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Abstract

In classification with monotonicity con-
straints, it is assumed that the class label
should increase with increasing values on the
attributes. In this paper we aim at formal-
izing the approach to learning with mono-
tonicity constraints from statistical point of
view. Motivated by the statistical analysis,
we present an algorithm for learning rule en-
sembles. The algorithm first “monotonizes”
the data using a nonparametric classification
procedure and then generates a rule ensemble
consistent with the training set. The proce-
dure is justified by a theoretical analysis and
verified in a computational experiment.

1. Introduction

Utilizing the prior knowledge is of fundamental impor-
tance in the learning process. A common type of such
knowledge are monotone relationships between the in-
put and output variables, which can often be elicited
from a domain expert.

Monotone relationships are frequently encountered in
the applications of machine learning. For example,
in the customer satisfaction analysis (Greco et al.,
2007), the global evaluation of the product by a cus-
tomer should increase with increasing evaluations of
the product on a set of attributes. In the house pric-
ing problem (Potharst & Feelders, 2002), the sell-
ing price of the house should increase with e.g. lot
size, number of rooms, and decrease with e.g. crime
rate or pollution concentration in the area. Mono-
tonicity also occurs in such domains as option pricing
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(Gamarnik, 1998), medical diagnosis (Sill, 1998), sur-
vey data (Cao-Van & De Baets, 2004) and many oth-
ers. Moreover, such problems are widely considered
under the name multiple criteria sorting within multi-
ple criteria decision analysis (Greco et al., 2001). We
will refer to such problems as to ordinal classification
with monotonicity constraints.

There are at least two important reasons why knowl-
edge about monotonicity should be exploited in the
learning process. Firstly, monotonicity imposes con-
straints on the prediction function, hence decreasing
the size of the hypothesis space, which in turn de-
creases the complexity of the model and in the light
of the structural risk minimization it should lead to
increase in the accuracy of predictions. Secondly, very
often only the model consistent with domain knowl-
edge is acceptable to the domain experts: behavior of
the model contradicting the experts’ knowledge may
lead to rejection of the model’s predictions regardless
of their accuracy.

This led to the development of new algorithms and
modification of existing ones in order to handle mono-
tonicity constraints in the learning process. The
examples of such algorithms are Dominance-based
Rough Set Approach (DRSA) (Greco et al., 2001)
along with decision rule induction (Dembczyński et al.,
2008), monotone classification trees (Ben-David, 1995;
Potharst & Feelders, 2002), monotone networks (Sill,
1998), instance-based methods (Ben-David et al.,
1989; Cao-Van & De Baets, 2004) or isotonic sepa-
ration (Chandrasekaran et al., 2005).

In this paper we aim at formalizing the approach to
learning with monotonicity constraints from statistical
point of view. We start with presenting the probabilis-
tic model for the problem and showing how monotonic-
ity relationships impose constraints on the distribution
generating the data. Having the model, we present
a method of learning with monotonicity constraints
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based on the statistical analysis of the problem. Our
method works in three subsequent phases. First, we
decompose the general multi-class problem into a se-
quence of binary subproblems. Then, for each binary
subproblem, we use nonparametric classification to re-
move inconsistencies from the data set (so called data
monotonization). Finally, we apply rule learning algo-
rithm on the monotonized data; the algorithm approx-
imates the data in an exact way, i.e. without mak-
ing any classification errors (thus can be thought of
as a data compression), simultaneously achieving high
margin distribution. The learning algorithm is based
on the LPBoost scheme (Demiriz et al., 2001), there-
fore we call our method LPRules. The ideas standing
behind all three phases are theoretically justified. No-
tice, that rule induction has already been considered
with this kind of problems (Dembczyński et al., 2008),
but here for the first time we motivate the algorithm
from the statistical point of view.

In the last section, we test LPRules on ten real dataset,
for which it is known that there exist monotone rela-
tionships between attribute values and class labels. We
also compare our method with two existing approaches
to learning with monotonicity constraints and two or-
dinary classification algorithms, which are all outper-
formed by LPRules in the experiment.

