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Abstract

This paper addresses exact learning of
Bayesian network structure from data and
expert’s knowledge based on score functions
that are decomposable. First, it describes
useful properties that strongly reduce the
time and memory costs of many known meth-
ods such as hill-climbing, dynamic program-
ming and sampling variable orderings. Sec-
ondly, a branch and bound algorithm is pre-
sented that integrates parameter and struc-
tural constraints with data in a way to guar-
antee global optimality with respect to the
score function. It is an any-time procedure
because, if stopped, it provides the best cur-
rent solution and an estimation about how
far it is from the global solution. We show
empirically the advantages of the properties
and the constraints, and the applicability of
the algorithm to large data sets (up to one
hundred variables) that cannot be handled
by other current methods (limited to around
30 variables).

1. Introduction

A Bayesian network (BN) is a probabilistic graphical
model that relies on a structured dependency among
random variables to represent a joint probability dis-
tribution in a compact and efficient manner. It is
composed by a directed acyclic graph (DAG) where
nodes are associated to random variables and condi-
tional probability distributions are defined for vari-
ables given their parents in the graph. Learning the
graph (or structure) of a BN from data is one of the
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most challenging problems in such models. Best exact
known methods take exponential time on the num-
ber of variables and are applicable to small settings
(around 30 variables). Approximate procedures can
handle larger networks, but usually they get stuck in
local maxima. Nevertheless, the quality of the struc-
ture plays a crucial role in the accuracy of the model.
If the dependency among variables is not properly
learned, the estimated distribution may be far from
the correct one. In general terms, the problem is to
find the best structure (DAG) according to some score
function that depends on the data (Heckerman et al.,
1995). There are other approaches to learn a struc-
ture that are not based on scoring (for example taking
some statistical similarity among variables), but we
do not discuss them in this paper. The research on
this topic is active, e.g. (Chickering, 2002; Teyssier &
Koller, 2005; Tsamardinos et al., 2006). Best exact
ideas (where it is guaranteed to find the global best
scoring structure) are based on dynamic programming
(Koivisto et al., 2004; Singh & Moore, 2005; Koivisto,
2006; Silander & Myllymaki, 2006), and they spend
time and memory proportional to n · 2n, where n is
the number of variables. Such complexity forbids the
use of those methods to a couple of tens of variables,
mostly because of memory consumption.

In the first part of this paper, we present some proper-
ties of the problem that bring a considerable improve-
ment on many known methods. We perform the anal-
ysis over some well known criteria: Akaike Informa-
tion Criterion (AIC), and the Minimum Description
Length (MDL), which is equivalent to the Bayesian In-
formation Criterion (BIC). However, results extrapo-
late to the Bayesian Dirichlet (BD) scoring (Cooper &
Herskovits, 1992) and some derivations under a few as-
sumptions. We show that the search space of possible
structures can be reduced drastically without losing
the global optimality guarantee and that the memory
requirements are very small in many practical cases
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(we show empirically that only a few thousand scores
are stored for a problem with 50 variables and one
thousand instances).

As data sets with many variables cannot be efficiently
handled (unless P=NP, as the problem is known to be
NP-hard (Chickering et al., 2003)), a desired property
of a method is to produce an any-time solution, that
is, the procedure, if stopped at any moment, provides
an approximate solution, while if run until it finishes, a
global optimum solution is found. However, the most
efficient exact methods are not any-time. We propose
a new any-time exact algorithm using a branch-and-
bound (B&B) approach with caches. Scores are com-
puted during the initialization and a poll is built. Then
we perform the search over the possible graphs iter-
ating over arcs. Although iterating over orderings is
probably faster, iterating over arcs allows us to work
with constraints in a straightforward way. Because of
the B&B properties, the algorithm can be stopped at
any-time with a best current solution found so far and
an upper bound to the global optimum, which gives a
kind of certificate to the answer and allows the user
to stop the computation when she believes that the
current solution is good enough. (Suzuki, 1996) has
proposed a B&B method, but it is not a global exact
algorithm, instead the search is conducted after a node
ordering is fixed. Our method does not rely on a pre-
defined ordering and finds a global optimum structure
considering all possible orderings.

