
Ranking with Ordered Weighted Pairwise Classification

Nicolas Usunier nicolas.usunier@lip6.fr
David Buffoni david.buffoni@lip6.fr
Patrick Gallinari patrick.gallinari@lip6.fr

Laboratoire d’Informatique de Paris 6, 104, avenue du Président Kennedy, 75016 Paris, France

Abstract

In ranking with the pairwise classification ap-
proach, the loss associated to a predicted
ranked list is the mean of the pairwise classifi-
cation losses. This loss is inadequate for tasks
like information retrieval where we prefer
ranked lists with high precision on the top of
the list. We propose to optimize a larger class
of loss functions for ranking, based on an or-
dered weighted average (OWA) (Yager, 1988)
of the classification losses. Convex OWA ag-
gregation operators range from the max to
the mean depending on their weights, and
can be used to focus on the top ranked ele-
ments as they give more weight to the largest
losses. When aggregating hinge losses, the
optimization problem is similar to the SVM
for interdependent output spaces. Moreover,
we show that OWA aggregates of margin-
based classification losses have good general-
ization properties. Experiments on the Letor
3.0 benchmark dataset for information re-
trieval validate our approach.

1. Introduction

We address the problem of learning scoring functions,
motivated by ranking tasks in Information Retrieval
(IR) (but not limited to them). Considering the ex-
ample of document retrieval, when given a query, the
scoring function associates a scalar to each document
(the score). The documents are then presented to the
user, in decreasing order of scores. The quality of this
sorted list of documents depends on the position (the
rank) of the documents that are relevant to the query;
and since the user considers only the few first docu-
ments, it is desirable to have a high precision on top

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

scored documents. Learning to rank is the problem of
choosing an effective scoring function using a training
set of queries for which relevant documents are known.

These last few years, there has been a large amount
of work on learning to rank, especially on the problem
of obtaining a high precision on the top of the list.
Existing approaches fall into three categories. In the
first category, the methods define smooth approxima-
tions of quality measures used in IR, in a regression
framework (Cossock & Zhang, 2006) or using proba-
bility distributions on predicted ranks (Taylor et al.,
2008). In the second category, the methods use convex
upper bounds on these metrics, using boosting (Xu &
Li, 2007), or as a large-margin structured output pre-
diction problem (Yue et al., 2007; Xu et al., 2008; Le
& Smola, 2007). Finally, the third category of ap-
proaches define new multivariate loss functions, easier
to optimize, that consider the vector of scores pro-
duced for a given query (Burges et al., 2006; Cao et al.,
2007). All these methods perform well in practice.

These recent works share the same goal: going beyond
the historical ranking framework, the pairwise classi-
fication approach (see e.g. (Freund et al., 2003; Har-
Peled et al., 2002)). In our context, this approach can
be explained as follows: the position of a given relevant
element in the sorted list can be computed by counting
the number of irrelevant elements that have a higher
score. This count can be carried out by building the
pairs of (relevant, irrelevant) elements, and checking
the sign of the difference of scores.

In the context of information retrieval, convex losses
for ranking were created by taking the mean of the
pairwise classification losses (Joachims, 2002; Freund
et al., 2003; Cao et al., 2006). Learning with such a
loss function is equivalent to optimizing the mean rank
of the relevant documents. In this context, the limit
of the pairwise approach is that the mean rank does
not provide information on the top of the list. The
pairwise approach has also been used in the context of
multiclass classification, considering, for each exam-



Ranking with Ordered Weighted Pairwise Classification

ple, pairs of the form (target class label, other label).
The 0/1-loss can then be upper bounded by taking the
maximum of the pairwise losses (see e.g. (Crammer &
Singer, 2001)). This loss focuses on the top ranked el-
ement, but it is still inadequate for IR tasks because it
does not provide any rank information when a relevant
element is not in the first position. Overall, the limits
of the pairwise approach in ranking does not seem to
be a consequence of considering each pair individually,
but to the small expressivity of the max and mean
aggregation operators.

In this paper, we present an extension of the pair-
wise classification approach. Similarly to the origi-
nal setting, we start from pairwise losses, and aggre-
gate them. However, instead of using the max or
the mean, we use convex Ordered Weighted Averag-
ing (OWA) operators (Yager, 1988). These operators
are parameterized by a set of decreasing weights αj ,
and make a weighted sum of the classification losses,
where the weight αj is associated to the j-th highest
loss. Depending on their weights, convex OWA oper-
ators range from the max to the mean operators, thus
strictly extending existing pairwise classification ap-
proaches. Choosing an OWA operator between these
two extreme cases leads to optimizing an error that
focuses on the top-ranked elements, as required in IR
tasks.

The rest of the paper is organized as follows. We
present basic definitions in section 2, and define the
ordered weighted pairwise classification (OWPC) ap-
proach in section 3. We consider in section 4 a large-
margin formulation of OWPC, and show that existing
optimization algorithms for structured output predic-
tions can be used for training linear scoring functions.
We show in section 5 that the notion of margin can
be extended to our framework, yielding margin-based
generalization error bounds. We present the exper-
imental evaluation of our algorithm in section 6 on
the Letor 3.01 benchmark dataset for information re-
trieval. The related work is discussed in section 7.

