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Abstract

We consider the minimization of a smooth
loss function regularized by the trace norm
of the matrix variable. Such formulation finds
applications in many machine learning tasks
including multi-task learning, matrix classi-
fication, and matrix completion. The stan-
dard semidefinite programming formulation
for this problem is computationally expen-
sive. In addition, due to the non-smooth na-
ture of the trace norm, the optimal first-order
black-box method for solving such class of
problems converges as O( 1√

k
), where k is the

iteration counter. In this paper, we exploit
the special structure of the trace norm, based
on which we propose an extended gradient al-
gorithm that converges as O( 1

k ). We further
propose an accelerated gradient algorithm,
which achieves the optimal convergence rate
of O( 1

k2 ) for smooth problems. Experiments
on multi-task learning problems demonstrate
the efficiency of the proposed algorithms.

1. Introduction

The problem of minimizing the rank of a matrix vari-
able subject to certain constraints arises in many fields
including machine learning, automatic control, and
image compression. For example, in collaborative fil-
tering we are given a partially filled rating matrix and
the task is to predict the missing entries. Since it is
commonly believed that only a few factors contribute
to an individual’s tastes, it is natural to approximate
the given rating matrix by a low-rank matrix. How-
ever, the matrix rank minimization problem is NP-
hard in general due to the combinatorial nature of the
rank function. A commonly-used convex relaxation of
the rank function is the trace norm (nuclear norm)
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(Fazel et al., 2001), defined as the sum of the singu-
lar values of the matrix, since it is the convex enve-
lope of the rank function over the unit ball of spectral
norm. A number of recent work has shown that the low
rank solution can be recovered exactly via minimizing
the trace norm under certain conditions (Recht et al.,
2008a; Recht et al., 2008b; Candés & Recht, 2008).

In practice, the trace norm relaxation has been shown
to yield low-rank solutions and it has been used widely
in many scenarios. In (Srebro et al., 2005; Rennie &
Srebro, 2005; Weimer et al., 2008a; Cai et al., 2008; Ma
et al., 2008) the matrix completion problem was formu-
lated as a trace norm minimization problem. In prob-
lems where multiple related tasks are learned simul-
taneously, the models for different tasks can be con-
strained to share certain information. Recently, this
constraint has been expressed as the trace norm regu-
larization on the weight matrix in the context of multi-
task learning (Abernethy et al., 2006; Argyriou et al.,
2008; Abernethy et al., 2009; Obozinski et al., 2009),
multi-class classification (Amit et al., 2007), and mul-
tivariate linear regression (Yuan et al., 2007; Lu et al.,
2008). For two-dimensional data such as images, the
matrix classification formulation (Tomioka & Aihara,
2007; Bach, 2008) applies a weight matrix, regular-
ized by its trace norm, on the data. It was shown
(Tomioka & Aihara, 2007) that such formulation leads
to improved performance over conventional methods.

A practical challenge in employing the trace norm reg-
ularization is to develop efficient algorithms to solve
the resulting non-smooth optimization problems. It is
well-known that the trace norm minimization problem
can be formulated as a semidefinite program (Fazel
et al., 2001; Srebro et al., 2005). However, such formu-
lation is computationally expensive. To overcome this
limitation, a number of algorithms have been devel-
oped recently (Rennie & Srebro, 2005; Weimer et al.,
2008a; Weimer et al., 2008b; Cai et al., 2008; Ma et al.,
2008). In these algorithms some form of approxima-
tion is usually employed to deal with the non-smooth
trace norm term. However, a fast global convergence
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rate for these algorithms is difficult to guarantee.

Due to the non-smooth nature of the trace norm, a
simple approach to solve these problems is the subgra-
dient method (Bertsekas, 1999; Nesterov, 2003), which
converges as O( 1√

k
) where k is the iteration counter.

It is known from the complexity theory of convex opti-
mization (Nemirovsky & Yudin, 1983; Nesterov, 2003)
that this convergence rate is already optimal for non-
smooth optimization under the first-order black-box
model, where only the function values and first-order
derivatives are used.

