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Abstract
We derive generalizations of AdaBoost and re-
lated gradient-based coordinate descent methods
that incorporate sparsity-promoting penalties for
the norm of the predictor that is being learned.
The end result is a family of coordinate descent
algorithms that integrate forward feature induc-
tion and back-pruning through regularization and
give an automatic stopping criterion for feature
induction. We study penalties based on theℓ1,
ℓ2, andℓ∞ norms of the predictor and introduce
mixed-norm penalties that build upon the initial
penalties. The mixed-norm regularizers facilitate
structural sparsity in parameter space, which is a
useful property in multiclass prediction and other
related tasks. We report empirical results that
demonstrate the power of our approach in build-
ing accurate and structurally sparse models.

1. Introduction and problem setting

Boosting is a highly effective and popular method for ob-
taining an accurate classifier from a set of inaccurate pre-
dictors. Boosting algorithms construct high precision clas-
sifiers by taking a weighted combination of base predictors,
known as weak hypotheses (see Meir and Rätsch (2003)
and the numerous references therein). Many boosting al-
gorithms can also be viewed as forward-greedy feature in-
duction procedures. In this view, the weak-learner pro-
vides new predictors which perform well either in terms of
their error-rate with respect to the distribution that boosting
maintains or in terms of their potential in reducing the em-
pirical loss. Once a feature is chosen, typically in a greedy
manner, it is associated with a weight which remains intact
through the reminder of the boosting process.

The aesthetics and simplicity of AdaBoost and other for-
ward greedy algorithms, such as LogitBoost (Friedman
et al., 2000), also facilitate a tacit defense from overfit-
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ting, especially when combined with early stopping of the
boosting process (Zhang & Yu, 2005). The empirical suc-
cess of Boosting algorithms helped popularize the view that
boosting algorithms are resilient to overfitting. However,
several researchers have noted the deficiency of forward-
greedy boosting algorithms and suggest alternative coordi-
nate descent algorithms, such as totally-corrective boost-
ing (Warmuth et al., 2006) or Zhang’s forward/backward
algorithms (2008). The algorithms that we present in this
paper build on existing boosting and other coordinate de-
scent procedures while incorporating, throughout their run,
regularization of the weights of the selected features. The
added regularization terms influence both the selection of
new features and the weight assignment steps. Moreover,
as we discuss below, the regularization may eliminate (by
assigning a weight of zero) previously selected features.
The result is a simple procedure that includes forward in-
duction, weight estimation, backward pruning, entertains
convergence guarantees, and yields sparse models. We are
also able to group features and impose structural sparsity
on the learned weights, which is a focus and one of the
main contributions of this paper.

Our starting point is a simple yet effective modification to
AdaBoost that incorporates anℓ1 penalty for the norm of
the weight vector it constructs. The update we devise can
be used both for weight optimization as well as for induc-
tion of new accurate hypotheses while taking the resulting
1-norm into account. A closely related approach was sug-
gested by Dud́ık et al. (2007) in the context of maximum
entropy, though our analysis for classification is a special
case of an abstract saddle-point theorem that we prove.
This general theorem is also applicable to other norms and
losses, in particular theℓ∞ norm, which serves as a build-
ing block for imposing structural sparsity.

For simplicity, we assume that the class of weak hypothe-
ses is finite and containsn different hypotheses. We
thus map each instancex to an n dimensional vector
(h1(x), . . . , hn(x)), and we overload notation and sim-
ply denote the vector asx ∈ R

n. Though omitted due
to the lack of space, our framework can be used in the
presence of countably infinite features, also known as the



task of feature induction. Each instancexi is associated
with a labelyi ∈ {−1,+1}. The goal of learning is then
to find a weight vectorw such that the sign ofw · xi is
equal toyi. Moreover, we would like to attain large inner-
products so long as the predictions are correct. Formally,
given a sampleS = {(xi, yi)}

m
i=1, the algorithm focuses

on findingw for which the empirical logistic loss,L(w) =
∑m

i=1 log (1 + exp(−yi(w · xi)), is small. Our derivation
also applies to the exp-loss. We first adapt AdaBoost to
incorporate theℓ1-norm of the weight vector into the em-
pirical loss,

∑m
i=1 log (1 + exp(−yi(w · xi))) + λ‖w‖1.