2. Framework

2.1. Notations and Definitions

In the rest of the paper, bold characters like X, x and
y denote sequences. Normal fonts and subscript in-
dexes like Xj and xj denote the j-th element of the
corresponding sequence (X and x). When the con-
text is clear, we will consider sequences as sets, and
use normal fonts without subscript index to denote a

1http://research.microsoft.com/en-
us/um/beijing/projects/letor/index.html

value (as in x ∈ x). The length of a sequence and the
cardinal of a set are denoted with brackets (like in [y]).
{i..j} denotes the interval of integers {i, ..., j}. The in-
dicator function is denoted I, sign(t) def= 2 I(t > 0)−1
is the sign function, [t]+

def= max(t, 0) is the positive
part, Sn is the set of permutations of {1..n}, and 〈., .〉
denotes the dot product. Ex∼µ f(x) denotes the ex-
pectation of some function f for x drawn according to
µ, and Êx∼S f(x) def= 1

[S]

∑
s∈S f(x) denotes the mean

of f over the finite set S.

We consider a standard setting for learning to rank.
The ranking system receives as input an observation
z, which defines a sequence of candidates (or simply
elements) X(z) def=

(
X1(z), ...,X[z](z)

)
(where [z] is

used as a shortcut for [X(z)]). In document retrieval,
z corresponds to the user query, and Xj(z) to the fea-
ture representation of the j-th document. For clarity
in the discussion, we assume a binary relevance of the
candidates: a sequence y contains the indexes of the
relevant candidates (ȳ contains the indexes of the irrel-
evant ones). A score (i.e. real-valued) function f takes
as input the feature representation of a document, thus
f
(
Xj(z)

)
), denoted fj(z) for simplicity, is the score of

the j-th document. The output of the ranking system
is the list of the candidates sorted by decreasing scores.
Given a training set S = (zi,yi)mi=1 of m examples
drawn i.i.d. according to some fixed (but unknown)
distribution µ, learning to rank consists in choosing a
score function f in some predefined set F with low gen-
eralization error, R(f) def= E(z,y)∼µ err(f, z,y), for a
given ranking error function err.

2.2. Ranking error functions

Given an observation z, its relevant candidates y, and
a score function f , the predicted rank of a relevant
element is defined by:

∀y ∈ y, ranky(f, z,y) def=
∑
ȳ∈ȳ

I (fy(z) ≤ fȳ(z)) (1)

This definition of rank2 has lead to the pairwise clas-
sification approach (see e.g. (Har-Peled et al., 2002;
Freund et al., 2003)): I (fy(z) ≤ fȳ(z)) is equal to
I
(
sign

(
fy(z)− fȳ(z)

)
6= 1
)
. It is thus also the error

of the pairwise classifier (y, ȳ) 7→ sign
(
fy(z)− fȳ(z)

)
,

which should predict the class label 1. Given our def-
inition of rank, we will consider the following general
form of ranking error functions:

Definition 1 The ranking error of a real valued func-
2We can notice that this definition of rank ignores the

relative position of relevant elements. It however has little
importance in practice, an is the common definition in the
pairwise classification approach.



Ranking with Ordered Weighted Pairwise Classification

tion f on (z,y) is defined as follows:

err(f, z,y) def=
1

[y]

∑
y∈y

Φ[ȳ] (ranky(f, z,y))

Where, for all n ∈ N∗, there exists a vector αn ∈
[0, 1]n of positive, non-increasing values αn1 ≥ αn2 ≥
... ≥ αnn ≥ 0 with

∑n
j=1 α

n
j = 1 such that:

∀k ∈ {0..n}Φn(k) def=
k∑
j=1

αnj (2)

The function Φn defines the penalty incurred by plac-
ing k irrelevant elements before a relevant one. It is a
non-decreasing functions (as a cumulated sum of pos-
itive values), and the penalty is 0 when the relevant
element is before all irrelevant ones. It takes as spe-
cial case the O/1-loss of multiclass classification (set
α1 = 1 and all other αs to 0), as well as the mean pair-
wise error (set αnj = 1/n for all j) usually considered
in the pairwise approach for learning to rank. More
generally, Φn can define errors that focus more or less
on the top of the list: the penalty incurred by losing
a rank Φn(k + 1) − Φn(k) = αnk+1 decreases with k.
Thus, setting the first weights to high values means
that losing a rank costs a lot at the top of the list,
while losing a rank at the bottom costs less.

3. Ordered Weighted Classification

In this section, we present our framework of Ordered
Weighted Pairwise Classification, and make the link
between the aggregation of pairwise losses and the
ranking errors of definition 1. We start with some
background on Ordered Weighted Averaging Opera-
tors (Yager, 1988).