In this paper we propose efficient algorithms with fast
global convergence rates to solve trace norm regu-
larized problems. Specifically, we show that by ex-
ploiting the special structure of the trace norm, the
classical gradient method for smooth problems can
be adapted to solve the trace norm regularized non-
smooth problems. This results in an extended gra-
dient algorithm with the same convergence rate of
O( 1

k ) as that for smooth problems. Following the Nes-
terov’s method for accelerating the gradient method
(Nesterov, 1983; Nesterov, 2003), we show that the
extended gradient algorithm can be further acceler-
ated to converge as O( 1

k2 ), which is the optimal con-
vergence rate for smooth problems. Hence, the non-
smoothness effect of the trace norm regularization is
effectively removed. The proposed algorithms extend
the algorithms in (Nesterov, 2007; Tseng, 2008; Beck
& Teboulle, 2009) to the matrix case. Experiments
on multi-task learning problems demonstrate the effi-
ciency of the proposed algorithms in comparison with
existing ones. Note that while the present paper was
under review, we became aware of a recent preprint by
Toh and Yun (2009) who independently developed an
algorithm that is similar to ours.

2. Problem Formulation

In this paper we consider the following problem:

min
W

F (W ) = f(W ) + λ||W ||∗ (1)

where W ∈ Rm×n is the decision matrix, f(·) repre-
sents the loss induced by some convex smooth (differ-
entiable) loss function `(·, ·), and || · ||∗ denotes the
trace norm defined as the sum of the singular values.
We assume that the gradient of f(·), denoted as5f(·),
is Lipschitz continuous with constant L, i.e.,

||5 f(X)−5f(Y )||F ≤ L||X − Y ||F , ∀X,Y ∈ Rm×n,

where || · ||F denotes the Frobenius norm. Such formu-
lation arises in many machine learning tasks such as in
multi-task learning, matrix classification, and matrix
completion problems.

• Multi-task learning (Argyriou et al., 2008):
f(W ) =

∑n
i=1

∑si

j=1 `(yj
i , w

T
i xj

i ), where n is the
number of tasks, (xj

i , y
j
i ) ∈ Rm×R is the jth sam-

ple in the ith task, si is the number of samples in
the ith task, and W = [w1, · · · , wn] ∈ Rm×n.

• Matrix classification (Tomioka & Aihara, 2007;
Bach, 2008): f(W ) =

∑s
i=1 `(yi, Tr(WT Xi)),

where (Xi, yi) ∈ Rm×n × R is the ith sample.

• Matrix completion (Srebro et al., 2005; Candés
& Recht, 2008; Recht et al., 2008a; Ma et al.,
2008): f(W ) =

∑
(i,j)∈Ω `(Mij ,Wij), where M ∈

Rm×n is the partially observed matrix with the
entries in Ω being observed.

Since the trace norm term in the objective function in
Eq. (1) is non-smooth, a natural approach for solving
this problem is the subgradient method in which a
sequence of approximate solutions are generated as

Wk = Wk−1 − 1
tk

F ′(Wk−1), (2)

where Wk is the approximate solution at the kth it-
eration, 1

tk
is the step size, and F ′(W ) ∈ ∂F (W ) is

the subgradient of F (W ) at W and ∂F (W ) denotes
the subdifferential (Bertsekas, 1999; Nesterov, 2003)
of F (W ) at W . It is known (Nesterov, 2003) that the
subgradient method converges as O( 1√

k
), i.e.,

F (Wk)− F (W ∗) ≤ c
1√
k

, (3)

for some constant c, where W ∗ = arg minW F (W ).

It is known from the complexity theory of convex
optimization (Nemirovsky & Yudin, 1983; Nesterov,
2003) that this convergence rate is already optimal
for non-smooth problems under the first-order black-
box model. Hence, the convergence rate cannot be im-
proved if a black-box model, which does not exploit
any special structure of the objective function, is em-
ployed. We show in the following that by exploiting
the structure of the trace norm, its non-smoothness
can be effectively overcome and the convergence rate
of the algorithm for solving the trace norm regularized
problem in Eq. (1) can be improved significantly.