This problem is by no means new. It is often referred to
asℓ1-regularized logistic regression and several advanced
optimization methods have been designed for the prob-
lem (Koh et al., 2007).ℓ1-regularization has many advan-
tages, including its ability to yield sparse weight vectors
w and, under certain conditions, to recover the true spar-
sity of w (Zhao & Yu, 2006). We extend this by replac-
ing the ℓ1-norm with a mixed-norm regularizer (denoted
ℓ1/ℓp) to achieve structural sparsity. Mixed-norm regular-
ization is used when there is a partition or structure over the
weights that separates them into disjoint groups of param-
eters, and anℓp-norm ties each group. For concreteness
and in order to leverage existing boosting algorithms, we
specifically focus on settings in which we have a matrix
W = [w1 · · ·wk] ∈ R

n×k of weight vectors, and we regu-
larize the weights in each row ofW (denotedwj) together
through anℓp-norm. We derive updates for two important
settings that generalize binary logistic-regression. Thefirst
is multitask learning (Obozinski et al., 2007), in which we
have a set of tasks{1, . . . , k} and a weight vectorwk for
each task. Our goal is to learn a matrixW minimizing

m
∑

i=1

k
∑

r=1

log
(

1 + e−yi,r(wr·xi)
)

+ λ

n
∑

j=1

‖wj‖p . (1)

The other generalization we describe is the multiclass lo-
gistic loss. We again assume there arek weight vectors
that operate on each instance. Given an examplexi, the
classifier’s prediction is a vector[w1 ·xi, . . . ,wk ·xi], and
the predicted class is the index of the inner-product attain-
ing the largest of thek values,argmaxr wr · xi. In this
case, the regularized lossQ(W ) is

m
∑

i=1

log
(

1 +
∑

r 6=yi
ewr·xi−wyi

·xi

)

+ λ

n
∑

j=1

‖wj‖p (2)

We also give a new upper bound for the multiclass loss.
Previous multiclass constructions for boosting assume that
each base hypothesis provides a different prediction per
class, so they are not directly applicable to the multiclass
setting discussed in this paper, which allocates a dedicated
predictor per class. Our result is an efficient multiclass

and multitask boosting-based procedure withℓ1/ℓ∞ reg-
ularization. We then shift our focus to an alternative appa-
ratus for coordinate descent with the log-loss that does not
stem from the AdaBoost algorithm. In this approach we up-
per bound the log-loss by a quadratic function, terming the
resulting update GradBoost as it updates coordinates in a
fashion that follows the gradient. Similar to the generaliza-
tion of AdaBoost, we studyℓ1 andℓ∞ penalties byreusing
the fixed-point theorem, and we derive GradBoost updates
for bothℓ1/ℓ∞ andℓ1/ℓ2 mixed-norm regularization.

It is clearly impossible to cover related work in depth and
we give here a very brief overview. Our derivation follows
the template-based algorithm of Collins et al. (2002), in-
corporating regularization in a way analogous to Dudı́k et
al.’s maximum-entropy framework (2007). The base Grad-
Boost algorithm we derive shares similarity with Logit-
Boost (Friedman et al., 2000) while our bounding tech-
nique was first suggested by Dekel et al. (2005). Learn-
ing sparse models throughℓ1 regularization is the focus of
a voluminous amount of work in different research areas,
from statistics to information theory (Zhao & Yu, 2006;
Koh et al., 2007; Zhang, 2008). Multiple authors have stud-
ied the setting of mixed-norm regularization, which is of
great interest in the statistical estimation literature, though
the focus is typically on consistency for linear regression
rather than efficient algorithms. Negahban and Wainwright
(2008) recently analyzed sparsity throughℓ1/ℓ∞ mixed-
norms, and Obozinski et al. (2007) analyzeℓ1/ℓ2.

2. AdaBoost with ℓ1 regularization

We now outline ourℓ1-infused modification to AdaBoost,
providing only a sketch, since the algorithm can be ob-
tained as a special case of the analysis presented in Sec. 3.
We build on existing analyses of AdaBoost, which all de-
rive upper bounds on the loss which the booster then min-
imizes. We can then rely on the fact that each round of
boosting is guaranteed to decrease the penalized loss. In
the generalized version of boosting (Collins et al., 2002),
the booster selects a vectora from a set of templatesA
on each round of boosting. The template selects the set of
base hypotheses whose weight we update. Moreover, the
template vector can specify a different budget for each fea-
ture update so long as the vectora satisfies the condition
∑

j aj |xi,j | ≤ 1. Classical boosting sets a single coordi-
nate in the vectora to a non-zero value. We start by re-
calling the progress bound for AdaBoost with the log-loss
when using a template vector. Define importance weights
qt(i) = 1/(1+eyiw

t·xi), which are the probability the cur-
rent classifier assigns to the incorrect label for examplei,
and weighted correlations

µ+
j =

∑

i:yixi,j>0

qt(i)|xi,j | ; µ−
j =

∑

i:yixi,j<0

qt(i)|xi,j | .



Let wt+1 = wt + δt, δt
j = ajd

t
j , and a satisfy

∑

j aj |xi,j | ≤ 1. Then the change in the log-loss,∆t =

L(wt) − L(wt+1), between two iterations of boosting is
lower bounded by (Collins et al., 2002)

∆t ≥

n
∑

j=1

aj

(

µ+
j

(

1 − e−dt
j

)

+ µ−
j

(

1 − edt
j

))

.