2. Bayesian networks

A BN represents a single joint probability density over
a collection of random variables. It can be defined
as a triple (G,X ,P), where G = (VG , EG) is a DAG
with VG a collection of n nodes associated to random
variables X (a node per variable), and EG a collec-
tion of arcs; P is a collection of conditional proba-
bility densities p(Xi|PAi) where PAi denotes the par-
ents of Xi in the graph (PAi may be empty), respect-
ing the relations of EG . We assume throughout that
variables are categorical. In a BN every variable is
conditionally independent of its non-descendants given
its parents (Markov condition). This structure in-
duces a joint probability distribution by the expression
p(X1, . . . , Xn) =

∏
i p(Xi|PAi). Before proceeding, we

define some notations. Let ri ≥ 2 be the number of
discrete categories of Xi, qi the number of elements
in ΩPAi (the number of configurations of the parent
set, that is, qi =

∏
Xt∈PAi

rt) and θ be the entire
vector of parameters such as θijk = p(xki |paji ), where
i ∈ {1, . . . , n}, j ∈ {1, ..., qi}, k ∈ {1, ..., ri} (hence
xki ∈ ΩXi and paji ∈ ΩPAi).

Given a complete data set D = {D1, . . . , DN} of with
N instances, with Dt = {xk11,t, . . . , x

kn
n,t} a instance of

all variables, the goal of structure learning is to find
a G that maximizes a score function such as MDL or
AIC.

max
G

sD(G) = max
θ

(LD(θ)− t ·W ),

where θ represents all parameters of the model (and
thus depends on the graph G), t =

∑n
i=1(qi ·(ri−1)) is

the number of free parameters, W is criterion-specific
(W = logN

2 in MDL and W = 1 in AIC), and LD is
the log-likelihood function:

LD(θ) = log
n∏
i=1

qi∏
j=1

ri∏
k=1

θ
nijk

ijk , (1)

where nijk indicates how many elements of D con-
tain both xki and paji . This function can be writ-
ten as LD(θ) =

∑n
i=1 LD,i(θi), where LD,i(θi) =∑qi

j=1

∑ri

k=1 nijk log θijk. From now on, the subscript
D is omitted for simplicity.

An important property of such criteria is that they
are decomposable, that is, they can be applied to each
node Xi separately: maxG s(G) = maxG

∑n
i=1 si(PAi),

where si(PAi) = Li(PAi)−ti(PAi)·W , with Li(PAi) =
maxθi

Li(θi) (θi is the parameter vector related to Xi,
so it depends on the choice of PAi), and ti(PAi) =
qi ·(ri−1). Because of this property and to avoid com-
puting such functions several times, we create a cache
that contains si(PAi) for each Xi and each parent set
PAi. Note that this cache may have an exponential size
on n, as there are 2n−1 subsets of {X1, . . . , Xn}\{Xi}
to be considered as parent sets. This gives a total
space and time of O(n · 2n) to build the cache. In-
stead, the following results show that this number is
much smaller in many practical cases.

Lemma 1 Let Xi be a node of G′, a DAG for a BN
where PAi = J ′. Suppose J ⊂ J ′ is such that si(J) >
si(J ′). Then J ′ is not the parent set of Xi in the
optimal DAG.

Proof. Take a graph G that differs from G′ only
on PAi = J , which is also a DAG (as the removal
of some arcs does not create cycles) and s(G) =∑
j 6=i sj(PAj)+si(J) >

∑
j 6=i sj(PAj)+si(J ′) = s(G′).

Hence any DAG G′ such that PAi = J ′ has a subgraph
G with a better score than G′, and thus J ′ is not the
optimal parent configuration for Xi. �

Lemma 1 is quite simple but very useful to discard
elements from the cache of Xi. However, it does not
tell anything about supersets of J ′, that is, we still
need to compute all the possible parent configurations
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and later verify which of them can be removed. Next
theorems handle this issue.

Theorem 1 Using MDL or AIC as score function
and assuming N ≥ 4, take G and G′ DAGs such that G
is a subgraph of G′. If G is such that

∏
j∈PAi

rj ≥ N ,
for some Xi, and Xi has a proper superset of parents
in G′ w.r.t. G, then G′ is not an optimal structure.