3.1. Ordered Weighted Averaging

Definition 2 (OWA operator (Yager, 1988))
Let α = (α1, ..., αn) be a sequence of n non-negative
numbers with

∑n
j=1 αj = 1. The Ordered Weighted

Averaging (OWA) Operator associated to α, is the
function owa α : Rn → R defined as follows:

∀t = (t1, ..., tn) ∈ Rn, owa α(t) =
n∑
j=1

αjtσ(j)

where σ ∈ Sn such that ∀j, tσ(j) ≥ tσ(j+1).

In other words, an OWA operator makes a weighted
sum of the tjs. The weight given to tj does not depend
on j, but on the position of tj in the list tσ(1) ≥ tσ(2) ≥
... ≥ tσ(n). Thus the max and the mean are special
cases of OWA operators: for the max, we set α1 = 1
and αj = 0 for j > 1; for the mean, we set αj = 1

n for
all j. In fact, both the max and the mean operators are

OWA with non-increasing weights which, in general,
have the following properties:

Proposition 1 Let α such that
∑n
j=1 αj = 1 and

α1 ≥ α2 ≥ ... ≥ αn ≥ 0. Let t ∈ Rn. Then:

1. owaα(t) = max
σ∈Sn

n∑
j=1

αjtσ(j) = max
σ∈Sn

n∑
j=1

ασ(j)tj

2. t→ owaα(t) is convex

3. If t′ is such that ∀j, tj ≥ t′j , then
owaα(t) ≥ owaα(t′)

The first point is due to the well-known rearrangement
inequality, and directly implies the two other points.
We can now make the link between aggregation of pair-
wise classification losses and the ranking errors. From
now on, when the context is clear, we drop the upper-
script α, and denote owaα(t) by owa

j∈{1..n}
tj .

Proposition 2 Let Φn as in equation (2), and let
α = (αj)nj=1 be its associated non-increasing sequence
of weights. Let owa be the OWA operator with weights
α. Then, for all t ∈ Rn and any convex function
` : R→ R+ such that I(t ≤ 0) ≤ `(t), we have:

1. owa
j∈{1..n}

I(tj ≤ 0) = Φn
( n∑
j=1

I(tj ≤ 0)
)

2. t 7→ owa
j∈{1..n}

`(tj) is convex

3. Φn
( n∑
j=1

I(tj ≤ 0)
)
≤ owa
j∈{1..n}

`(tj)

Proof The first point is the definition of Φn. Points 2
and 3 are direct consequences of proposition 1. 2

3.2. Application to learning to rank

Proposition 2 suggests the use of the following convex
upper bound on the empirical risk of any ranking error
function that satisfies equation (2):

R̂Φ(f, S) def= Ê
(z,y)∼S

1
[y]

∑
y∈y

Φ[ȳ]

(
ranky(f, z,y)

)
≤ Ê

(z,y)∼S

1
[y]

∑
y∈y

owa
ȳ∈ȳ

`
(
fy(z)− fȳ(z)

) (3)

where ` is a non-increasing convex upper bound on
I(t ≤ 0), S =

(
(z1,y1), ..., (zm,ym)

)
is the training



Ranking with Ordered Weighted Pairwise Classification

set, and owa denotes the OWA operator associated to
the weights of the corresponding function Φ[ȳ]

3.

We can immediately notice some interesting special
cases when ` is the hinge loss t 7→ [1− t]+: if the owa
operator is the max (i.e. α1 = 1 in the definition of
Φ), the convex upper bound is exactly the one used in
SVMs for multiclass classification (Crammer & Singer,
2001; Bordes et al., 2007). If the owa operator is the
mean, we recover the standard pairwise setting (see
e.g. (Joachims, 2002)).

In general, the convex loss associates the largest
weights to the largest losses, and thus to the pairs con-
taining the irrelevant elements with the greater scores
(` is non increasing). Consequently, if the weights α
are strictly decreasing, losing ranks at the beginning
of the list cost a lot (each lost rank is associated to a
large weight), while losing a rank on the bottom of the
list costs less, and the weights of the OWA operator
control the weight given to each part of the list.

4. Large-margin formulation

SVM formulation We now show that a regularized
version of the empirical risk of equation (3) using the
hinge loss ` : t 7→ [1− t]+ can be solved using exist-
ing algorithms for structured output spaces (Tsochan-
taridis et al., 2005). We first consider the following op-
timization problem, which generalizes SVMs for mul-
ticlass classification and pairwise ranking:

min
w

1

2
||w||2 +C

X
(z,y)∈S

1

[y]

X
y∈y

owa
ȳ∈ȳ

[1− 〈w,Xy(z)−Xȳ(z)〉]+

To recover an SVM for interdependent output spaces,
we first notice that [1− t]+ = maxb∈{0,1} b(1 − t).
Thus, using proposition 1, we have:

1

[y]

X
y∈y

owa
ȳ∈ȳ

`
`
〈w,Xy(z)−Xȳ(z)〉

´
(4)