2. Problem Statement

Let (x, y) ∈ X × Y be the object-label pair generated
according to distribution P (x, y), where x is a vector of
m attributes with ordered domains and y is a class la-
bel from a finite set of ordered labels Y = {1, . . . ,K}.
We aim at finding the classifier h : X → Y , that accu-
rately predicts values of y. The accuracy is measured
in terms of loss function L(y, k), which is the penalty
for predicting k when the actual value is y. The overall
accuracy of the classifier h is defined as EL(y, h(x)),
the expected loss (risk) according to P (x, y).

Bayes classifier is a function h∗ minimizing the ex-
pected loss, h∗ = arg minh EL(y, h(x)). The mini-
mum L∗ = EL(y, h∗(x)) is called Bayes risk. Since
P (x, y) is unknown, h∗ is also unknown and the clas-
sifier is learned from a sample of n training examples
D = {(x1, y1), . . . , (xn, yn)} (training set). In order
to minimize the expected loss, the learning procedure
usually performs minimization of empirical risk :

EDL(y, h(x)) =
1
n

n∑
i=1

L(yi, h(xi)),

where ED denotes the empirical mean. It is reasonable
to assume that L(k, k) = 0 and L(y, k) > 0 if y 6= k
for y, k = 1, . . . ,K. The loss should also be consistent

with the order between class labels in the sense that
the loss should not decrease, as the predicted value
moves away from the true value. Hence, following (Lin
& Li, 2007), we assume the loss matrix is V-shaped :
for k ≤ y it holds L(y, k−1) ≥ L(y, k), while for k ≥ y
it holds L(y, k) ≤ L(y, k + 1).

Notice that until now, the proposed model bears close
resemblance to the problem of ordinal regression, ex-
cept that the loss function is in the spirit of (Lin
& Li, 2007) and is different from more popular rank
loss formulation (Herbrich et al., 1999). What distin-
guishes the problem is the presence of monotonicity
constraints. To define them in terms of the proba-
bility distribution, we exploit the order properties in
the set X by using a dominance relation. We say x
dominates x′, x � x′ if x has greater or equal values
on every attribute, xj ≥ x′j , j = 1, . . . ,m. Dominance
relation is a partial preorder. Let us call a function
h : X → Y monotone if for any x, x′ ∈ X it holds
x � x′ → h(x) ≥ h(x′).

Intuitively, the monotonicity constraints require that
if x � x′ then x should be assigned a class not lower
than x′. In practice, those constraints are not always
satisfied, leading to the situations referred to as incon-
sistencies. This suggests that the order relation� does
not impose “hard” constraints, so that the constraints
should rather be defined in a probabilistic setting. In
(Kot lowski & S lowiński, 2008), a definition based on
the stochastic dominance relation was proposed, which
appears to be especially useful:

x � x′ −→ P (y ≥ k|x) ≥ P (y ≥ k|x′), (1)

for each x, x′ ∈ X, k = 2, . . . ,K. Expression (1) states
that the probability of an event {y ≥ k} is a monotone
function. We will say that a probability distribution is
monotonically constrained if (1) is satisfied for every
x, x′ ∈ X. For the rest of the paper, we will assume
that the distribution is of this kind.

Constraint (1) suggests using classifiers which are
monotone functions. Indeed, almost every previ-
ous approach to classification with monotonicity con-
straints restricts learning to monotone classifiers.
Since we aim at finding the classifier which is as close
as possible to the Bayes classifier h∗ (which is our “tar-
get function”), we would expect that the Bayes clas-
sifier is monotone. However, although the probability
distribution is monotonically constrained, the mono-
tonicity of the Bayes classifier does not always hold.
For instance, the Bayes classifier for 0-1 loss (the mode
of the distribution) is not monotone under stochastic
dominance assumption. It appears that some specific
constraints must be imposed on the loss function in
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order to maintain the monotonicity of the Bayes classi-
fier. Here we restrict to a special, but illustrative case,
when the loss function has the form L(y, k) = C(y−k),
for some function C : Z→ Y .