Proof.1 Take a DAG G such that J = PAi for a node
Xi, and take G′ equal to G except that it contains
an extra node in Jnew = PAi, that is, in G′ we have
Jnew = J∪{Xe}. Note that the difference in the scores
of the two graphs are restricted to si(·). In the graph
G′, Li(Jnew) will certainly not decrease and ti(Jnew)
will increase, both with respect to the values for G.
The difference in the scores will be si(Jnew) − si(J),
which equals to

Li(Jnew)− ti(Jnew)− (Li(J)− ti(J)) ≤

−
qi∑
j=1

ri∑
i=1

nijk log θijk − ti(Jnew) + ti(J) ≤

qi∑
j=1

nij

(
−

ri∑
i=1

nijk
nij

log
nijk
nij

)
− ti(Jnew) + ti(J) ≤

qi∑
j=1

nijH(θij)− ti(Jnew) + ti(J) ≤

qi∑
j=1

nij log ri − qi · (re − 1) · (ri − 1) ·W

The first step uses the fact that Li(Jnew) is negative,
the second step uses that fact that θ̂ijk = nijk

nij
, with

nij =
∑ri

i=1 nijk, is the value that maximizes Li(·),
and the last step uses the fact that the entropy of a
discrete distribution is less than the log of its number
of categories. Finally, G is a better graph than G′
if the last equation is negative, which happens if qi ·
(re − 1) · (ri − 1) ·W ≥ N log ri. Because ri ≥ 2 ⇒
ri − 1 ≥ log ri, and N ≥ 4⇒ logN

2 ≥ 1 (the W of the
MDL case), we have that qi =

∏
j∈J rj ≥ N ensures

that si(Jnew) < si(J), which implies that the graph
G′ cannot be optimal. �

Corollary 1 In the optimal structure G, each node
has at most O(logN) parents.

Proof. It follows directly from Theorem 1 and the
fact that ri ≥ 2, for all Xi. �

Theorem 1 and Corollary 1 ensures that the cache
stores at most O(

(
n−1
logN

)
) elements for each variable

1Another similar proof appears in (Bouckaert, 1994),
but it leads directly to the conclusion of Corollary 1. The
intermediate result is algorithmically important.

(all combinations up to logN parents). Although it
does not help us to improve the theoretical size bound,
Lemma 2 gives us even less elements.

Lemma 2 Let Xi be a node with J ⊂ J ′ two possible
parent sets such that ti(J ′) + si(J) > 0. Then J ′ and
all supersets J ′′ ⊃ J ′ are not optimal parent configu-
rations for Xi.

Proof. Because Li(·) is a negative function, ti(J ′) +
si(J) > 0⇒ −ti(J ′)− si(J) < 0⇒ (Li(J ′)− ti(J ′))−
si(J) < 0 ⇒ si(J ′) < si(J). Using Lemma 1, we
have that J ′ is not the optimal parent set for Xi. The
result also follows for any J ′′ ⊃ J , as we know that
ti(J ′′) > ti(J ′). �

Thus, the idea is to check the validity of Lemma 2 ev-
ery time the score of a parent set J ′ of Xi is about
to be computed, discarding J ′ and all supersets when-
ever possible. This result allows us to stop computing
scores for J ′ and all its supersets. Lemma 1 is stronger,
but regards a comparison between exactly two parent
configuration. Nevertheless, Lemma 1 can be applied
to the final cache to remove all certainly useless parent
configurations. As we see in Section 5, the practical
size of the cache after these properties is small even
for large networks. Lemma 1 is also valid for other de-
composable functions, including BD and derivations
(e.g. BDe, BDeu), so the benefits shall apply to those
scores too, and the memory requirements will be re-
duced. The other theorems need assumptions about
the initial N and the choice of priors. Further discus-
sion is left for future work because of lack of space.

3. Constraints

An additional way to reduce the space of possible
DAGs is to consider some constraints provided by ex-
perts. We work with two main types of constraints:
constraints on parameters that define rules about the
probability values inside the local distributions of the
network, and structural constraints that specify where
arcs may or may not be included.