Since theℓ1 penalty is an additive term, we incorporate the
change in the1-norm ofw to bound the overall decrease in
the loss when updatingwt to wt + δt with ∆t − λ‖δt +
wt‖1 + λ‖wt‖1. By construction, this bound is additive in
δj . Thus, we omit the indexj, eliminate constants, and are
left with the following minimization problem inδ:

min
δ

aµ+e−δ/a + aµ−eδ/a + λ |δ + w| . (3)

We state two lemmas that aid us in finding the optimum of
Eq. (3). The lemmas are special cases of Thm. 1 later.

Lemma 2.1. If µ+ew/a − µ−e−w/a > 0, then the min-
imizing δ⋆ of Eq. (3) satisfiesδ⋆ + w ≥ 0. Likewise, if
µ+ew/a − µ−e−w/a < 0, thenδ⋆ + w ≤ 0.

Lemma 2.2. The solution of Eq. (3) with respect toδ is
δ⋆ = −w if and only if

∣

∣µ+ew/a − µ−e−w/a
∣

∣ ≤ λ.

Equipped with the above lemmas, the update towt+1
j is

straightforward to derive. Let us assume without loss of
generality thatµ+

j ewt
j/aj − µ−

j e−wt
j/aj > λ, so thatδ⋆

j 6=
−wj and δ⋆

j + wj > 0. We need to solve the equation
−µ+

j e−δj/aj +µ−
j eδj/aj +λ = 0 or µ−

j β2 +λβ−µ+
j = 0,

whereβ = eδj/aj . Sinceβ is strictly positive, it is equal to
the positive root of the above quadratic equation, yielding

δ⋆
j = aj log

(

−λ +
√

λ2 + 4µ+
j µ−

j /(2µ−
j )

)

. (4)

In the symmetric case, whenδ⋆
j + wt

j < 0, we get that

δ⋆
j = aj log(λ +

√

λ2 + 4µ+
j µ−

j /(2µ−
j )). Finally, when

|µ+
j ewt

j/aj − µ−
j e−wj/aj | ≤ λ, Lemma 2.2 implies that

δ⋆
j = −wt

j . Whenµ−
j is zero andµ+

j ewt
j/aj > λ the solu-

tion is δ⋆
j = aj log(µ+

j /λ), and analogously forµ+
j = 0.

3. Incorporating ℓ∞ regularization

We now begin to lay the framework for multitask and mul-
ticlass boosting with mixed-norm regularizers. The main
theorem in this section can be used to derive and ana-
lyze the algorithm of previous section. Before deriving
updates for boosting, we consider a more general frame-
work of minimizing a sum of one-dimensional, convex,
bounded below and differentiable functionsfj(d) plus an
ℓ∞-regularizer. We want to solve

min
d

k
∑

j=1

fj(dj) + λ ‖d‖∞ . (5)

The following theorem characterizes the solutiond⋆ of
Eq. (5), and leads to efficient algorithms for specific func-
tionsfj . We use[k] as a shorthand for the set{1, 2, . . . , k}.

Theorem 1. Let d̃j satisfyf ′
j(d̃j) = 0. The optimal solu-

tion d⋆ of Eq. (5) satisfies the following properties:
(i) d⋆ = 0 if and only if

∑k
j=1 |f

′
j(0)| ≤ λ.

(ii) For all j, f ′
j(0)d⋆

j ≤ 0 andf ′
j(d

⋆
j )d

⋆
j ≤ 0.

(iii) Let B =
{

j : |d⋆
j | = ‖d⋆‖∞

}

andU = [k] \ B:
(a) For all j ∈ U , d̃j = d⋆

j andf ′
j(d

⋆
j ) = 0.

(b) For all j ∈ B, |d̃j | ≥ |d⋆
j | = ‖d⋆‖∞

(c) Whend⋆ 6= 0,
∑

j∈B |f ′
j(d

⋆
j )| = λ.

Sketch of Proof We sketch a proof of the theorem using
subgradient calculus (Bertsekas, 1999). For point (i), we
note that the subgradient set ofλ ‖d‖∞ evaluated atd = 0

is the set of vectors{z : ‖z‖1 ≤ λ}. Thus, we look at the
ℓ1-norm of the gradient of the sum of functions atd = 0,
and if

∑k
j=1 |f

′
j(0)| ≤ λ thend⋆ = 0 and vice versa. Point

(ii) is a consequence of the monotonicity of the derivatives
(or subgradient sets) of convex functions (the derivatives
are non-decreasing). For point (iii), we note that ifd⋆ =
0, then (a), (b), and (c) are trivially satisfied. If not, then
consider the subgradient set of theℓ∞ norm:

∂λ ‖d‖∞ = λ Co {sign(di)ei : |di| = ‖d‖∞} .

For part (a), anyj ∈ U must have derivativef ′
j(d

⋆
j ) = 0 to

satisfy the subgradient conditions for optimality. For part
(b), we note that ifj ∈ B and |d̃j | < |d⋆

j |, we can move

d⋆
j towardd̃j while decreasing or not changing‖d⋆‖∞, and

we decreasefj(dj). Part (c) is another consequence of the
subgradient conditions for optimality.