Let us call a function C : Z→ R convex if for all i, j ∈
Z and for every λ ∈ [0, 1] such that λi+ (1− λ)j ∈ Z,
we have: c(iλ + (1 − λ)j) ≤ λc(i) + (1 − λ)c(j). The
following theorem holds:
Theorem 1. Let L(y, k) = C(y − k) be the V-shaped
loss function. Then, the Bayes classifier h∗ is mono-
tone if and only if C(k) is convex.

The proof can be found in (Kot lowski & S lowiński,
2008). Theorem 1 immediately leads to the following:
Corollary 1. Let L(y, k) = |y−k|p with p ≥ 0, be the
loss function and let K ≥ 3. Then, the Bayes classifier
is monotone if and only if p ≥ 1.

We assumed K ≥ 3, since in case K = 2, every V-
shaped loss is convex. Corollary 1 implies that 0-1
loss (p → 0) does not lead to the monotone Bayes
classifier under the stochastic dominance assumption,
while absolute error loss (p = 1) and squared-error loss
(p = 2) do ensure monotonicity.

For the rest of the paper we will restrict the analysis to
the absolute error loss, L(y, k) = |y−k| (however, most
of the results presented in this paper can be stated for
a more general form of the loss function). Absolute
error loss has a unique property: its minimizer (Bayes
classifier) does not depend on a particular encoding of
class labels. Indeed, it is known, that for a given x, the
absolute error loss is minimized by the median of the
conditional distribution P (y|x). The median in the
ordered set does not depend on the particular values
of the elements in the set and takes only the order into
account. Thus, although it seems that absolute error
imposes a distance measure between the class labels
(equal to the difference between their indices), it is
invariant under arbitrary monotone (order-preserving)
transformation of the labels.

3. Binary Decomposition

We introduce a method for learning with monotonic-
ity constraints consisting of three subsequent phases:
decomposition into binary subproblems, data mono-
tonization and rule learning. The phases will be cov-
ered in detail in the next three sections. In this section
we describe the first phase: decomposition of the gen-
eral K-class problem into a sequence of K − 1 binary
subproblems.

To simplify further expressions we always assume Y =
{−1, 1} when concerning the binary problem. Sup-

pose we have an access to the learning algorithm for
binary classification problem, which can produce clas-
sifier h(x) ∈ {−1, 1} with small 0-1 loss L(k, y) =
1[y 6= h(x)] (for y ∈ {−1, 1}), where 1[C] is the in-
dicator function, equal to 1 if predicate C holds and
0 otherwise. Let y be the class label and let us define
yk = sgn (y − k) for k = 2, . . . ,K. Therefore, yk = 1
corresponds to the class “at least k”, while yk = −1
corresponds to the class “at most k−1”. We trainK−1
binary classifiers using the available algorithm, where
the k-th classifier (k = 2, . . . ,K) hk(x) is trained on
the dataset with original class labels y substituted by
labels yk. This dataset will be denoted Dk. We com-
bine binary classifiers into a single K-class classifier in
the following way:

h(x) = 1 +
K∑
k=2

1[hk(x) = 1]. (2)

We show that the final classifier makes an error not
greater then the sum of errors of the base classifiers:

Theorem 2. It holds:

|y − h(x)| ≤
K∑
k=2

1[yk 6= hk(x)]

Proof. To abbreviate the notation, we denote hk(x) by
hk and h(x) by h. We have:

K∑
k=2

1[yk 6= hk] =
y∑
k=2

1[hk = −1] +
K∑

k=y+1

1[hk = 1]

≥ (y − h)1[h < y] + (h− y)1[h > y] = |y − h|

Thus, we see that in order to obtain accurate com-
posite classifier h, all we need is an accurate learning
algorithm for binary problems with small 0-1 loss.

In classification with monotonicity constraints we usu-
ally require that the classifier h(x) must be monotone.
It follows directly from (2) that if the binary classifiers
hk(x) are all monotone, then so is h(x).