3. An Extended Gradient Method

First, consider the minimization of the smooth loss
function without the trace norm regularization:

min
W

f(W ). (4)
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It is known (Bertsekas, 1999) that the gradient step

Wk = Wk−1 − 1
tk
5 f(Wk−1) (5)

for solving this smooth problem can be reformulated
equivalently as a proximal regularization of the lin-
earized function f(W ) at Wk−1 as

Wk = arg min
W

Ptk
(W,Wk−1), (6)

where

Ptk
(W,Wk−1) = f(Wk−1) + 〈W −Wk−1,5f(Wk−1)〉

+
tk
2
||W −Wk−1||2F , (7)

and 〈A,B〉 = Tr(AT B) denotes the matrix inner prod-
uct. It has been shown (Nesterov, 2003) that the con-
vergence rate of this algorithm is O( 1

k ). Note that the
function Ptk

defined in Eq. (7) can be considered as a
linear approximation of the function f at point Wk−1

regularized by a quadratic proximal term.

Based on this equivalence relationship, we propose to
solve the optimization problem in Eq. (1) by the fol-
lowing iterative step:

Wk=arg min
W

Qtk
(W,Wk−1),Ptk

(W,Wk−1) + λ||W ||∗.
(8)

A key motivation for this formulation is that if the
optimization problem in Eq. (8) can be easily solved
by exploiting the structure of the trace norm, the con-
vergence rate of the resulting algorithm is expected
to be the same as that of gradient method, since no
approximation on the non-smooth term is employed.

By ignoring terms that do not depend on W , the ob-
jective in Eq. (8) can be expressed equivalently as

tk
2

∣∣∣∣
∣∣∣∣W −

(
Wk−1 − 1

tk
5 f(Wk−1)

)∣∣∣∣
∣∣∣∣
2

F

+ λ ||W ||∗ .

(9)
It turns out that the minimization of the objective in
Eq. (9) can be solved by first computing the singular
value decomposition (SVD) of Wk−1 − 1

tk
5 f(Wk−1)

and then applying some soft-thresholding on the sin-
gular values. This is summarized in the following the-
orem (Cai et al., 2008).
Theorem 3.1. Let C ∈ Rm×n and let C = UΣV T

be the SVD of C where U ∈ Rm×r and V ∈ Rn×r

have orthonormal columns, Σ ∈ Rr×r is diagonal, and
r = rank(C). Then

Tλ(C) ≡ arg min
W

{
1
2
||W − C||2F + λ||W ||∗

}
(10)

is given by Tλ(C) = UΣλV T , where Σλ is diagonal
with (Σλ)ii = max{0, Σii − λ}.

The proof of this theorem is in the Appendix.

The above discussion shows that the problem in
Eq. (8) can be readily solved by SVD. Furthermore,
we show in the following that if the step size 1

tk
of the

gradient method is chosen properly, we can achieve
the same convergence rate as in the smooth case, i.e.,
O( 1

k ), despite the presence of the non-smooth trace
norm regularization.

3.1. Step Size Estimation

To choose an appropriate step size we impose a con-
dition on the relationship between the function values
of F and Qtk

at a certain point in Lemma 3.1. We
show in Theorem 3.2 below that once this condition is
satisfied at each step by choosing an appropriate step
size, the convergence rate of the resulting sequence can
be guaranteed.

Lemma 3.1. Let

pµ(Y ) = arg min
X

Qµ(X, Y ) (11)

where Q is defined in Eq. (8). Assume the following
inequality holds:

F (pµ(Y )) ≤ Qµ(pµ(Y ), Y ). (12)

Then for any X ∈ Rm×n we have

F (X)− F (pµ(Y )) ≥ µ

2
||pµ(Y )− Y ||2F (13)

+µ〈Y −X, pµ(Y )− Y 〉.

The proof of this lemma is in the Appendix.

At each step of the algorithm we need to find an ap-
propriate value for µ such that Wk = pµ(Wk−1) and
the condition

F (Wk) ≤ Qµ(Wk,Wk−1) (14)

is satisfied. Note that since the gradient of f(·) is Lip-
schitz continuous with constant L, we have (Nesterov,
2003)

f(X) ≤ f(Y )+ 〈X−Y,5f(Y )〉+ L

2
||X−Y ||2F , ∀X,Y.