3.1. Parameter Constraints

We work with a general definition of parameter con-
straint, where any convex constraint is allowed. If
θi,PAi

is the parameter vector of the node Xi with
parent set PAi, then a convex constraint is defined as
h(θi,PAi

) ≤ 0, where h : Ωθi,PAi
→ R is a convex func-

tion over θi,PAi . This definition includes many well
known constraints, for example from Qualitative Prob-
abilistic Networks (QPN) (Wellman, 1990): qualitative
influences define some knowledge about the state of
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a variable given the state of another, which roughly
means that observing a greater state for a parent Xa of
a variable Xb makes more likely to have greater states
in Xb (for any parent configuration except for Xa). For
example, θbj22 ≥ θbj12, where jk

.= {xka, paj∗b } and j∗ is
an index ranging over all parent configurations except
for Xa. In this case, observing x2

a makes more likely to
have x2

b . A negative influence is obtained by replacing
the inequality operator ≥ by ≤, and a zero influence is
obtained by changing inequality to an equality. Other
constraints such as synergies (Wellman, 1990) are also
linear and local to a single node.

Although we allow the parameter constraints that are
general, we have the following restriction about them:
if a constraint is specified for a node Xi and a set
of parents J , then the actual parent set PAi has to
be a superset of J . Furthermore, we have a pecu-
liar interpretation for each constraint C as follows: if
J ⊂ PAi (proper subset), then the parameter con-
straint must hold for all configurations of the parents
of Xi that do not belong to J . For example, sup-
pose X1 has X2 and X3 as parents (all of them bi-
nary), and the following constraint h was defined on
X1: p(x2

1|x2
2x

2
3) + 2 · p(x2

1|x2
2x

1
3) ≤ 1. If a new node X4

is included as parent of X1, the constraint h becomes
the two following constraints:

p(x2
1|x2

2x
2
3x

1
4) + 2 · p(x2

1|x2
2x

1
3x

1
4) ≤ 1,

p(x2
1|x2

2x
2
3x

2
4) + 2 · p(x2

1|x2
2x

1
3x

2
4) ≤ 1,

that is, h holds for each state of X4. For example
if another parent X5 is included, then four constraints
would be enforced with all possible combinations. This
interpretation for constraints is in line with the defi-
nition of qualitative constraints of QPNs, and most
importantly, it allows us to treat the constraints in a
principled way for each set of parents. It means that
the constraint must hold for all configurations of par-
ents not involved in the constraint, which can be also
interpreted as other parents are not relevant and the
constraint is valid for each one of their configurations.

3.2. Structural constraints

Besides probabilistic constraints, we work with struc-
tural constraints on the possible graphs. These con-
straints help to reduce the search space and are avail-
able in many situations. We work with the following
rules:

• indegree(Xj , k, op), where op ∈ {lt, eq} and k an
integer, means that the node Xj must have less
than (when op = lt) or equal to (when op = eq) k
parents.

• arc(Xi, Xj) indicates that the node Xi must be a
parent of Xj .

• Operators or (∨) and not (¬) are used to form the
rules. The and operator is not explicitly used as
we assume that each constraint is in disjunctive
normal form.

For example, the constraints ∀i 6=c,j 6=c ¬arc(Xi, Xj)
and indegree(Xc, 0, eq) impose that only arcs from
node Xc to the others are possible, and that Xc is
a root node, that is, a Naive Bayes structure will be
learned. The procedure will also act as a feature se-
lection procedure by letting some variables unlinked.
Note that the symbol ∀ just employed is not part of
the language but is used for easy of expose (in fact
it is necessary to write down every constraint defined
by such construction). As another example, the con-
straints ∀j 6=c indegree(Xj , 3, lt), indegree(Xc, 0, eq),
and ∀j 6=c indegree(Xj , 0, eq)∨arc(Xc, Xj) ensure that
all nodes have Xc as parent, or no parent at all. Be-
sides Xc, each node may have at most one other par-
ent, and Xc is a root node. This learns the structure
of a Tree-augmented Naive (TAN) classifier, also per-
forming a kind of feature selection (some variables may
end up unlinked). In fact, it learns a forest of trees, as
we have not imposed that all variables must be linked.