4. Data Monotonization

Let us consider a nonparametric approach to classifica-
tion with monotonicity constraints. By this we mean
a problem of minimizing the empirical risk in the class
of all monotone functions. The problem can be solved
efficiently by realizing that we need to consider the val-
ues of function only at training points xi, i = 1, . . . , n.
Thus, for the k-th binary problem we end up with the
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following formulation:

minimize
n∑
i=1

|yik − di|

subject to xi � xj → di ≥ dj i, j = 1, . . . , n
di ∈ {−1, 1} i = 1, . . . , n, (3)

where yik are the labels from the dataset Dk and di are
optimization variables. The problem has already been
considered several times in various contexts (Dykstra
et al., 1999; Chandrasekaran et al., 2005; Kot lowski
et al., 2008; Kot lowski & S lowiński, 2008; Barile &
Feelders, 2008). Although variables di are integer, the
constraint matrix is totally unimodular, so that inte-
ger constraints can be relaxed and the problem can be
solved efficiently via the linear programming. More-
over, it was shown that the complexity of the linear
program can be significantly reduced (Kot lowski et al.,
2008; Kot lowski & S lowiński, 2008).

Optimal values of variables di, denoted y′ik, can be
regarded as new class labels for the training objects.
Thus, the problem can be interpreted as follows: rela-
bel (reassign) the smallest number of objects to make
the dataset monotone. The dataset with new labels
y′ik replacing the original labels yik will be denoted
D′k. The process of relabeling will be called mono-
tonization. The main idea of how monotonization can
be used is to apply the method to the original data,
monotonize it and pass it to the learning algorithm.
The reason behind this method is to remove inconsis-
tencies in the data using the only available objective
information about the problem: the monotonicity con-
straints. Later we justify the procedure from statisti-
cal point of view by showing how data monotonization
influences the classifiers’ performance.

Interestingly, sometimes nonparametric approach is
enough to classify with high accuracy. For instance,
if P (x, y) has density, one can show (Devroye et al.,
1996) that empirical risk minimization in the class of
monotone functions is strongly consistent. Unfortu-
nately, the speed of convergence can be very slow, es-
pecially when m (the dimension of the attribute space)
is high. Moreover, one needs to remember large part
of the dataset D′k to classify. Thus, to solve those is-
sues we “compress” the monotonized data with rule
ensemble, as it is described in the next section.

5. Learning Rule Ensemble

In the last phase, we use monotonized data to train
a classifier, which decreases training error down to 0.
The classifier can be though of as a compression of the
monotonized data. We assume the classifier has the

form of rule ensemble.

Rules are simple and interpretable logical statements
of the form: “if conditions then response”, which can
be treated as simple classifiers that give a constant re-
sponse to examples satisfying the condition part, and
abstain from the response for other examples. Let Xj

be the set of all possible values (domain) for the j-th
attribute. Condition part of the rule consist of ele-
mentary conditions of the form xj ≥ sj or xj ≤ sj
for some sj ∈ Xj . If all conditions are satisfied, rule
response is 1 or −1, otherwise rule returns 0. Thus,
rule will be treated as a function, which has one of the
two following forms:

r(x) = 1[xj1 ≥ sj1 ∧ xj2 ≥ sj2 ∧ . . . ∧ xjq ≥ sjq ]
r(x) = −1[xj1 ≤ sj1 ∧ xj2 ≤ sj2 ∧ . . . ∧ xjq ≤ sjq ]

One can show that only that kinds of rules are ac-
ceptable if we do not want to violate monotonicity
constraints; indeed, both kinds of rules are monotone
functions. The first kind will be called positive rule,
while the second kind – negative rule.

The rule ensemble f(x) is a convex combination of
rules treated as base classifiers:

f(x) =
T∑
t=1

atrt(x),

where at ≥ 0 and
∑
t at = 1. Object x is classi-

fied to the class indicated by the sign of f(x), i.e.
h(x) = sgn (f(x)). The convex combination has a very
simple interpretation as a voting procedure: positive
rules vote for the positive class, while negative rules
– for the negative class and x is assigned to the class
with a higher vote. One can show that if all rules are
monotone then f(x) is a monotone function.