= max
σ,b

1

[y]

[y]X
i=1

[ȳ]X
j=1

αjbiσ(j)

`
1−
D
w,Xyi(z)−Xȳσ(j)(z)

E ´
= max

σ,b

˘
∆(z,y)(σ,b)−

˙
w,Ξ(z,y)(σ,b)

¸¯
Where the max is taken over σ ∈ S[ȳ], b =

(bij)i≤[y],j≤[ȳ] ∈ {0, 1}[y]×[ȳ], and:

∆(z,y)(σ,b) def
=

1

[y]

[y]X
i=1

[ȳ]X
j=1

αjbiσ(j) (5)

Ξ(z,y)(σ,b) def
=

1

[y]

[y]X
i=1

[ȳ]X
j=1

αjbiσ(j)

“
Xyi(z)−Xȳσ(j)(z)

”
(6)

3In order to simplify the notations, we deleted the up-
perscript α in the owa operator, but the weights used for
a given example (z,y) ∈ S depend on [ȳ].

We finally obtain:

min
w,ξ

1
2
||w||2 + C

∑
(z,y)∈S

ξ(z,y)

u.c. ∀(z,y) ∈ S, ξ(z,y) ≥ 0

∀(z,y) ∈ S, ∀σ ∈ S[ȳ],∀b ∈ {0, 1}[y]×[ȳ] :〈
w,Ξ(z,y)(σ,b)

〉
≥ ∆(z,y)(σ,b)− ξ(z,y)

(7)

Optimization Problem 7 is formally equivalent to
an SVM for structured outputs with margin rescal-
ing. Existing optimization algorithms like the cutting
plane of (Tsochantaridis et al., 2005) or LaRank (Bor-
des et al., 2007; Bordes et al., 2008) can thus be ap-
plied. We used LaRank, since it is simple to implement
and efficient. Due to lack of space, we omit the details
of the algorithm. The interested reader can refer to
the original LaRank papers for more details.

Computational cost LaRank optimizes the dual
objective of problems similar to (7). Similarly to most
structured output prediction problems, equation (7)
leads to an intractable number of dual variables (at
most [ȳ]! ∗ 2[y]∗[ȳ] for each example (z,y)). The effi-
ciency of LaRank is however guaranteed by maintain-
ing the vector of dual variable extremely sparse: the
authors showed that a (κ, τ)-approximate solution of
the dual can be obtained with O(Cmκτ ) non-zero dual
variables (Bordes et al., 2007) (this bound is indepen-
dent on the true number of dual variables). Sparsity
is achieved using a so-called arg max procedure that
selects the set of non-zero dual variables. In our case,
the argmax procedure is the search for a permutation
σ∗ and a binary vector b∗ such that:

σ∗,b∗ ∈ arg max
σ,b

{
∆(z,y)(σ,b)−

〈
w,Ξ(z,y)(σ,b)

〉}
In practice, only the corresponding values ∆(z,y)(σ,b)
and Ξ(z,y)(σ,b) need to be computed. In our case,
these computations can be done efficiently:

Proposition 3 Fix an example (z,y), a parameter
vector w, and the weights α of the OWA operator. Let:

b∗ij = I
(
1 +

〈
w,Xȳj (z)

〉
> 〈w,Xyi(z)〉

)
σ∗ s.t. ∀j,

〈
w,Xȳσ∗(j)(z)

〉
≥
〈
w,Xȳσ∗(j+1)(z)

〉 (8)

Then:

σ∗,b∗ ∈ arg max
σ,b

{
∆(z,y)(σ,b)−

〈
w,Ξ(z,y)(σ,b)

〉}
Moreover, the cost of computing ∆(z,y)(σ∗,b∗) and
Ξ(z,y)(σ∗,b∗) is in O([z] ln [z] + d[z]), where d is the
dimension of the feature space.



Ranking with Ordered Weighted Pairwise Classification

We omit the full proof of the proposition and the al-
gorithm due to lack of space. To give an intuition of
the result, we can see that equation (8) gives optimal
b and σ using equation (4): b∗ij is fixed to recover the
hinge losses (using [1− t]+ = maxb b(1 − t)), and σ∗

orders the obtained losses in decreasing order. For the
computational cost, O([z] ln [z]) is due to sorting the
elements by decreasing order of scores, and the term
O(d[z]) is due to the computations of the dot prod-
ucts and the vector Ξ(z,y)(σ,b). Overall, the compu-
tational cost of the optimization is similar to other
learning to rank algorithms like (Yue et al., 2007) and
(Le & Smola, 2007).

5. Margin-based error bound

The large margin formulation we consider in problem
(7) tries to achieve a constant margin in all pairs. The
margin theory in binary and multiclass classification
suggests that achieving a large margin on the train-
ing set yields good generalization guarantees (see e.g.
(Schapire et al., 1998)). In this section, we extend
these results to our framework.