In Fig. 1, we present a general algorithm for minimizing
∑

j fj(dj) + λ ‖d‖∞ that builds directly on Thm. 1. The
algorithm flips signs so that alldj ≥ 0 (see part (ii) of the
theorem). It then iteratively adds points to the bounded set
B, starting from the point with largest unregularized solu-
tion d̃(1) (see part (iii)). When the algorithm finds a setB
and boundξ = ‖d‖∞ so that part (iii) of the theorem is sat-
isfied (which is guaranteed by (iii.b)), it terminates. The al-
gorithm näıvely has runtime complexityO(k2), which we
bring down toO(k log k) in the sequel by exploiting the
specific structure offj .

Revisiting AdaBoost with ℓ1-regularization Lemmas 2.1
and 2.2 are special cases of the theorem. Recall theℓ1-
regularized minimization problem we faced for the expo-
nential loss in Eq. (3). We had to minimize a function of
the form aµ+e−δ/a + aµ−eδ/a + λ|δ + w|. Replacing
δ + w with θ, this minimization problem is equivalent to
minimizingaµ+ew/ae−θ/a +aµ−e−w/aeθ/a +λ|θ|, a one
dimensional version of the problem considered in Thm. 1.



INPUT: Functions{fr}
k
r=1, regularizationλ

IF
∑k

r=1 |f
′
r(0)| ≤ λ

RETURN d⋆ = 0

// Find sign of optimal solutions
SET sr = − sign(f ′

r(0))
// Get ordering of unregularized solutions
SOLVE d̃r = argmind fr(srd)

// We haved̃(1) ≥ d̃(2) ≥ . . . ≥ d̃(k)

SORT {d̃r} (descending) into{d̃(r)}; d̃(k+1) = 0
FOR l = 1 to k

SOLVE for ξ such that
∑l

i=1 f ′
(i)(siξ) = −λ

IF ξ ≥ d̃(l+1)

BREAK

RETURN d⋆ such thatd⋆
r = sr min{d̃r, ξ}

Figure 1. Algorithm for minimizing
P

r fr(dr) + λ ‖d‖∞.

4. AdaBoost with ℓ1/ℓ∞ regularization

In this section we present generalizations of AdaBoost to
the multitask and multiclass problems with mixed-norm
regularization given in Eq. (1) and Eq. (2). We start by
deriving boosting-style updates for the mixed-normmulti-
task loss of Eq. (1) withp = ∞. The multitask loss is
decomposable into sums of losses, one per task. Hence, for
each separate task we obtain the same bound as that in the
binary classification case. However, we now need to update
rowswj from the matrixW while taking into account the
mixed-norm penalty. Given a rowj, we calculate impor-
tance weightsqt(i, r) for each examplei and taskr as the
probability the current weights assign the incorrect label,
qt(i, r) = 1/(1 + exp(yi,rwr · xi)), and the correlations
µ±

r,j for each taskr asµ+
r,j =

∑

i:yi,rxi,j>0 qt(i, r)|xi,j |

and µ−
r,j =

∑

i:yi,rxi,j<0 qt(i, r)|xi,j |. Defining δj =

[δj,1 · · · δj,k] and applying the progress bound for binary
classification, we see when we perform the updateW t+1 =
W t + [δt

1 · · · δ
t
n]⊤ we can lower bound the change in the

loss,∆t = L(W t+1) − L(W t), with
∑

j,r

aj

(

µ+
r,j(1 − e−δt

j,r/aj ) + µ−
r,j(1 − eδt

j,r/aj )
)

.

As before, the template vector should satisfy the constraint
that

∑

j aj |xi,j | ≤ 1 for all i.

For the multiclass objective from Eq. (2), we change the
definition of the importance weights and correlationsµ±

r,j ,
which gives us a new bound on the change in the multiclass
loss. The following lemma extends the boosting bounds
of Collins et al. (2002).

Lemma 4.1 (Multiclass boosting progress bound). Let
qt(i, r) denote the importance weight for each example in-
dexi and class indexr ∈ {1, . . . , k}, where

qt(i, r) =
exp(wt

r · xi)
∑

l exp(wt
l · xi)

.

Define the importance-weighted correlations as

µ+
r,j =

∑

i:yi 6=r,xi,j<0

qt(i, r)|xi,j | +
∑

i:yi=r,xi,j>0

(1 − qt(i, yi))|xi,j |

µ−
r,j =

∑

i:yi 6=r,xi,j>0

qt(i, r)|xi,j | +
∑

i:yi=r,xi,j<0

(1 − qt(i, yi))|xi,j | ,

the update to rowj of W t to bewt+1
j = wt

j + δt
j , and

let a satisfymaxi

{

∑

j aj |xi,j |
}

≤ 1
2 . The change in the

multiclass loss,∆t = L(W t+1) − L(W t), is bounded by

n
∑

j=1

aj

k
∑

r=1

(

µ+
r,j(1 − e−δt

j,r/aj ) + µ−
r,j(1 − eδt

j,r/aj )
)

.