Consider k-th binary problem. As soon as the data
are monotonized, we train rule ensemble fk(x) on D′k
such that it makes no errors on the dataset. In other
words, y′ikfk(xi) > 0 for all i = 1, . . . , n, and we say
that such rule ensemble separates D′k. To prove the
validity of our procedure, we must show that a mono-
tone rule ensemble separating the data always exists.
It appears that the existence of a separating rule en-
semble is strictly related to the monotonicity of the
dataset.

Theorem 3. There exists a monotone rule ensemble
f(x) separating a dataset D = {(x1, y1), . . . , (xn, yn)},
yi ∈ {−1, 1}, if and only if D is monotone, i.e. for
each i, j = 1, . . . , n, we have xi � xj → yi ≥ yj.

Proof. From the monotonicity of f(x) it follows that
xi � xj → f(xi) ≥ f(xj) → sgn (f(xi)) ≥
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sgn (f(xj)). Moreover, f(x) separates D so that we
have sgn (yif(xi)) = sgn (yjf(xj)) = 1. Since yi ∈
{−1, 1}, it follows that yi ≥ yj , so D is monotone.

Assume D is monotone. Then, for each xi such that
yi = 1 we construct a rule r(x) = 1[x � xi] with ai =
1/n; this is a valid positive rule. Similarly, for each xi
with yi = −1 we construct a rule r(x) = −1[x � xi]
with ai = 1/n. Since D is monotone, positive rules
have nonzero response only for the objects with yj = 1,
while negative rules – only for the objects with yj =
−1. Hence, rule ensemble makes no errors on D.

Since D′k is monotone, we are guaranteed that a sep-
arating monotone rule ensemble exists. Moreover, to
create separating rule ensemble we must first mono-
tonize the data.

The algorithm we are using for learning rule ensem-
ble is a version of LPBoost (Demiriz et al., 2001) with
rule used as a base classifier; therefore, our method
will be called LPRules. Using LPBoost schema has
several important advantages. First of all, LPBoost
is based on linear programming which produces very
sparse optimal solutions. In our case this results in a
small number of nonzero coefficients at. Sparsity of
the ensemble is very desired as it improves the com-
prehensibility of the model. Secondly, LPBoost always
converges to the optimal solution in a finite number of
steps. By increasing the penalty for misclassification
in the algorithm we are sure that the algorithm con-
verges to the solution with no training errors if such
exists; however, from Theorem 3 we know that such
a solution always exists, so that we end up with the
following corollary:

Corollary 2. LPBoost always returns monotone rule
ensemble separating the monotonized dataset D′k.

Finally, LPBoost is known to directly maximize the
minimum margin, which guarantees a good out of sam-
ple accuracy of the ensemble. This is considered in
details in the next section.

6. Generalization Bound

Let us consider the binary-class case Y = {−1, 1} and
let f(x) be some real-valued function, such that object
x is classified according to the sign of f(x), h(x) =
sgn (f(x)). We call value yf(x) a margin for x. It is a
measure of prediction confidence and is positive if and
only if x is correctly classified.

The margin theorem (Schapire et al., 1998; Koltchin-
skii & Panchenko, 2002) bounds the expected risk of
h(x) = sgn (f(x)) in terms of its margin distribution.

Here we cite the result obtained by (Koltchinskii &
Panchenko, 2002):
Theorem 4. Let f(x) =

∑
j ajbj(x) be the ensemble

of classifiers bj(x) ∈ {−1, 1}, bj ∈ B, where aj are
non-negative and

∑
j aj = 1; let h(x) = sgn (f(x)).

Then, with probability 1 − δ, for every γ ∈ (0, 1] the
following inequality holds:

EL(y, h(x)) ≤ED1[yf(x)≤γ]+M

(√
d

nγ2
+

√
log 1

δ

n

)
,

(4)
where d is the Vapnik-Chervonenkis dimension of the
class B and M is some universal constant.