3.3. Dealing with constraints

All constraints in previous examples can be imposed
during the construction of the cache, because they in-
volve just a single node each. In essence, parent sets
of a node Xi that do violate some constraint are not
stored in the cache, and this can be checked during the
cache construction. On the other hand, constraints
such as arc(X1, X2)∨ arc(X2, X3) cannot be imposed
in that stage, as they impose a non-local condition (the
arcs go to distinct variables, namely X2 and X3), be-
cause the cache construction is essentially a local pro-
cedure with respect to each variable. Such constraints
that involve distinct nodes can be verified during the
B&B phase, so they are addressed later.

Regarding parameter constraints, we compute the
scores using a constrained optimization problem, i.e.
maximize the score function subject to simplex equal-
ity constraints and all parameter constraints defined
by the user.

max
θi

Li(θi)− ti(PAi)

subject to ∀j=1...qi gij(θij) = 0, (2)
∀z=1...mhi

hiz(θi) ≤ 0,

where gij(θij) = −1+
∑ri

k=1 θijk imposes that distribu-
tions defined for each variable given a parent configura-



Structure Learning of Bayesian Networks using Constraints

tion sum one over all variable states, and the mhi con-
vex constraints hiz define the space of feasible param-
eters for the node Xi. This is possible because: (1) we
have assumed that a constraint over p(xki |x

k1
i1
, . . . , xkt

it
)

forces Xi1 , . . . , Xit ⊆ PAi, that is, when a parame-
ter constraint is imposed, the parent set of the node
must contain at least the variables involved in the con-
straint; (2) the optimization is computed for every pos-
sible parent set, that is, PAi is known in the moment to
write down the optimization problem, which is solved
for each Xi and each set PAi. We use the optimization
package of (Birgin et al., 2000).

Theorem 2 Using MDL or AIC as score function
and assuming N ≥ 4, take G and G′ as DAGs such
that G is a subgraph of G′. Suppose that both G and G′
respect the same set of parameter and structural con-
straints. If G is such that

∏
j∈PAi

rj ≥ N , for some
Xi, and Xi has a proper superset of parents in G′ w.r.t.
G, then G′ is not an optimal structure.

Proof. Just note that all derivations in Theorem 1
are also valid in the case of constraints. The only dif-
ference that deserves a comment is θ̂ijk = nijk

nij
, which

may be an unfeasible point for the optimization (2),
because the latter contains parameter constraints that
might reduce the parameter space (besides the normal
constraints of the maximum log-likelihood problem).
As θ̂ijk is just used as an upper value for the log-
likelihood function, and the constrained version can
just obtain smaller objective values than the uncon-
strained version, nijk

nij
is an upper bound also for the

constrained case. Thus, the derivation of Theorem 1
is valid even with constraints. �

Corollary 1 and Lemmas 1 and 2 are also valid in this
setting. The proof of Corollary 1 is straightforward, as
it only depends on Theorem 1, while for Lemmas 1 and
2 we need just to ensure that all the parent configura-
tions that are discussed there respect the constraints.

4. Constrained B&B algorithm

In this section we describe the B&B algorithm used
to find the best structure of the BN and comment on
its complexity, correctness, and some extensions and
particular cases. The notation (and initialization of
the algorithm) is as follows: C : (Xi,PAi)→ R is the
cache with the scores for all the variables and their
possible parent configurations (using Theorem 1 and
Lemmas 1 and 2 to have a reduced size); G is the
graph created taking the best parent configuration for
each node without checking for acyclicity (so it is not
necessarily a DAG), and s is the score of G; H is an
initially empty matrix containing, for each possible arc

between nodes, a mark stating that the arc must be
present, or is prohibited, or is free (may be present or
not); Q is a priority queue of triples (G,H, s), ordered
by s (initially it contains a single triple with G, H and
s just mentioned; and finally (Gbest, sbest) is the best
DAG and score found so far (sbest is initialized with
−∞). The main loop is as follows:

While Q is not empty, do

1. Remove the peek (Gcur,Hcur, scur) of Q. If s ≤
sbest (worst than an already known solution), then
start the loop again. If Gcur is a DAG and satis-
fies all structural constraints, update (Gbest, sbest)
with (Gcur, scur) and start the loop again.