The boosting bounds we derived for the multitask and mul-
ticlass losses are syntactically identical, differing only in
their computation of the importance weights and correla-
tions. These similarities allow us to attack the update for
both problems together, deriving one efficient algorithm for
ℓ1/ℓ∞-regularized boosting based on a corollary to Thm. 1.

Adding ℓ∞-regularization terms to the multiclass and mul-
titask losses, we have that the change in the objective is
∆t − λ

∑n
j=1

∥

∥wt
j + δj

∥

∥

∞
+ λ

∑n
j=1

∥

∥wt
j

∥

∥

∞
. For sim-

plicity of our derivation, we focus on updating a single row
j in W , and we temporarily assume thatwt

j = 0. We make
the substitutionajdr = δj,r. The update towj is now given
by the solution to the following minimization problem:

min
d

k
∑

r=1

µ+
r e−dr + µ−

r edr + λ ‖d‖∞ . (6)

First, we note that the objective function of Eq. (6) is sep-
arable indj with an ℓ∞-regularization term. Second, the
derivative of each of the terms, dropping the regularizer, is
−µ+

r e−dr + µ−
r edr . Third, the unregularized minimizers

ared̃r = 1
2 log(µ+

r /µ−
r ) (where we allowd̃r = ±∞). We

immediately have the following corollary to Thm. 1.

Corollary 4.1. The minimizingd⋆ of Eq. (6) isd⋆ = 0

if and only if
∑k

r=1 |µ
+
r − µ−

r | ≤ λ. Assume w.l.o.g that
µ+

r ≥ µ−
r . Whend⋆ 6= 0, there are setsB = {r : |d⋆

r | =
‖d⋆‖∞} andU = [k] \ B such that

(a) For all r ∈ U , µ+
r e−d⋆

r − µ−
r ed⋆

r = 0

(b) For all r ∈ B, |d̃r| ≥ |d⋆
r | = ‖d⋆‖∞

(c)
∑

r∈B µ+
r e−‖d⋆‖

∞ − µ−
r e‖d⋆‖

∞ − λ = 0.

Based on the corollary, we can derive an efficient procedure
that first sorts the indices in[k] by the magnitude of the un-
regularized solutioñdr (we can assume thatµ+

r ≥ µ−
r and

flip signs at the end as in Fig. 1), then solves the following
equation for eachρ ∈ [k]:

e−d
∑

r:d̃r≥d̃(ρ)

µ+
r − ed

∑

r:d̃r≥d̃(ρ)

µ−
r − λ = 0 . (7)



INPUT: Training setS = {(xi, yi)}
m
i=1

Regularizationλ, number of roundsT
Update templatesA ⊆ R

n
+ s.t.

∀a ∈ A maxi

n

Pn
j=1 aj |xi,j |

o

≤ 1
2

FOR t = 1 to T
CHOOSEj ∈ {1, . . . , n}
FOR i = 1 to m andr = 1 to k

SET qt(i, r) = exp(wr·xi)
P

l exp(wl·xi)

FOR r = 1 to k

µ+
r,j =

X

i:yi=r,xi,j>0

(1 − qt(i, yi))|xi,j | +
X

i:yi 6=r,xi,j<0

qt(i, r)|xi,j |

µ−
r,j =

X

i:yi=r,xi,j<0

(1 − qt(i, yi))|xi,j | +
X

i:yi 6=r,xi,j>0

qt(i, r)|xi,j |

M INIMIZE for δj ∈ R
k such thataj 6= 0 (use Alg. 1)

P

j,raj

h

µ+
r,je

−δj,r/aj + µ−
r,je

δj,r/aj

i

+λ
‚

‚wt
j +ajδj

‚

‚

∞

UPDATE

W t+1 = W t + [δ1 · · · δn]⊤

Figure 2.AdaBoost forℓ1/ℓ∞-regularized multiclass.

This process continues until we find an indexρ such that
the solutiond⋆ of Eq. (7) satisfiesd⋆ ≥ d̃(ρ+1), whered̃(ρ)

is the ρth largest unregularized solution. To develop an
efficient algorithm, defineM±

ρ =
∑

r:d̃r≥d̃(ρ)
µ±

r . To solve
Eq. (7) for eachρ, applying the reasoning for Eq. (4) gives

d⋆ = log
−λ +

√

λ2 + 4M+
ρ M−

ρ

2M−
ρ

. (8)

When M−
ρ = 0, we getd⋆ = log(λ/M+

ρ ). We can
use Eq. (8) successively in the algorithm of Fig. 1 by set-
ting M±

ρ+1 = M±
ρ + µ±

(ρ). To recap, by sorting̃dr =
1
2 log(µ+

r /µ−
r ) and incrementally updatingM±

ρ , we can
use the algorithm of Fig. 1 to solve the extensions of Ad-
aBoost withℓ1/ℓ∞-regularization in timeO(k log k).