To simplify the notations, we consider a simplified
setting: Z is the input space, H is a set of real-
valued measurable functions on Z. µ is a probabil-
ity measure on the product space Zn. The train-
ing set S = (z1, ..., zm) contains m observations, as-
sumed to be drawn i.i.d. according to µ (i.e. ∀i, zi ∈
Zn). Given z ∈ Zn a score function h makes an
error on zj if h(zj) ≤ 0. Given any loss function
` : R → R+, the generalization error of h is defined
by: Ez∼µ owaj∈{1..n} ` ◦ h(zj), and the empirical error
on the set S is defined by: Êz∼S owaj∈{1..n} ` ◦ h(zj).
To make the analogy with our original setting, z is the
sequence of pairs, so zj is a pair (relevant, irrelevant).
h(zj) is the difference of scores between the relevant
and the irrelevant elements of the pair, and µ generates
the observations4.

Our analysis is based on the L∞ covering numbers
(Cucker & Smale, 2002). Given a class of function H
and η > 0, an η-cover of H is a finite set G ⊂ F (if
any) such that ∀h ∈ H,∃g ∈ G, ||h− g||∞ ≤ η, where
||.||∞ is the infinite norm. The covering number at η,
denoted N (H, η) is the cardinal of the smallest η-cover
of F . Moreover, our bound is margin-based: consider-
ing the loss cγ(t) = I (t ≤ γ), the generalization error
will be measured in terms of c0 (the true cost), while
the empirical error will be measured using a margin

4Formally, the only difference with the original setting
is that we have a single relevant element and a constant
number of irrelevant elements per observation. Proving an
error bound in the original setting is technically similar.

penalty γ > 0:

Theorem 4 Let H be a class of real-valued functions
on Z. Let µ be a probability measure on the product
space Zn. Let S be a training set drawn according to
µm. Then, for any γ > 0 and δ ∈]0, 1], we have, with
probability at least 1− δ:

∀h ∈ H, E
z∼µ

owa
j∈{1..n}

c ◦ h(zj) ≤ Ê
z∼S

owa
j∈{1..n}

cγ ◦ h(zj)

+

√
ln (N (H, γ/2)/δ)

2m

When the OWA operator is the max, owaj∈{1..n} cγ ◦
h(zj) corresponds to the notion of margin defined for
multiclass classification (Schapire et al., 1998). We
thus extend the existing results about the margin:
since the covering numbers decrease with γ, the theo-
rem shows that, when aggregating losses with an OWA
operator, achieving a large margin on the individual
pairs will lead to better generalization.

proof sketch Before proving the theorem, we notice
that, for any t and t′ in Rn (proof omitted):[

owa
j∈{1..n}

tj − owa
j∈{1..n}

t′j

]
+

≤
n∑
j=1

[
tj − t′j

]
+

(9)

For any real-valued function r on Z, we denote
Cγµ(r) def= Ez∼µ owaj∈{1..n} cγ ◦ r(zj). We denote
CγS(r) its empirical version. We first notice that for
any z ∈ Z, any θ, γ > 0, and any functions h and g:h

I (h(x) ≤ θ)− I (g(x) ≤ θ + γ)
i

+
≤ I (|h(x)− g(x)| > γ)

(10)

We now fix some γ > 0, and consider the quanti-
ties C0

µ(h) − Cγ/2µ (g) and C
γ/2
S (g) − CγS(h). Applying

to each of them sequentially E t − E t′ ≤ E [t− t′]+,
equation (9) and equation (10), we obtain:

C0
µ(h)− Cγ/2µ (g) ≤

n∑
j=1

P
z∼µj

(|h(z)− g(z)| > γ/2)

C
γ/2
S (g)− CγS(h) ≤

n∑
j=1

P
z∼µ̂Sj

(|h(z)− g(z)| > γ/2)

(11)

Where µj is the marginal distribution of the j-th coor-
dinate according to µ, and µ̂Sj the empirical marginal
distribution on S. Let h ∈ H and let G be a γ/2 -cover
of size finite class of sizeN (F , γ/2). Taking g ∈ G such
that ||h− g||∞ ≤ γ/2, the two right-hand terms of the
inequalities (11) equal 0. We then add the two in-
equalities and apply the error bound on finite function
classes to Cγ/2µ (g)−Cγ/2S (g), the result is obtained. 2



Ranking with Ordered Weighted Pairwise Classification

Table 1. Test performance of OWPC in terms of MAP on
Letor for different setting the the weights. g=1 represents
the constant weights, and gp%=1 the constant weight on the
top p% of the list (all weights equal 0 after the top p%).

TD03 TD04 HP03 HP04 NP03 NP04

owpc g5%
=1 0,278 0,213 0,752 0,690 0,683 0,689

owpc g10%
=1 0,298 0,229 0,743 0,681 0,683 0,678

owpc g=1 0,244 0,232 0,738 0,678 0,676 0,675

Table 2. Test MAP of OWPC and Letor baselines. g/ cor-
responds to linearly decreasing weights, gAll to weights cho-
sen on the validation set.