Hence, when µ ≥ L we have

F (pµ(Y ))≤Pµ(pµ(Y ), Y )+λ||pµ(Y )||∗=Qµ(pµ(Y ), Y ).

This shows that the condition in Eq. (14) is always
satisfied if the update rule

Wk = pL(Wk−1) (15)
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is applied. However, L may not be known or it is ex-
pensive to compute in practice. We propose to employ
the following step size estimation strategy to ensure
the condition in Eq. (14): Given an initial estimate
of L as L0, we increase this estimate with a multi-
plicative factor γ > 1 repeatedly until the condition in
Eq. (14) is satisfied. This results in the extended gra-
dient method in Algorithm 1 for solving the problem
in Eq. (1).

Algorithm 1 Extended Gradient Algorithm
Initialize L0, γ, W0 ∈ Rm×n

Iterate:

1. Set L̄ = Lk−1

2. While F (pL̄(Wk−1)) > QL̄(pL̄(Wk−1),Wk−1), set

L̄ := γL̄

3. Set Lk = L̄ and Wk = pLk
(Wk−1)

Since when Lk ≥ L the condition in Eq. (14) is always
satisfied, we have

Lk ≤ γL, ∀k. (16)

Note that the sequence of function values generated
by this algorithm is non-increasing as

F (Wk)≤QLk
(Wk,Wk−1)≤QLk

(Wk−1,Wk−1)=F (Wk−1).

3.2. Convergence Analysis

We show in the following theorem that when the con-
dition in Eq. (14) is satisfied at each iteration, the
extended gradient algorithm converges as O( 1

k ).

Theorem 3.2. Let {Wk} be the sequence generated by
Algorithm 1. Then for any k ≥ 1 we have

F (Wk)− F (W ∗) ≤ γL||W0 −W ∗||2F
2k

, (17)

where W ∗ = arg minW F (W ).

The proof of this theorem is in the Appendix.

4. An Accelerated Gradient Method

It is known (Nesterov, 1983; Nesterov, 2003) that when
the objective function is smooth, the gradient method
can be accelerated to achieve the optimal convergence
rate of O( 1

k2 ). It was shown recently (Nesterov, 2007;
Tseng, 2008; Beck & Teboulle, 2009) that a similar
scheme can be applied to accelerate optimization prob-
lems where the objective function consists of a smooth

part and a non-smooth part provided that the non-
smooth part is “simple”. In particular, it was shown
that the `1-norm regularized problems can be acceler-
ated even though they are not smooth. In this section
we show that the extended gradient method in Algo-
rithm 1 can also be accelerated to achieve the optimal
convergence rate of smooth problems even though the
trace norm is not smooth. This results in the acceler-
ated gradient method in Algorithm 2.

Algorithm 2 Accelerated Gradient Algorithm
Initialize L0, γ, W0 = Z1 ∈ Rm×n, α1 = 1
Iterate:

1. Set L̄ = Lk−1

2. While F (pL̄(Zk−1)) > QL̄(pL̄(Zk−1), Zk−1), set

L̄ := γL̄

3. Set Lk = L̄ and update

Wk = pLk
(Zk)

αk+1 =
1 +

√
1 + 4α2

k

2
(18)

Zk+1 = Wk +
(

αk − 1
αk+1

)
(Wk −Wk−1) (19)

4.1. Discussion

In the accelerated gradient method, two sequences
{Wk} and {Zk} are updated recursively. In partic-
ular, Wk is the approximate solution at the kth step
and Zk is called the search point (Nesterov, 1983; Nes-
terov, 2003), which is constructed as a linear combina-
tion of the latest two approximate solutions Wk−1 and
Wk−2. The key difference between the extended and
the accelerated algorithms is that the gradient step
is performed at the current approximate solution Wk

in the extended algorithm, while it is performed at
the search point Zk in the accelerated scheme. The
idea of constructing the search point is motivated by
the investigation of the information-based complexity
(Nemirovsky & Yudin, 1983; Nesterov, 2003), which
reveals that for smooth problems the convergence rate
of the gradient method is not optimal, and thus meth-
ods with a faster convergence rate should exist. The
derivation of the search point is based on the concept
of estimate sequence and more details can be found in
(Nesterov, 2003). Note that the sequence αk can be
updated in many ways as long as certain conditions
are satisfied (Nesterov, 2003). Indeed, it was shown
in (Tseng, 2008) that other schemes of updating αk
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Table 1. Comparison of the three multi-task learning algorithms (EGM, AGM, and MFL) in terms of the computation
time (in seconds). In each case, the computation time reported is the time used to train the model for a given parameter
value obtained by cross validation, and the averaged training time over ten random trials is reported.