Thus, with high probability the expected 0-1 loss is
bounded by the fraction of objects from the training
set with margin smaller than γ plus some complexity
term which increases with decreasing value of γ.

We would like to apply Theorem 4 to our learning algo-
rithm, but there are three problems which need to be
addressed. Firstly, rules return values in the set {0, 1},
rather than {−1, 1}, but this is only a matter of rescal-
ing the coefficient and does not cause any trouble. Sec-
ondly, we must extend the theorem to the multi-class
problem with absolute error loss. We do it by bound-
ing the loss of the composite classifier in terms of sum
of the losses of binary classifiers. Finally, the ensemble
is learned on the monotonized data, which are not i.i.d.
anymore. We will by-pass this problem by noticing
that the ensemble learned on monotonized data makes
on the original data no more margin errors than the
number of relabeled objects.

Moreover, we do not want simply to give a generaliza-
tion bound for our method, rather we want to show
the benefit we gain from learning on the monotonized
data. It follows that in the presence of monotonic-
ity constraints, the risk of the ensemble separating the
data with large margin remains close to the accuracy
of Bayes classifier.
Theorem 5. Assume P (x, y) is monotonically con-
strained. Let h(x) be the final classifier and let fk(x),
k = 2, . . . ,K, be the k-th rule ensemble trained on the
monotonized data set D′k., Then, with probability at
least 1− δ for every γ2, . . . , γK :

EL(y, h(x))− L∗ ≤ (5)

M

2(K − 1)

√
log 2(K−1)

δ

n
+
√
m

n

K∑
k=2

1
γk

 .

for some universal constant M .

Before we give the proof, notice that Theorem 5 re-
lates the regret, i.e. difference between the risk of the
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composite classifier and the lowest possible risk, to the
fraction of margin errors on the monotonized data set
plus some complexity terms which depend on γk. Due
to monotonicity constraints and data monotonization
we are able to compare the behavior of our algorithm
to the Bayes classifier, in opposite to ordinary margin
theorems, in which one compares the fraction of mar-
gin errors to the expected accuracy of the ensemble.
Proof. We start with a transformation of rules (which
can abstain from the response) to classifiers with out-
put in {−1, 1} and with well-defined VC dimension.
Let f(x) =

∑T
t=1 atrt(x). With each rule rt(x) we as-

sociate a classifier gt(x) = 2rt(x)− 1 for positive rules
and gt(x) = 2rt(x) + 1 for negative rules. Notice that
gt(x) ∈ {−1, 1} and gt(x) are axis-parallel cones. The
class of axis-parallel cones has VC dimension m (De-
vroye et al., 1996). We add to the ensemble one more
cone g0(x) = sgn

(∑
t∈T+ at −

∑
t∈T− at

)
which covers

the whole X and the subsets T+ and T− correspond
to the positive and negative rules, respectively. Then,
one can easily show that

∑T
t=0 ctgt(x) =

∑T
t=1 atrt(x),

where ct = at/2 for t ≥ 1 and c0 = 1
2 |
∑
t∈T+ at −∑

t∈T− at|. Hence, we see that each rule ensemble has
an equivalent cone ensemble. Finally, one can show
that ` =

∑
t ct ≤

∑
t at = 1, which means that weights

ct must be divided by ` to be normalized to 1. But
this means that if the margin of the normalized cone
ensemble equals to z, then the margin of rule ensemble
equals to z/`. Thus, the fraction of margin errors for
the normalized cone ensemble upperbounds the frac-
tion of margin errors for the normalized rule ensemble.
Thus, we can prove the theorem for an ensemble of
cones, and it will also hold for a rule ensemble.

The k-th ensemble fk(x) makes no errors on the mono-
tonized dataset D′k. Since Dk and D′k differ only on
the relabeled objects, the ensemble makes on Dk a
margin error EDk

1[ykhk(x) ≤ γk] not greater than
EDk

1[yk 6= y′k]. Since it equals (up to a constant n−1)
to the objective function of the monotonization prob-
lem (3), it is minimized by values y′ik in the class of
all monotone functions. But according to Theorem 1
Bayes classifier h∗k(x) is monotone, which means that:

EDk
1[ykhk ≤ γk] ≤ EDk

1[yk 6= h∗k],

where we abbreviate hk(x) as hk. Using Hoeffding’s
bound (Devroye et al., 1996), for every δ′ ∈ (0, 1):

P

(
EDk

1[yk 6= h∗k]− E1[yk 6= h∗k] ≥

√
log 1

δ′

2n

)
≤ δ′.