TD03 TD04 HP03 HP04 NP03 NP04
RSVM 0.263 0.224 0.741 0.668 0.696 0.659
SVMmap 0.245 0.205 0.742 0.718 0.687 0.662
Adarank 0.228 0.219 0.771 0.722 0.678 0.622
ListNet 0.275 0.223 0.766 0.690 0.690 0.672

owpc gAll 0.282 0.227 0.745 0.726 0.680 0.690

owpc g/ 0.290 0.229 0.757 0.726 0.685 0.683

6. Experiments

In this section, we present our experiments on the
Letor 3.0 benchmark datasets5 (Liu et al., 2007). We
report results on the 6 .GOV datasets6, named TD
2003, TD 2004, HP 2003, HP 2004, NP 2003 and NP
2004. The data was collected from various document
retrieval competitions taking place in 2003 and 2004.
Each dataset contains between 50 and 150 queries with
at most 1000 labeled documents per query. For each
query, each document has a vectorial representation
of 60 features commonly used in information retrieval.
A detailed description of the datasets can be found
on Letor’s Website. Each dataset contains five folds.
Each fold contains a training set (3/5 of the queries),
a validation set (1/5) and a test set (1/5). The queries
used for training, validating and testing vary from one
fold to the other. The evaluation is carried out with
two standard metrics in IR: the Mean Average Pre-
cision (MAP) and the Normalized Discounted Cumu-
lated Gain (NDCG) (see e.g. (Manning et al., 2008)).

Definition of the weights Using the Ordered Pair-
wise Classification (OWPC) approach requires the def-
inition of the weights used in the OWA operator. We
restricted ourselves to simple weighting schemes of
the following form: αj = g(j, n)/

∑n
k=1 g(k, n), where

g : N∗2 → R+ is called a generator function, and n is
the number of irrelevant documents for the considered

5http://research.microsoft.com/en-
us/um/beijing/projects/letor/index.html

6We do not report results for the OHSUMED dataset
since we limited ourselves to binary relevance judgements.

query7. We considered three kinds of generator func-
tions: (1) constant weight on the top p% of the list,
denoted gp%=1 : gp%=1 (j, n) = 1 if j/n ≤ p% and 0 oth-
erwise. (2) linearly decreasing weights: denoted g/:
g/(j, n) = 1/j. (3) exponentially decreasing weights:
denoted gp%exp: g

p%
exp(j, n) = 2−100/p∗j/n (The weight is

divided by 2 every p% of the list).

Experimental setup We present two kinds of ex-
periments: (1) the weights are fixed before seeing the
data, (2) the weights are considered as an hyperpa-
rameter of the algorithm and are selected on the vali-
dation set. In all cases, for a given weighting scheme
and for each fold, the hyperparameter C (equation
(7)) is chosen among {10−3, 10−2, ..., 103} using the
MAP score on the validation set. When the weights
are considered as a hyperparameter, the optimal value
of C is first chosen for each generator function, and
the one achieving the best MAP on the validation
set is chosen. In that situation, the following gen-
erator functions were used: the linearly decreasing
weights (g/), the constant weights on the top p% (gp%=1 )
and the exponentially decreasing weights (gp%exp) with
p ∈ {5, 10, 20}, and an additional run g=1

def= g100
=1 ,

corresponding to standard pairwise classification.

Influence of the weights We first present a simple
experiment to show the effect of focusing on the top
p% of the list (with a constant weight, i.e. the gp%=1

generator functions). The test performance in terms
of MAP on the 6 datasets are reported in table 1. For
readability, we only included p = 5%, p = 10% and the
constant weights (the g=1 generator function). g=1 is
our baseline since it corresponds to the standard mean
pairwise error. As expected, focusing on the top of the
list yields a significant improvement: focusing on the
top 10% of the list yields a better MAP than g=1 on
5 datasets out of 6, and focusing on the top 5% of the
list yields even better results on 4 out of 6 datasets.

Comparison to other algorithms Tables 2, 3 and
4 show the test performance of OWPC in terms of
MAP, NDCG@1 and NDCG@3 on the six datasets.
Due to space limitations and for better readability,
we only report the results of the linearly decreasing
weights g/, which tend to have the best overall valida-
tion scores, and the results of the run gAll where the
weights are chosen on the validation set.

We also report results of state-of-the-art rank-
ing algorithms: RankingSVM (Joachims, 2002),

7Recall that the weights depend on the number of ir-
relevant documents for the query due to the normalization
constraint

Pn
j=1 αj = 1.



Ranking with Ordered Weighted Pairwise Classification

Table 3. Test NDCG@1 of OWPC and Letor baselines.

TD03 TD04 HP03 HP04 NP03 NP04
RSVM 0.320 0.413 0.693 0.573 0.580 0.507
SVMmap 0.320 0.293 0.713 0.627 0.560 0.520
Adarank 0.360 0.427 0.713 0.587 0.560 0.507
ListNet 0.400 0.360 0.720 0.600 0.567 0.533

owpc gAll 0.420 0.333 0.727 0.627 0.567 0.560

owpc g/ 0.440 0.453 0.720 0.613 0.580 0.560

Table 4. Test NDCG@3 of OWPC and Letor baselines.