It remains to show how to solve the more general update
whenw 6= 0. In particular, we would like to find the mini-
mum of

a

k
∑

r=1

(

µ+
r e−dr + µ−

r edr
)

+ λ ‖w + ad‖∞ . (9)

We can make the transformationγr = wr/a+dr, which re-
duces our problem to the problem of finding the minimizer
of

∑k
r=1

(

µ+
r ewr/ae−γr + µ−

r e−wr/aeγr
)

+ λ ‖γ‖∞ with
respect toγ. This minimization problem can be solved
by using the same sorting-based approach, then recovering
d⋆ = γ⋆ − w/a.

Combining our reasoning for the multiclass and multitask
losses, we obtain an algorithm that solves both problems by
appropriately settingµ±

r,j and using the algorithm of Fig. 1
to update rows ofW . As they are so similar, we present the
algorithm only for the multiclass loss in Fig. 2.

5. GradBoost with ℓ1 & ℓ1/ℓ2 Regularization

In this section we shift our attention to a lesser used ap-
proach and derive additive updates for the logistic-loss with

quadratic upper bounds based on those of Dekel et al.
(2005). Concretely, we use bounds of the form

L(w + δej) ≤ L(w) + ∇L(w) · ejδ +
1

2
δej · Dejδ,

where D upper bounds∇2L(w) (in the binary case,
D = diag(1/4

∑m
i=1 x2

i,j)). We term these methods Grad-
Boost for their use of gradients and bounds on the Hes-
sian. We make no claim about whether the resulting algo-
rithms entertain the weak-to-strong learnability properties
of AdaBoost. The quadratic bounds allow us to perform
boosting-style steps withℓ2 andℓ22 regularization in addi-
tion to the regularizers studied above. We start with the
binary logistic loss. GradBoost, similar to AdaBoost, can
use a template vectora to parameterize updates. We focus
on single-coordinate updates for cleanliness, however. The
following lemma gives a progress bound for GradBoost.

Lemma 5.1 (GradBoost Progress Bound). Let g denote
the gradient of the logistic loss,gj = −µ+

j + µ−
j . Let

aj = 1/
∑

i x2
i,j andwt+1 = wt + δtej with δt = ajd

t.
Then the change,∆t = L(wt) − L(wt+1), in the logistic-
loss between iterations of GradBoost is lower bounded by

∆t ≥ −aj

„

gjd
t +

(dt)2

8

«

= −

„

gjδ
t +

(δt)2

8aj

«

.

To derive a usable bound for GradBoost withℓ1-
regularization, we replace the progress bound in lemma 5.1
with a bound dependent onwt+1 andwt by substituting
wt+1 − wt for δt. Incorporatingℓ1-regularization, we get
thatQ(wt+1) − Q(wt) is upper bounded by

gj(w
t+1
j −wt

j)+
1

8aj
(wt+1

j −wt
j)

2+λ|wt+1
j |−λ|wt

j | (10)

The bound above is separable, so Thm. 1 gives the update

wt+1
j = sign(wt

j − 4ajgj)
[

|wt
j − 4ajgj | − 4ajλ

]

+
(11)

We can use Eq. (11) to derive a GradBoost algorithm for the
ℓ1-regularized logistic loss. The algorithm is omitted as we
give a general multiclass version in the sequel. It is also
possible to use Thm. 1 to obtain new coordinate descent
methods for losses withℓ1/ℓ∞ regularization. Due to lack
of space we omit details but report the performance of these
variants in Sec. 6.

One form of regularization that has not been considered
in the standard boosting literature isℓ2 or ℓ22 regulariza-
tion. The lack thereof is a consequence of AdaBoost’s ex-
ponential bounds on the loss. GradBoost, however, can
straightforwardly incorporateℓ2-based penalties, since it
instead uses linear and quadratic bounds on the decrease in
the loss. We focus on multiclass GradBoost, as modifica-
tions for multitask follow the lines of derivation discussed



INPUT: Training setS = {(xi, yi)}
m
i=1;

Regularizationλ; number of roundsT
FOR t = 1 to T

CHOOSEj ∈ {1, . . . , n}
SET aj = 1/

∑

i x2
i,j

FOR i = 1 to m andr = 1 to k
// Compute importance weights for each class
SET qt(i, r) = exp(wr·xi)

P

k
l=1 exp(wl·xi)

FOR r = 1 to k
// Compute gradient terms
SET gr,j =

∑m
i=1(q

t(i, r) − 1 {r = yi})xi,j

gj = [g1,j · · · gk,j ]

wt+1
j =

(

wt
j − 2ajgj

)

[

1 −
2ajλ

‖wt
j
−2ajgj‖2

]

+

Figure 3.GradBoost forℓ1/ℓ2-regularized multiclass.

