i Φ̃i〉 =

(
〈Φ〉T 〈Φ〉+A

)
◦
(
〈zi〉〈zi〉T +Bi

)
(21)

where A and Bi are calculated as follows

A ≡ diag [trace(Σ′1), . . . , trace(Σ′K)]
Bi ≡ diag [〈zi1〉(1− 〈zi1〉), . . . , 〈ziK〉(1− 〈ziK〉)]

A prior, discussed below, can be placed on σ2
w,

removing the need to set this value.

Update for σ2
n:

p(σ2
n|X,Φ, Z,W ) ∝ p(X|Φ, Z,W, σ2

n)p(σ2
n)

We can also infer the noise parameter, σ2
n, by using an

inverse-gamma, InvGa(c, d), prior. The posterior can
be shown to be inverse-gamma with

c′ = c+
ND

2
(22)

d′ = d+
1
2

N∑
i=1

(
‖xi − 〈Φ〉(〈zi〉 ◦ 〈wi〉)‖2 + ξi

)
where

ξi ≡
K∑

k=1

(
〈zik〉〈w2

ik〉〈φT
k φk〉 − 〈zik〉2〈wik〉2〈φk〉T 〈φk〉

)
+
∑
k 6=l

〈zik〉〈zil〉∆′
i,kl〈φk〉T 〈φl〉

In the previous equations, σ−2
n can then be replaced

by 〈σ−2
n 〉 = c′/d′.

Update for σ2
w:

p(σ2
w|W ) ∝ p(W |σ2

w)p(σ2
w)

Given a conjugate, InvGa(e, f) prior, the posterior of
σ2

w is also inverse-gamma with

e′ = e+
NK

2
(23)

f ′ = f +
1
2

N∑
i=1

(
〈wi〉T 〈wi〉+ trace(∆′

i)
)

(24)

4.3. Accelerated VB Inference

As with the Dirichlet process, there is a tradeoff in
variational inference for the BP-FA; the larger K is
set, the more accurate the model should be, but the
slower the model inference. We here briefly mention a
simple remedy for this problem.

Following every iteration, the total factor membership
expectations, {〈nk〉}K

k=1, can be used to assess the rel-
evancy of a particular factor. When this number falls
below a small threshold (e.g., 10−16), this factor index
can be skipped in following iterations with minimal
impact on the convergence of the algorithm. In this
way, the algorithm should converge more quickly as
the number of iterations increases.

4.4. Prediction for New Observations

Given the outputs, {π,Φ}, the vectors z∗ and w∗ can
be inferred for a new observation, x∗, using a MAP-
EM inference algorithm that iterates between z∗ and
w∗. The equations are similar to those detailed above,
with inference for π and Φ removed.
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5. Experiments

Factor analysis models are useful in many applications,
for example, for dimensionality reduction in gene ex-
pression analysis (West, 2003). In this section, we
demonstrate the performance of the BP-FA model on
synthetic data, and apply it to the MNIST digits and
HGDP-CEPH cell line panel (Rosenberg et al., 2002)
datasets.

5.1. A Synthetic Example

For our synthetic example, we generated H from the
previously discussed approximation to the Beta pro-
cess with a, b = 1, K = 100 and φk ∼ N (0, I) in a
D = 25 dimensional space. We generated N = 250
samples from a Bernoulli process parameterized by H
and synthesized X with W = 1 and σ2

n = 0.0675. Be-
low, we show results for the model having the highest
likelihood selected from five runs, though the results
in general were consistent.

In Figure 3, we display the ground truth (top) of Z,
rearranged for display purposes. We note that only
seven factors were actually used, while several obser-
vations contain no factors at all, and thus are pure
noise. We initialized our model to K = 100 factors,
though as the results show (bottom), only a small sub-
set were ultimately used. The inferred 〈σ2

n〉 = 0.0625
and the elementwise MSE of 0.0186 to the true ΦZ
further indicates good performance. For this example,
the BP-FA model was able to accurately uncover the
underlying latent structure of the dataset.

Figure 3. Synthetic Data: Latent factor indicators, Z, for
the true (top) and inferred (bottom) models.

5.2. MNIST Handwritten Digits Dataset

We trained our BP-FA model on N = 2500 odd dig-
its (500 each) from the MNIST digits dataset. Us-
ing PCA, we reduced the dimensionality to D = 350,
which preserved over 99.5% of the total variance within
the data. We truncated the BP-FA model to K = 100
factors initialized using the K-means algorithm and
ran five times, selecting the run with the highest like-
lihood, though again the results were consistent.

In Figure 4 below, we show the factor sharing across
the digits (left) by calculating the expected number of
factors shared between two observations and normal-
izing by the largest value (0.58); larger boxes indicate
more sharing. At right, we show for each of the odd
digits the most commonly used factor, followed by the
second most used factor given the factor to the left. Of
particular interest are the digits 3 and 5, where they
heavily share the same factor, followed by a factor that
differentiates the two numbers.