TD03 TD04 HP03 HP04 NP03 NP04
RSVM 0.344 0.347 0.775 0.715 0.765 0.750
SVMmap 0.320 0.304 0.779 0.754 0.767 0.749
Adarank 0.291 0.369 0.790 0.751 0.716 0.672
ListNet 0.337 0.357 0.813 0.721 0.758 0.759

owpc gAll 0.342 0.349 0.782 0.808 0.737 0.775

owpc g/ 0.361 0.371 0.794 0.800 0.731 0.759

SVMMAP (Yue et al., 2007), Adarank 8 (Xu & Li,
2007) and ListNet (Cao et al., 2007). The results of
these algorithms are publicly available on Letor’s Web-
site9. In the tables, the results of OWPC are in bold
if they are better than the baselines, and the result of
the best baseline is in bold if outperforms at least one
OWPC.

The run with linearly decreasing weights (g/) outper-
forms the baselines (or give equal results) on 4 out of
6 datasets on the three measures (5/6 for NDCG@1).
These results prove the relevancy of the OWPC for
ranking, but also that the linearly decreasing weights
may be a good default choice for the generator func-
tion. The run with weights chosen on the validation set
(gAll) outperforms the baselines (or give equal results)
on 4 out of 6 datasets in terms of MAP and NDCG@1
measures. It gives similar results as ListNet in terms
of NDCG@3. This proves, once again, that the OWPC
approach gives state-of-the-art results. In comparison
to the linearly decreasing weights, the run gAll tends
to be have a lower MAP and NDCG@1. This is due to
some overfitting on the validation sets, since these sets
are rather small and the number of compared models
for the choice of gAll is very high.

7. Related work

The idea of weighting losses has already been used
in (Cao et al., 2006) and (Cossock & Zhang, 2006).

8For the AdaRank algorithm, we report the results of
AdaRankmap in terms of MAP, and AdaRankndcg when
using the NDCG.

9The results for other algorithms are available on
Letor’s Website. Due to space limitations, we chose the
4 algorithms with the best overall performance.

However, in these works, the weights are associated to
individual losses prior to learning, and consequently
do not depend on the ranks predicted by the function
during training. We may also notice that in our con-
text of binary relevance judgements, the weights used
in (Cao et al., 2006) are the special case of our method
when constant weights are used (i.e. αj = 1

[ȳ] , for all
j, for a given query (z,y)).

The SVM for structured output has been used in the
context of ranking in (Yue et al., 2007; Xu et al., 2008;
Le & Smola, 2007). In these works, the margin rescal-
ing function ∆ (see equation (7)) is any function, and
the feature map they use (Ξ in equation (7)) is devel-
opped independently of the rescaling factor. In con-
trast, in our approach, both the feature map and the
rescaling factor are implied by the loss function we
defined. They have the advantage of being extremely
general (able to optimize a convex upper bound on any
quality measure, using a suitable margin rescaling fac-
tor). On the other hand, this upper bound can be very
loose (Do et al., 2008), and there is little theoretical
evidence on how to make the feature map10.

In contrast to the above works, we proposed to opti-
mize a function which is not directly related to stan-
dard evaluation measures used in IR. In that sense,
we follow (Burges et al., 2006; Cao et al., 2007), where
the authors propose loss functions that mimic the ba-
sic behavior of standard evaluation measures, but are
easier to handle (training can be efficiently carried out
with gradient descent). Since LaRank has proved to
be very effective on large scale structured prediction
tasks (Bordes et al., 2008), it would also be interesting
to investigate its large-scale behavior when optimiz-
ing our ranking loss. Unfortunately, the benchmark
datasets of Letor are too small to explore this.

In terms of generalization, we obtained an interpreta-
tion in terms of the margin theory. Error bounds for
ranking in the context of IR have been shown for reg-
ularized empirical risk minimization methods for some
pairwise approaches (Lan et al., 2008) and importance
weighted regression (Cossock & Zhang, 2006), and
with Rademacher averages for ListNet (Liu & Lan,
2008). However, to the best of our knowledge, the
notion of margin was not recovered for ranking algo-
rithms in the context of IR.

10(Le & Smola, 2007) consider ranking as predicting a
permutation, and use a weighting scheme similar to OWPC
(in fact, the score associated to the predicted permutation
is an OWA aggregation of the documents scores). Although
the approaches are equivalent in the multi-class classifica-
tion case, they are not related in general (e.g. our feature
map Ξ depends on two discrete components σ and b, while
their feature map only depends on a permutation).



Ranking with Ordered Weighted Pairwise Classification

8. Conclusion

We presented the ordered weighted pairwise classifica-
tion approach to ranking. It extends traditional ap-
proaches to ranking and multi-class classification, and
allows to define convex loss functions that focus on the
top of the list. The approach obtains state-of-the-art
results on a benchmark dataset for learning to rank.