From Theorem 4 we have with probability at most δ′′:

EL(yk, hk) ≥ EDk
1[ykfk ≤ γ]+M

√ d

nγ2
k

+

√
log 1

δ′′

n

 .

By setting δ′ = δ′′ = δ
2(K−1) , we have with probability

at most δ′ + δ′′ = δ
K−1 :

EL(yk, hk)≥E1[yk 6=h∗k]+M

(√
d

nγ2
k

+2

√
log 2(K−1)

δ

n

)
(6)

To bound the risk in a general K-class case, notice that
with probability at most δ there exists k ∈ {2, . . . ,K}
such that (6) holds. But this means that with proba-
bility at most δ:

K∑
k=2

EL(yk, hk) ≥
K∑
k=2

E1[yk 6= h∗k]

+ M

 K∑
k=2

√
d

nγ2
k

+ 2(K − 1)

√
log 2(K−1)

δ

n

 .(7)

Using the fact that |y− h∗(x)| =
∑K
k=2 1[yk 6= h∗k(x)],

we have L∗ =
∑K
k=2 E1[yk 6= h∗k]. From Theorem 2 we

have E|y − h(x)| ≤
∑K
k=2 E1[ykhk(x) < 0]. Plugging

those expression into (7) proves the thesis.

7. Experimental Results

We verified the efficiency of our method in the com-
putational experiment and compared it with two ex-
isting approaches to classification with monotonicity
constraints and two ordinary classification algorithms.
The experiment is conducted on several real datasets,
for which it is known that there exist monotone rela-
tionships between attribute values and class labels.

Datasets: ESL (employee selection), SWD (social
workers decisions), LEV (lecturers evaluation) and
ERA (Employee Rejection/Acceptance) contain sur-
veys data and were taken from (Ben-David, 1995).
Datasets: Housing (Asuncion & Newman, 2007),
Windsor (Anglin & Gencay, 1996) and DenBosch
(Daniels & Kamp, 1999) are related to house pric-
ing. We discretized the continuous price variable in
Housing and Windsor into four levels containing equal
number of objects (quartiles of the price distribution),
similarly as in (Potharst & Feelders, 2002). The other
three datasets: Car, CPU, Balance, were taken from
UCI repository. A more detailed description of the
data is given in Table 1.

Two algorithms used for comparison are Ordinal
Learning Model (OLM) (Ben-David et al., 1989), the
first method proposed for dealing with monotone data,
and Isotonic Separation (IS) (Chandrasekaran et al.,
2005), an instance-based algorithm which proved to be
very efficient in practice. Moreover, we add two ordi-
nary methods, decision tree J48 and Support Vector
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Table 1. Description of data sets used in experiments.

Data set #attributes #objects #classes
ESL 4 488 8
SWD 10 1000 4
LEV 4 1000 5
ERA 4 1000 8
Housing 8 506 4
Windsor 11 546 4
DenBosch 9 119 2
Car 6 1728 4
CPU 6 209 4
Balance 4 625 3

Machines (SVM) with linear kernel. Unfortunately,
both are designed to minimize 0-1 error, and using
them directly on multi-class problems led to very poor
results in terms of the mean absolute error. There-
fore, we decided to improve its performance and use
it in the ordinal setting by combining it with a simple
approach to ordinal classification proposed by (Frank
& Hall, 2001). This approach works in a very simi-
lar fashion as transformation of the main problem into
K−1 binary problems described in Section 3. The im-
plementations of the methods were taken from Weka
(Witten & Frank, 2005).