thus far. We focus particularly on mixed-normℓ1/ℓ2-
regularization (Obozinski et al., 2007), in which rows from
the matrixW = [w1 · · ·wk] are regularized together in an
ℓ2-norm. This leads to the following modification of the
multiclass objectiveQ(W ) from Eq. (2):

m
∑

i=1

log
(

1 +
∑

r 6=yi
ewr·xi−wyi

·xi

)

+ λ
n

∑

j=1

‖wj‖2 (12)

Generalizing the GradBoost progress bound while using
the normalizationaj = 1/

∑

i x2
i,j as before (omitting de-

tails), we upper boundQ(W t+1) − Q(W t) by

k
∑

r=1

(

gr,j −
wt

j,r

2aj

)

wt+1
j,r +

1

4

k
∑

r=1

(wt+1
j,r )2

aj
(13)

+
k

X

r=1

„

(wt
j,r)

2

4aj
− gr,jw

t
j,r

«

+ λ
`

‚

‚w
t+1
j

‚

‚

2
−

‚

‚w
t
j

‚

‚

2

´

wheregr,j is the derivative of the multiclass loss w.r.t the
jth weight for classr. The above bound is evidently a sep-
arable quadratic function withℓ2-regularization. We would
like to use Eq. (13) to perform block coordinate descent
on theℓ1/ℓ2-regularized lossQ from Eq. (12). Defining
the gradient vectorgj = [g1,j · · · gk,j ]

⊤ and using basic
properties from convex analysis, we obtain that the update
performed to minimize Eq. (13) with respect to rowwj is

wt+1
j =

(

wj − 2ajgj

)

[

1 −
2ajλ

∥

∥wt
j − 2ajgj

∥

∥

2

]

+

(14)

To recap, we obtain an algorithm for minimizing theℓ1/ℓ2-
regularized multiclass loss by iteratively choosing indices
j and then applying the update of Eq. (14). The algorithm
is given in Fig. 3.
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Figure 4.Results on the 4 top-level classes from RCV1.

6. Experiments

One of the objectives of this section is to demonstrate em-
pirically that the proposed algorithms are effective in ob-
taining sparse and accurate models. In our first series of
experiments, we focus on boosting and feature induction,
investigating the effect ofℓ1-regularization and its abil-
ity to automatically cease inducing new features in the
presence of regularization. We examined both classifica-
tion and regression tasks. For classification, we used the
Reuters RCV1 Corpus (Lewis et al., 2004), which consists
of 804, 414 news articles and around 100,000 words that
constitute our features. Each article is labeled by at least
one label from the set MCAT, CCAT, ECAT, and GCAT,
and we train a classifier for each each class. We show av-
erage logistic loss rates over a series of tests using 30,000
randomly chosen articles with a 70/30 training/test split in
Fig. 4 (error rates are similar and we omit them for space).
As a baseline for comparison, we used boosting regularized
with a smooth-ℓ1 penalty (Dekel et al., 2005), an approx-
imation to theℓ1-norm. We also compared our approach
to ℓ2-regularized logistic regression with features chosen
using mutual information with the target (details omitted).
The regularization parameters were chosen using 5-fold
cross validation. For both boosting algorithms, we ran the
“totally corrective” variant (Warmuth et al., 2006). Con-
cretely, we added the30 top-scoring features on every iter-
ation for theℓ1 booster and the single top-scoring feature
for the smooth-ℓ1 regularized booster, then reoptimized the
weights of all the features previously selected. The graphs
in Fig. 4 suggest an interesting story. In all of them, theℓ1-
regularized booster actually ceased adding features around
iteration 30, including about700 features with non-zero
weights after the back-pruning/optimization steps. There-
fore, the plots forℓ1-AdaBoost terminate early, while the
smooth-ℓ1 booster keeps adding features and starts over-
fitting to the training set as early as iteration200.
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Figure 5.Results for Boston Housing (left) and Aileron.

We also performed comparisons on regression tasks. We
describe here results for the Boston housing data set from
the UCI repository and an F16 aircraft control dataset,
where the goal is to predict an action on the ailerons of
the aircraft given its state. We used theε-insensitive re-
gression loss (Dekel et al., 2005) to learn a predictorw.
In this case, our objective is

∑m
i=1 log (1 + ew·xi−yi−ε) +

log (1 + eyi−w·xi−ε), which approximatesε-insensitive
hinge regression. Forε-insensitive regression, an analy-
sis similar to that for standard boosting can be performed
to computeµ+ andµ− for every feature, which allows us
to perform boosting as already described. For these tests,
we compared unregularized “classical” (forward-greedy)
sequential AdaBoost, ourℓ1-regularized totally-corrective
boosting, ℓ1-regularized least squares (Friedman et al.,
2007), andℓ2-regularizedε-insensitive hinge loss. The
boosters used a countably infinite set of features by ex-
amining all products of features and were started with a
single bias feature. The algorithms could thus construct
arbitrarily many products of raw features as base hypothe-
ses and explore correlations between the features. For the
ℓ1-regularized least squares and the hinge loss, we simply
trained on the base regressors.