2. Take v = (Xa1 → Xa2 → . . . → Xaq+1), with
a1 = aq+1, is a directed cycle of Gcur.

3. For y = 1, . . . , q, do

• Mark on Hcur that the arc Xay
→ Xay+1 is

prohibited.
• Recompute (G, s) from (Gcur, scur) such that

the parents of Xay+1 in G comply with
this restriction and with Hcur. Further-
more, the subgraph of G formed by arcs
that are demanded by Hcur (those that have
a mark must exist) must comply with the
structural constraints (it might be impossi-
ble to get such graph. In such case, go
to the last bullet). Use the values in the
cache C(Xay+1 ,PAay+1) to avoid recomput-
ing scores.

• Include the triple (G,Hcur, s) into Q.
• Mark on Hcur that the arc Xay

→ Xay+1

must be present and that the sibling arc
Xay+1 → Xay

is prohibited, and continue.

The algorithm uses a B&B search where each case to
be solved is a relaxation of a DAG, that is, they may
contain cycles. At each step, a graph is picked up from
a priority queue, and it is verified if it is a DAG. In such
case, it is a feasible structure for the network and we
compare its score against the best score so far (which
is updated if needed). Otherwise, there must be a
directed cycle in the graph, which is then broken into
subcases by forcing some arcs to be absent/present.
Each subcase is put in the queue to be processed. The
procedure stops when the queue is empty. Note that
every time we break a cycle, the subcases that are
created are independent, that is, the sets of graphs
that respectH for each subcase are disjoint. We obtain
this fact by properly breaking the cycles: when v =
(Xa1 → Xa2 → . . . → Xaq+1) is detected, we create q
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subcases such that the first does not contain Xa1 →
Xa2 (but may contain the other arcs of that cycle),
the second case certainly contains Xa1 → Xa2 , but
Xa2 → Xa3 is prohibited (so they are disjoint because
of the difference in the presence of the first arc), and so
on such that the y-th case certainly contains Xay′ →
Xay′+1

for all y′ < y and prohibits Xay
→ Xay+1 .

This idea ensures that we never process the same graph
twice. So the algorithm runs at most

∏
i |C(Xi)| steps,

where |C(Xi)| is the size of the cache for Xi.

B&B can be stopped at any time and the current best
solution as well as an upper bound for the global best
score are available. This stopping criterion might be
based on the number of steps, time and/or memory
consumption. Moreover, the algorithm can be easily
parallelized. We can split the content of the priority
queue into many different tasks. No shared memory
needs to exist among tasks if each one has its own ver-
sion of the cache. The only data structure that needs
consideration is the queue, which from time to time
must be balanced between tasks. With a message-
passing idea that avoids using process locks, the gain
of parallelization is linear in the number of tasks. As
far as we know, best known exact methods are not
easily parallelized, they do not deal with constraints,
and they do not provide lower and upper estimates of
the best structure if stopped early. If run until it ends,
the proposed method gives a global optimum solution
for the structure learning problem.

Some particular cases of the algorithm are worth men-
tioning. If we fix an ordering for the variables such
that all the arcs must link a node towards another
non-precedent in the ordering (this is a common idea in
many approximate methods), the proposed algorithm
does not perform any branch, as the ordering implies
acyclicity, and so the initial solution is already the
best. The performance would be proportional to the
time to create the cache. On the other hand, bounding
the maximum number of parents of a node is relevant
only for hardest inputs, as it would imply a bound on
the cache size, which is already empirically small.

5. Experiments

We perform experiments to show the benefits of the
reduced cache and search space and the gains of con-
straints.2 First, we use data sets available at the UCI
repository (Asuncion & Newman, 2007). Lines with
missing data are removed and continuous variables are
discretized over the mean into binary variables. The

2The software is available online through the web ad-
dress http://www.ecse.rpi.edu/∼cvrl/structlearning.html

data sets are: adult (15 variables and 30162 instances),
car (7 variables and 1728 instances) letter (17 variables
and 20000 instances), lung (57 variables and 27 in-
stances), mushroom (23 variables and 1868 instances),
nursery (9 variables and 12960 instances), Wisconsin
Diagnostic Breast Cancer or wdbc (31 variables and
569 instances), zoo (17 variables and 101 instances).
No constraints are employed in this phase as we intend
to show the benefits of the properties earlier discussed.