Data set yeast letters digits dmoz

Percentage 5% 10% 5% 10% 5% 10% 5% 10%

EGM 2.24 3.37 4.74 5.67 62.51 29.59 133.21 146.58
AGM 0.34 0.49 0.62 0.91 2.41 2.39 1.59 1.42
MFL 2.33 17.27 2.49 9.66 15.50 42.64 74.24 31.49
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Figure 1. The convergence of EGM and AGM on the yeast data set when 5% (left figure) and 10% (right figure) of the
data are used for training. On the first data set EGM and AGM take 81 and 1122 iterations, respectively, to converge,
while on the second data set they take 108 and 773 iterations, respectively.

can lead to better practical performance, though the
theoretical convergence rate remains the same. Note
that the sequence of objective values generated by the
accelerated scheme may increase. It, however, can be
made non-increasing by a simple modification of the
algorithm as in (Nesterov, 2005).

4.2. Convergence Analysis

We show in the following that by performing the gra-
dient step at the search point Zk instead of at the
approximate solution Wk, the convergence rate of the
gradient method can be accelerated to O( 1

k2 ). This
result is summarized in the following theorem.

Theorem 4.1. Let {Wk} and {Zk} be the sequences
generated by Algorithm 2. Then for any k ≥ 1 we have

F (Wk)− F (W ∗) ≤ 2γL||W0 −W ∗||2F
(k + 1)2

. (20)

The proof of this theorem follows the same strategy as
in (Beck & Teboulle, 2009) and it is in the Appendix.

5. Experiments

We evaluate the proposed extended gradient method
(EGM) and the accelerated gradient method (AGM)
on four multi-task data sets. The yeast data set was
derived from a yeast gene classification problem con-
sisting of 14 tasks. The letters and digits are hand-
written words and digits data sets (Obozinski et al.,
2009), which consist of 8 and 10 tasks, respectively.
The dmoz is a text categorization data set obtained
from DMOZ (http://www.dmoz.org/) in which each
of the 10 tasks corresponds to one of the subcategories
of the Arts category. For each data set we randomly
sample 5% and 10% of the data from each task for
training.

To evaluate the efficiency of the proposed formula-
tions, we report the computation time of the multi-
task feature learning (MFL) algorithm (Argyriou
et al., 2008), as MFL involves a formulation that is
equivalent to EGM and AGM. For all methods, we
terminate the algorithms when the relative changes in
the objective is below 10−8, since the objective values
of MFL and EGM/AGM are not directly comparable.
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The averaged computation time over ten random trials
for each method is reported in Table 1. We can ob-
serve that AGM is by far the most efficient method in
all cases. The relative efficiency of EGM and AGM dif-
fers significantly across data sets, demonstrating that
the performance of AGM is very stable for different
problems. In order to investigate the convergence be-
haviors of EGM and AGM, we plot the objective values
of these two methods on the yeast data set in Figure 1.
We can observe that in both cases AGM converges
much faster than EGM, especially at early iterations.
This is consistent with our theoretical results and con-
firms that the proposed accelerated scheme can reach
the optimal objective value rapidly.

6. Conclusion and Discussion

In this paper we propose efficient algorithms to solve
trace norm regularized problems. We show that by ex-
ploiting the special structure of the trace norm, the
optimal convergence rate of O( 1√

k
) for general non-

smooth problems can be improved to O( 1
k ). We fur-

ther show that this convergence rate can be accelerated
to O( 1

k2 ) by employing the Nesterov’s method. Exper-
iments on multi-task learning problems demonstrate
the efficiency of the proposed algorithms.