In Figure 5 (top), we plot the sorted values of 〈π〉
inferred by the algorithm. As can be seen, the algo-
rithm inferred a sparse set of factors, fewer than the
100 initially provided. Also in Figure 5 (bottom), we
show an example of a reconstruction of the number 3
that uses four factors. As can be seen, no single factor
can individually approximate the truth as well as their
weighted linear combination. We note that the BP-FA
model was fast, requiring 35 iterations on average to
converge and requiring approximately 30 minutes for
each run on a 2.66 GHz processor.

Figure 4. Left: Expected factor sharing between digits.
Right: (left) Most frequently used factors for each digit
(right) Most used second factor per digit given left factor.
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Figure 5. (top) Inferred π indicating sparse factor usage.
(bottom) An example reconstruction.

5.3. HGDP-CEPH Cell Line Panel

The HGDP-CEPH Human Genome Diversity Cell
Line Panel (Rosenberg et al., 2002) is a dataset com-
prising genotypes at D = 377 autosomal microsatellite
loci sampled from N = 1056 individuals in 52 popula-
tions across the major geographic regions of the world.
It is useful for inferring human evolutionary history
and migration.

We ran our model on this dataset initializing K = 100
factors, though again, only a subset were significantly
used. Figure 6 contains the sharing map, as previously
calculated for the MNIST dataset, normalized on 0.55.
We note the slight differentiation between the Middle
East and European regions, a previous issue for this
dataset (Rosenberg et al., 2002).

We also highlight the use of BP-FA in denoising. Fig-
ure 8 shows the original HGDP-CEPH data, as well as
the Φ(Z ◦W ) reconstruction projected onto the first
20 principal components of the raw data. The figure
shows how the BP-FA model was able to substantially
reduce the noise level within the data, while still re-
taining the essential structure.

Figure 6. Factor sharing across geographic regions.

Figure 7. Variance of HGDP-CEPH data along the first
150 principal components of the raw features for original
and reconstructed data.

This is also evident in Figure 7, where we plot the
variance along these same principal components for
the first 150 dimensions. For an apparently noisy
dataset such as this, BP-FA can potentially be use-
ful as a preprocessing step in conjunction with other
algorithms, in this case, for example, the Structure
(Rosenberg et al., 2002) or recently proposed mStruct
(Shringarpure & Xing, 2008) algorithms.

6. Conclusion and Future Work

We have proposed a beta process factor analysis (BP-
FA) model for performing nonparametric factor anal-
ysis with a potentially infinite number of factors. As
with the Dirichlet process prior used for mixture mod-
eling, the beta process is a fully Bayesian prior that as-
sures the sharing of a sparse subset of factors among all
observations. Taking advantage of conjugacy within
the model, a variational Bayes algorithm was devel-
oped for fast model inference requiring an approxima-
tion comparable to the finite Dirichlet distribution’s
approximation to the infinite Dirichlet process. Re-
sults were shown on synthetic data, as well as the
MNIST handwritten digits and HGDP-CEPH cell line
panel datasets.

While several nonparametric factor analysis models
have been proposed for applications such as indepen-
dent components analysis (Knowles & Ghahramani,
2007) and gene expression analysis (Rai & Daumé,
2008; Meeds et al., 2007), these models rely on the
Indian buffet process and therefore do not have fast
variational solutions - an intended contribution of this
paper. Furthermore, while the formal link has been
made between the IBF and the beta process (Thibaux
& Jordan, 2007), we believe our further development
and application to factor analysis to be novel. In future
work, the authors plan to develop a stick-breaking pro-
cess for drawing directly from the beta process similar
to (Sethuraman, 1994) for drawing from the Dirichlet
process, which will remove the need for finite approx-
imations.
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Figure 8. HGDP-CEPH features projected onto the first 20 principal components of the raw features for the (top) original
and (bottom) reconstructed data. The broad geographic breakdown is given between the images.
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Rai, P., & Daumé, H. (2008). The infinite hierarchical
factor regression model. Advances in Neural Infor-
mation Processing Systems.

Rosenberg, N. A., Pritchard, J. K., Weber, J. L.,
Cann, H. M., Kidd, K. K., Zhivotovsky, L. A., &
Feldman, M. W. (2002). Genetic structure of hu-
man populations. Science, 298, 2381–2385.

Sethuraman, J. (1994). A constructive definition of
dirichlet priors. Statistica Sinica, 4:639–650.

Shringarpure, S., & Xing, E. P. (2008). mstruct: A
new admixture model for inference of population
structure in light of both genetic admixing and al-
lele mutation. Proceedings of the 25th International
Conference on Machine Learning (pp. 952–959).

Teh, Y. W., Görür, D., & Ghahramani, Z. (2007).
Stick-breaking construction for the indian buffet
process. Proceedings of the International Conference
on Artificial Intelligence and Statistics.

Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M.
(2006). Hierarchical dirichlet processes. Journal
of the American Statistical Association, 101:1566–
1581.

Thibaux, R., & Jordan, M. I. (2007). Hierarchical
beta processes and the indian buffet process. In-
ternational Conference on Artificial Intelligence and
Statistics.

Tipping, M. E. (2001). Sparse bayesian learning and
the relevance vector machine. The Journal of Ma-
chine Learning Research, 1:211–244.

West, M. (2003). Bayesian factor regression models in
the “large p, small n” paradigm. Bayesian Statistics,
7, 723–732.