Fig. 5 shows the results for these tests with the Housing re-
sults on the left. Each plot contains the root-mean-square
error on test (the absolute error on test is qualitatively sim-
ilar). Theℓ1-regularized booster stopped after inducing an
average of under 35 features, marked with a star in the
graphs, after which a dotted line indicates the booster’s
intact performance. We see that even when classical Ad-
aBoost is allowed to run for 1,000 iterations, its perfor-
mance on test does not meet the performance for the35
features induced by theℓ1-regularized model. In fact, even
after 3,000 iterations, the smooth-ℓ1 variant was not able to
outperform the35 feature model built by theℓ1-penalized
version. Furthermore, the latter trains at least an order
of magnitude faster than the classical forward greedy re-
gressor and results in a significantly simpler model.ℓ1-
penalized AdaBoost also outperformsℓ1-penalized least
squares and theℓ2-regularized hinge loss with respect to
both the squared and absolute errors.

In the next set of experiments, we compare the different
structured regularizers with multiclass logistic losses to un-
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Figure 6. Left: test set coverage versus overall sparsity ofW .
Right: test set coverage versus row sparsity ofW .

structured regularization. As our datasets are single-label,
we omit experiments with multitask losses. For all multi-
class experiments, we focus on two error metrics. The first
is misclassification rate. The second iscoverage, which
measures how wrong a classifier is. Givenk weight vec-
tors wr and an examplexi with label yi, the coverage is
the correct weight vector’s position in the sorted list of in-
ner productswr ·xi. For example, ifwyi

·xi is the largest,
the coverage is 0, if it is third, the coverage is 2.

We begin with the StatLog LandSat dataset (Spiegelhalter
& Taylor, 1994), which consists of spectral values of pixels
in 3×3 neighborhoods in a satellite image. We expanded
the data by taking products of all features, giving 1296 fea-
tures per example. The goal is to classify a pixel (a piece of
ground) as one of six ground types. In Fig. 6, we plot cov-
erage as a function of sparsity and as a function of the num-
ber of features actually used (trained with GradBoost). The
plot on the left shows the test set coverage as a function of
the proportion of zeros in the learned weight matrixW (we
plot results for a training set of 240 examples per class as
results are similar for smaller and larger sets). On the right,
we show test set coverage as a function of the actual num-
ber of features that need to be computed to classify a piece
of ground—that is, the proportion ofall zero rows in W .
From the plots, we see that for a given performance level,
the ℓ1-regularized solution is sparser in terms of the abso-
lute number of zeros. However, theℓ1-regularized classifier
requires at least 50% more features be computed than does
the ℓ1/ℓ2-regularized classifer for the same test accuracy.
The results for misclassification rates are similar, and the
variance for each point in the plots is smaller than10−3.

We also ran tests using the MNIST handwritten digits
database. The dataset consists of 60,000 training examples
with a 10,000 example test set and has 10 classes. Each
image is a gray-scale28 × 28 image, which we represent
asxi ∈ R

784. Rather than directly use the inputxi, how-
ever, we learned weightswj using Kernel-based weak hy-
potheseshj(x) = K(xj ,x), K(x,z) = e−

1
2‖x−z‖2

for
j ∈ S, whereS is a 2766 element support set we generate
by doing one pass through the data with the perceptron and
keeping examples on which it makes mistakes. This gives a
27,660 dimensional multiclass problem. On the left side of
Fig. 7, we plot the coverage rate for each algorithm on the
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Figure 8. Left: MNIST/LandSat error rate. Right: Sparsity.

10,000 example test set versus the number of training ex-
amples used per class (we choose regularization values by
cross-validation). Each improves as the number of train-
ing examples grows; however, it is clear that the sparsity
inducing regularizers, specifically the structuralℓ1/ℓ∞ and
ℓ1/ℓ2 regularizers, give better performance than the others.
The error rate on the test set is roughly 50% the coverage
and qualitatively similar.

We conclude with a direct comparison of AdaBoost and
GradBoost withℓ1/ℓ∞-regularization. On the left side of
Fig. 7 and in Fig. 8, we plot the training objective, test error
rate, and sparsity of the classifiers as a function of train-
ing time for both AdaBoost and GradBoost on the LandSat
dataset and MNIST dataset. From Fig. 8, we see that both
AdaBoost and GradBoost indeed leverage induction during
the first few thousand iterations, adding many features that
contribute to decreasing the loss. They then switch to a
backpruning phase in which they remove features that are
not predictive enough without increasing mistakes on the
test set. We saw similar behavior across many datasets,
which underscores the ability of the algorithms to perform
both feature induction and backward pruning in tandem.

Though this paper omits the following, we note that our al-
gorithms all enjoy convergence guarantees, provide scoring
mechanisms for induction of features in boosting, and give
termination criteria for boosting based on the sparsifying
regularizers. These results and full proofs are available in
the long version of the paper on the the first author’s web-
site: http://www.cs.berkeley.edu/˜jduchi.
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