As pointed out in the paper, another important ap-
plication of the trace norm regularization is in ma-
trix completion problems. We plan to apply the pro-
posed formulations to this problem in the future. The
proposed algorithms require the computation of SVD,
which may be computationally expensive for large-
scale problems. We will investigate approximate SVD
techniques in the future to further reduce the compu-
tational cost.

Appendix

Proof of Theorem 3.1

Proof. Since the objective function in Eq. (10) is
strongly convex, a unique solution exists for this prob-
lem and hence it remains to show that the solution is
Tλ(C). Recall that Z ∈ Rm×n is the subgradient of a
convex function h : Rm×n → R at X0 if

h(X) ≥ h(X0) + 〈Z, X −X0〉 (21)

for any X. The set of subgradients of h at X0 is called
the subdifferential of h at X0 and it is denoted as
∂h(X0). It is well-known (Nesterov, 2003) that W ∗

is the optimal solution to the problem in Eq. (10) if
and only if 0 ∈ Rm×n is a subgradient of the objective

function at W ∗, i.e.,

0 ∈ W ∗ − C + λ∂||W ∗||∗. (22)

Let W = P1ΛPT
2 be the SVD of W where P1 ∈ Rm×s

and P2 ∈ Rn×s have orthonormal columns, Σ ∈ Rs×s

is diagonal, and s = rank(W ). It can be verified that
(Bach, 2008; Recht et al., 2008a)

∂||W ||∗ = {P1P
T
2 + S : S ∈ Rm×n, PT

1 S = 0,

SP2 = 0, ||S||2 ≤ 1}, (23)

where || · ||2 denotes the spectral norm of a matrix.
Decomposing the SVD of C as

C = U0Σ0V
T
0 + U1Σ1V

T
1 ,

where U0Σ0V
T
0 corresponds to the part of SVD with

singular values greater than λ. Then we have the SVD
of Tλ(C) as

Tλ(C) = U0(Σ0 − λI)V T
0

and thus
C − Tλ(C) = λ(U0V

T
0 + S)

where S = 1
λU1Σ1V

T
1 . It follows from the facts that

UT
0 S = 0, SV0 = 0, and ||S||2 ≤ 1 that

C − Tλ(C) ∈ λ∂||Tλ(C)||∗,
which shows that Tλ(C) is an optimal solution.

Proof of Lemma 3.1

Proof. Since both the loss function f and the trace
norm are convex, we have

f(X) ≥ f(Y ) + 〈X − Y,5f(Y )〉,
λ||X||∗ ≥ λ||pµ(Y )||∗ + λ〈X − pµ(Y ), g(pµ(Y ))〉,

where g(pµ(Y )) ∈ ∂||pµ(Y )||∗ is the subgradient of the
trace norm at pµ(Y ). Summing up the above two in-
equalities we obtain that

F (X) ≥ f(Y ) + 〈X − Y,5f(Y )〉 (24)
+λ||pµ(Y )||∗ + λ〈X − pµ(Y ), g(pµ(Y ))〉.

By combining the condition in Eq. (14), the result in
Eq. (24), and the relation

Qµ(pµ(Y ), Y ) = Pµ(pµ(Y ), Y ) + λ||pµ(Y )||∗,
we obtain that

F (X)− F (pµ(Y )) ≥ F (X)−Qµ(pµ(Y ), Y )

≥ 〈X − pµ(Y ),5f(Y ) + λg(pµ(Y ))〉 − µ

2
||pµ(Y )− Y ||2F

= µ〈X − pµ(Y ), Y − pµ(Y )〉 − µ

2
||pµ(Y )− Y ||2F

= µ〈Y −X, pµ(Y )− Y 〉+
µ

2
||pµ(Y )− Y ||2F ,
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where the first equality follows from that pµ(Y ) is a
minimizer of Qµ(X,Y ) as in Eq. (11), and thus

5f(Y ) + µ(pµ(Y )− Y ) + λg(pµ(Y )) = 0.

This completes the proof of the lemma.