Acknowlegments

The authors thank Lucie Galand for the discussions
on OWA operators. This work was partly funded by
the ANR (CADI project), and by the EU PASCAL2
network of excellence.

References

Bordes, A., Bottou, L., Gallinari, P., & Weston, J.
(2007). Solving multiclass support vector machines
with larank. Proc. of the Int. Conf. on Mach. Learn.
(pp. 89–96).

Bordes, A., Usunier, N., & Bottou, L. (2008). Sequence
labelling svms trained in one pass. Proc. of the Eur.
Conf. on Mach. Learn. and Principles and Practice
of Knowledge Discovery in Databases (pp. 146–161).

Burges, C. J. C., Ragno, R., & Le, Q. V. (2006). Learn-
ing to rank with nonsmooth cost functions. Proc. of
Adv. in Neural Inf. Processing Syst. (pp. 193–200).

Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., & Hon,
H.-W. (2006). Adapting ranking svm to document
retrieval. Proc. of the 29th SIGIR Conf. on Res. and
Devel. in Inf. Ret. (pp. 186–193).

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H.
(2007). Learning to rank: from pairwise approach to
listwise approach. Proc. of the Int. Conf. on Mach.
Learn. (pp. 129–136).

Cossock, D., & Zhang, T. (2006). Subset ranking using
regression. Proc. of Comp. Learn. Theory (pp. 605–
619).

Crammer, K., & Singer, Y. (2001). On the algorith-
mic implementation of multiclass kernel-based vec-
tor machines. J. of Mach. Learn. Res., 2, 265–292.

Cucker, F., & Smale, S. (2002). On the mathematical
foundations of learning. Bulletin of the American
Mathematical Society, 39, 1–49.

Do, C. B., Le, Q., Chapelle, O., & Smola, A. (2008).
Tighter bounds for structured estimation. Proc. of
Adv. in Neural Inf. Processing Syst. (pp. 281–288).

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y.
(2003). An efficient boosting algorithm for combin-
ing preferences. J. of Mach. Learn. Res., 4, 933–969.

Har-Peled, S., Roth, D., & Zimak, D. (2002). Con-
straint classification for multiclass classification and
ranking. Proc. of Adv. in Neural Inf. Processing
Syst. (pp. 785–792).

Joachims, T. (2002). Optimizing search engines us-
ing clickthrough data. Proc. of the Int. Conf. on
Kwoledge Discovery and Data Mining (pp. 133–142).

Lan, Y., Liu, T.-Y., Qin, T., Ma, Z., & Li, H. (2008).
Query-level stability and generalization in learning
to rank. Proc. of the Int. Conf. on Mach. Learn.
(pp. 512–519).

Le, Q. V., & Smola, A. J. (2007). Direct optimization
of ranking measures (Technical Report). NICTA.

Liu, T.-Y., & Lan, Y. (2008). Generalization anal-
ysis of listwise learning-to-rank algorithms using
rademacher average (Technical Report MSR-TR-
2008-155). Microsoft Res.

Liu, T.-Y., Xu, J., Qin, T., Xiong, W., & Li, H. (2007).
Letor: Benchmark dataset for research on learning
to rank for information retrieval. Proc. of SIGIR’07
workshop on Learning to Rank for Inf. Ret..

Manning, C. D., Raghavan, P., & Schütze, H. (2008).
Introduction to information retrieval. Cambridge
University Press.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S.
(1998). Boosting the margin: a new explanation
for the effectiveness of voting methods. Annals of
Statistics, 26, 322–330.

Taylor, M., Guiver, J., Robertson, S., & Minka, T.
(2008). Softrank: optimizing non-smooth rank met-
rics. Proc. of the Int. Conf. on Web Search and Data
Mining (pp. 77–86). ACM.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Al-
tun, Y. (2005). Large margin methods for structured
and interdependent output variables. J. of Mach.
Learn. Res., 6, 1453–1484.

Xu, J., & Li, H. (2007). Adarank: a boosting algorithm
for information retrieval. Proc. of the 30th SIGIR
Conf. on Res. and Devel. in Inf. Ret. (pp. 391–398).

Xu, J., Liu, T.-Y., Lu, M., Li, H., & Ma, W.-Y. (2008).
Directly optimizing evaluation measures in learning
to rank. Proc. of the 31st SIGIR Conf. on Res. and
Devel. in Inf. Ret. (pp. 107–114).

Yager, R. R. (1988). On ordered weighted averag-
ing aggregation operators in multi-criteria decision
making. IEEE Transactions on Syst., Man and Cy-
bernetics, 18, 183–190.

Yue, Y., Finley, T., Radlinski, F., & Joachims, T.
(2007). A support vector method for optimizing av-
erage precision. Proc. of the 30th SIGIR Conf. on
Res. and Devel. in Inf. Ret. (pp. 271–278).