Table 1 presents the cache construction results, ap-
plying Theorem 1 and Lemmas 1 and 2. Its columns
show the data set name, the number of steps the proce-
dure spends to build the cache (a step equals to a call
to the score function for a single variable and a par-
ent configuration), the time in seconds, the size of the
generated cache (number of scores stored, the mem-
ory consumption is actually O(n) times that number),
and finally the size of the cache if all scores were com-
puted. Note that the reduction is huge. Although in
the next we are going to discuss three distinct algo-
rithms, the benefits of the application of these results
imply in performance gain for other algorithms in the
literature to learn BN structures. It is also possible
to analyze the search space reduction implied by these
results by looking columns 2 and 3 of Table 2.

Table 1. Cache sizes (number of stored scores) and time (in
seconds) to build them for many networks and data sizes.
Steps represent the number of local (single node given a
parent set) score evaluations.

name steps time(s) size n2n

adult 30058 182.09 672 217.9

car 335 0.09 24 28.8

letter 534230 2321.46 41562 220.1

lung 43592 1.33 3753 261.8

mushroom 140694 72.13 8217 226.5

nursery 1905 3.94 49 211.2

wdbc 1692158 351.04 7482 235

zoo 9118 0.31 1875 220.1

In Table 2, we show results of three distinct algorithms:
the B&B described in Section 4, the dynamic program-
ming (DP) idea of (Silander & Myllymaki, 2006), and
an algorithm that picks variable orderings randomly
and then find the best structure such that all arcs link
a node towards another that is not precedent in the or-
dering. This last algorithm (named OS) is similar to
K2 algorithm with random orderings, but it is always
better because a global optimum is found for each or-
dering.3 The scores obtained by each algorithm (in
percentage against the value obtained by B&B) and

3We have run a hill-climbing approach (which is also
benefited by ideas presented in this paper), but its accuracy
was worse than OS. We omit it because of lack of space.



Structure Learning of Bayesian Networks using Constraints

Table 2. Comparison of MDL scores among B&B, dynamic programming (DP), and ordering sampling (one thousand
times). Fail means that it could not solve the problem within 10 million steps. DP and OS scores are in percentage w.r.t.
the score of B&B (positive percentage means worse than B&B and negative percentage means better).

search reduced B&B DP OS
network space space score gap time(s) score time(s) score time(s)
adult 2210 271 -286902.8 5.5% 150.3 0.0% 0.77 0.1% 0.17
car 242 210 -13100.5 0.0% 0.01 0.0% 0.01 0.0% 0.01
letter 2272 2188 -173716.2 8.1% 574.1 -0.6% 22.8 1.0% 0.75
lung 23192 2330 -1146.9 2.5% 907.1 Fail Fail 1.0% 0.13
mushroom 2506 2180 -12834.9 15.3% 239.8 Fail Fail 1.0% 0.12
nursery 272 217 -126283.2 0.0% 0.04 0.0% 0.04 0.0% 0.04
wdbc 2930 2216 -3053.1 13.6% 333.5 Fail Fail 0.8% 0.13
zoo 2272 2111 -773.4 0.0% 5.2 0.0% 3.5 1.0% 0.03

the corresponding spent time are presented (excluding
the cache construction). A limit of ten million steps is
given to each method (steps here are considered as the
number of queries to the cache). It is also presented
the reduced space where B&B performs its search, as
well as the maximum gap of the solution. This gap
is obtained by the relaxed version of the problem. So
we can guarantee that the global optimal solution is
within this gap (even though the solution found by the
B&B may already be the best, as shown in the first
line of the table). With the reduced cache presented
here, finding the best structure for a given ordering is
very fast, so it is possible to run OS over millions of
orderings in a short period of time.