Proof of Theorem 3.2

Proof. Applying Lemma 3.1 with (X = W ∗, Y =
Wn, µ = Ln+1) and making use of the fact that for
any three matrices A, B, and C of the same size

||B−A||2F +2〈B−A,A−C〉 = ||B−C||2F −||A−C||2F ,
(25)

we obtain that
2

Ln+1
(F (W ∗)−F (Wn+1))≥||Wn+1−W ∗||2F−||Wn−W ∗||2F .

Summing the above inequality over n = 0, · · · , k − 1
and making use of the inequality in Eq. (16), we get

k−1∑
n=0

(F (Wn+1)−F (W ∗))≤γL

2
(||W0−W ∗||2F−||Wk−W ∗||2F ).

It follows from F (Wn+1) ≤ F (Wn) and F (Wn) ≥
F (W ∗) that

k(F (Wk)− F (W ∗)) ≤
k−1∑
n=0

(F (Wn+1)− F (W ∗))

≤ γL

2
||W0 −W ∗||2F ,

which leads to Eq. (17).

Proof of Theorem 4.1

Proof. Let us denote

vk = F (Wk)− F (W ∗),
Uk = αkWk − (αk − 1)Wk−1 −W ∗.

Applying Lemma 3.1 with (X = Wk, Y = Zk+1, L =
Lk+1) and (X = W ∗, Y = Zk+1, L = Lk+1), respec-
tively, we obtain the following two inequalities:

2
Lk+1

(vk − vk+1) ≥ ||Wk+1 − Zk+1||2F (26)

+2〈Wk+1 − Zk+1, Zk+1 −Wk〉,
− 2

Lk+1
vk+1 ≥ ||Wk+1 − Zk+1||2F (27)

+2〈Wk+1 − Zk+1, Zk+1 −W ∗〉.
Multiplying both sides of Eq. (26) by (αk+1 − 1) and
adding it to Eq. (27), we get

2
Lk+1

((αk+1 − 1)vk−αk+1vk+1)≥αk+1||Wk+1−Zk+1||2F
+2〈Wk+1 − Zk+1, αk+1Zk+1 − (αk+1 − 1)Wk −W ∗〉.

Multiplying the last inequality by αk+1 and making
use of the equality α2

k = α2
k+1 − αk+1 derived from

Eq. (18), we get

2
Lk+1

(α2
kvk − α2

k+1vk+1) ≥ ||αk+1(Wk+1 − Zk+1)||2F
+2αk+1〈Wk+1−Zk+1, αk+1Zk+1−(αk+1 − 1)Wk−W ∗〉.

Applying the equality in Eq. (25) to the right-hand
side of the above inequality, we get

2
Lk+1

(α2
kvk−α2

k+1vk+1) ≥||αk+1Wk+1 − (αk+1 − 1)Wk

−W ∗||2F − ||αk+1Zk+1 − (αk+1 − 1)Wk −W ∗||2F .

It follows from Eq. (19) and the definition of Uk that

2
Lk+1

(α2
kvk − α2

k+1vk+1) ≥ ||Uk+1||2F − ||Uk||2F ,

which combined with Lk+1 ≥ Lk leads to

2
Lk

α2
kvk− 2

Lk+1
α2

k+1vk+1 ≥ ||Uk+1||2F −||Uk||2F . (28)

Applying Lemma 3.1 with (X = W ∗, Y = Z1, L = L1),
we obtain

F (W ∗)− F (W1) = F (W ∗)− F (pL1(Z1))

≥ L1

2
||pL1(Z1)− Z1||2 + L1〈Z1 −W ∗, pL1(Z1)− Z1〉

=
L1

2
||W1 − Z1||2 + L1〈Z1 −W ∗,W1 − Z1〉

=
L1

2
||W1 −W ∗||2 − L1

2
||Z1 −W ∗||2 .

Hence, we have

2
L1

v1 ≤ ||Z1 −W ∗||2 − ||W1 −W ∗||2 . (29)

It follows from Eqs. (28) and (29) that 2
Lk

α2
kvk ≤

||W0 −W ∗||2 , which combined with αk ≥ (k + 1)/2
yields

F (Wk)−F (W ∗)≤ 2Lk||W0−W ∗||2
(k + 1)2

≤ 2γL||W0−W ∗||2
(k + 1)2

.

This completes the proof of the theorem.
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