The error measure was the mean absolute error, esti-
mated in a 10-fold cross validation, repeated 10 times
to improve the replicability of the experiment. To
avoid underestimation, the standard deviation of error
was estimated conservatively, by taking into account
the dependence between the subsequent testing sam-
ples in the repeated cross-validation, as described in
(Nadeau & Bengio, 2003). The results of both average
accuracy and standard deviation are given in Table 2.
For each dataset, the best method, and all methods
within one standard error below the best, are marked
with bold.

Judging by the number of times LPRules is among the
best classifiers, we can conclude that our algorithm
outperforms the other methods tested in the experi-
ment. In particular, an improvement in accuracy was
obtained over the regular classifiers which do not take
into account the domain knowledge. A similar thing
can be observed also for IS algorithm. This supports
our hypothesis, that adapting the learning algorithm
to deal with monotonicity constraints results in im-
proved prediction accuracy. The exception was OLM,
which achieved surprisingly poor results, but this may
be due to the particular implementation that was used.

A separate issue is a matter of comprehensibility of our
approach. A reasonable measure of comprehensibility
would be the size of the ensemble, i.e. the number of
rules with nonzero coefficient at. In Table 3 an average

Table 2. Experimental results: for each dataset, and each
classifier, two values are given: mean absolute error (above)
and standard deviation of error (below, starting with ±).
For each dataset, the best method and all methods within
one standard error below the best are marked with bold.

Dataset OLM IS LPRules J48 SVM
DenBosch 0.282 0.183 0.168 0.172 0.202

±0.039 ±0.037 ±0.034 ±0.032 ±0.036

ESL 0.371 0.328 0.323 0.369 0.355
±0.024 ±0.023 ±0.024 ±0.022 ±0.023

SWD 0.452 0.442 0.435 0.442 0.435
±0.017 ±0.018 ±0.017 ±0.016 ±0.016

LEV 0.427 0.398 0.396 0.415 0.444
±0.018 ±0.017 ±0.016 ±0.018 ±0.016

ERA 1.256 1.271 1.263 1.217 1.271
±0.031 ±0.034 ±0.033 ±0.032 ±0.029

Housing 0.527 0.286 0.274 0.332 0.314
±0.032 ±0.02 ±0.021 ±0.023 ±0.025

CPU 0.29 0.099 0.073 0.1 0.371
±0.035 ±0.02 ±0.018 ±0.019 ±0.03

Balance 0.224 0.19 0.063 0.271 0.137
±0.02 ±0.017 ±0.009 ±0.021 ±0.017

Windsor 0.576 0.52 0.516 0.565 0.491
±0.028 ±0.028 ±0.026 ±0.025 ±0.026

Car 0.084 0.045 0.03 0.09 0.078
±0.01 ±0.006 ±0.004 ±0.008 ±0.007

Table 3. Average numbers of rules per binary problem.

Data set # rules Data set # rules
ESL 3 Windsor 19.1
SWD 6.7 DenBosch 4.7
LEV 3.2 Car 5.2
ERA 2.6 CPU 4.1
Housing 26.6 Balance 32.2

number of rules per binary subproblem is shown. In
most cases only a few rules are needed, which shows
that our method produces very concise models, simple
to interpret by a domain expert.

8. Summary

We presented LPRules, a rule learning algorithm for
classification problem in the presence of monotonicity
constraints. The algorithm is based on the statistical
analysis of the problem, which relates monotonicity
constraints to the constraints imposed on the proba-
bility distribution. LPRules consists of three phases:
first, a general multi-class problem is decomposed into
a sequence of binary subproblems; next, the data for
each binary subproblem is monotonized using a non-
parametric approach exploiting the class of all mono-
tone functions; finally, a rule ensemble is generated
using LPBoost method, so that it makes no errors on
the monotonized data. The ideas standing behind all
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three phases were theoretically justified. In particu-
lar, we proved that in the presence of monotonicity
constraints, the risk of the ensemble separating the
data with large margin remains close to the accuracy
of Bayes classifier. The performance of our method
was successfully verified in the computational experi-
ment.
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Dembczyński, K., Greco, S., Kot lowski, W., &
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