Table 3. B&B procedure learning TANs. Time (in seconds)
to find the global optimum, cache size (number of stored
scores) and (reduced) space for B&B search.

network time(s) cache size space
adult 0.26 114 239

car 0.01 14 26.2

letter 0.32 233 261

lung 0.26 136 251

mushroom 0.71 398 288

nursery 0.06 26 212

wdbc 361.64 361 299

Some additional comments are worth. DP can solve
the mushroom set in less than 10 minutes if we drop
the limit of steps. The expectation for wdbc is around
four days. Hence, we cannot expect to obtain an an-
swer in larger cases, such as lung. It is clear that, in
worst case, the number of steps of DP is smaller than
that of B&B. Nevertheless, B&B eventually bounds
some regions without processing them, provides an up-
per bound at each iteration, and does not suffer from
memory exhaustion as DP. This makes the method ap-
plicable even to very large settings. Still, DP seems a
good choice for small n. When n is large (more than
35), DP will not finish in reasonable time, and hence

will not provide any solution, while B&B still gives an
approximation and a bound to the global optimum.
About OS, if we sample one million times instead of
one thousand as done before, its results improve and
the global optimum is found also for adult and mush-
room sets. Still, OS provides no guarantee or estima-
tion about how far is the global optimum (here we
know it has achieved the optimum because of the ex-
act methods). It is worth noting that both DP and
OS are benefited by the smaller cache.

Table 3 shows the results when we employ constraints
to force the final network to be a Tree-augmented
Naive Bayes (zoo was run, but it is not included be-
cause the unconstrained learned network was already
TAN). Here the class is isolated in the data set and
constraints are included as described in Section 3.2.
Note that the cache size, the search space and con-
sequently the time to solve the problems have all de-
creased. Finally, Table 4 has results for random data
sets with predefined number of nodes and instances. A
randomly created BN with at most 3n arcs is used to
sample the data. Because of that, we are able to gener-
ate random parameter and structural constraints that
are certainly valid for this true BN (approximately n/2
constraints for each case). The table contains the to-
tal time to run the problem and the size of the cache,
together with the percentage of gain when using con-
straints. Note that the code was run in parallel with
a number of tasks equals to n, otherwise an increase
by a factor of n must be applied to the results in the
table. We can see that the gain is recurrent in all cases
(the constrained version has also less gap in all cases,
although such number is not shown).

6. Conclusions

This paper describes a novel algorithm for learning
BN structure from data and expert’s knowledge. It
integrates structural and parameter constraints with
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Table 4. Results on random data sets generated from ran-
dom networks. Time to solve (10 million steps) and size of
the cache are presented for the normal unconstrained case
and the percentage of gain when using constraints.

nodes(n)/ unconstrained constrained gain
instances gap time(s) cache time cache
30/100 0% 0.06 125 67% 11.6%
30/500 0% 2.7 143 47.5% 26.5%
50/100 0% 0.26 310 31.4% 16.1%
50/500 0% 20.66 231 57.2% 29.8%
70/100 0% 4.58 1205 36.9% 18.8%
70/500 1.1% 356.9 666 38.4% 21.9%
100/100 0.5% 9.05 2201 47.5% 23.5%
100/500 1.4% 1370.4 726 50.2% 33.0%

data through a B&B procedure that guarantees global
optimality with respect a decomposable score function.
It is an any-time procedure in the sense that, if stopped
early, it provides the best current solution found so far
and a maximum error of such solution. The software
is available as described in the experiments.

We also describe properties of the structure learning
problem based on scoring DAGs that enable the B&B
procedure presented here as well as other methods to
work over a reduced search space and memory. Such
properties allow the construction of a cache with all
possible local scores of nodes and their parents without
large memory consumption.

Because of the properties and the characteristics of
the B&B method, even without constraints the B&B
is more efficient than state-of-the-art exact methods
for large domains. We show through experiments with
randomly generated data and public data sets that
problems with up to 70 nodes can be exactly processed
in reasonable time, and problems with 100 nodes are
handled within a small worst case error. These results
surpass by far current methods, and may also help
to improve other approximate methods and may have
interesting practical applications, which we will pursue
in future work.
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