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Abstract

In this paper, we explore an application of ba-
sis pursuit to audio scene analysis. The goal
of our work is to detect when certain sounds
are present in a mixed audio signal. We focus
on the regime where out of a large number of
possible sources, a small but unknown num-
ber combine and overlap to yield the observed
signal. To infer which sounds are present,
we decompose the observed signal as a lin-
ear combination of a small number of active
sources. We cast the inference as a regular-
ized form of linear regression whose sparse so-
lutions yield decompositions with few active
sources. We characterize the acoustic vari-
ability of individual sources by autoregres-
sive models of their time domain waveforms.
When we do not have prior knowledge of the
individual sources, the coefficients of these
autoregressive models must be learned from
audio examples. We analyze the dynamical
stability of these models and show how to es-
timate stable models by substituting a simple
convex optimization for a difficult eigenvalue
problem. We demonstrate our approach by
learning dictionaries of musical notes and us-
ing these dictionaries to analyze polyphonic
recordings of piano, cello, and violin.

1. Introduction

In this paper we study the problem of detecting when
certain sounds are present in a mixed audio signal. We
imagine that out of a large number of possible sounds,
a small but unknown number are present and over-
lapping in the observed signal. We seek to detect the
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constituent sources, choosing from among entries that
have been catalogued and represented in a large audio
dictionary. We explore a novel framework in which the
dictionary entries are themselves autoregressive mod-
els of time domain waveforms; these models character-
ize the acoustic variability of individual sources.

The problem we study arises in a number of set-
tings and at many different levels of analysis. For
example, at a low level of analysis, we might try to
recover the score of a polyphonic recording using a
dictionary whose entries represent individual musical
notes (Cont, 2006). At a higher level of analysis, we
might try to tag and index the frames of a movie
soundtrack using a dictionary whose entries represent
particular voices and sound effects (Chechik et al.,
2008). We believe that the problem has many poten-
tial applications of commercial interest.

A large literature of related work addresses the prob-
lem of source separation, or the “cocktail party” prob-
lem, in which the goal is to recover the individual
sources from a mixed audio signal. The problem of
source separation has been studied using methods from
independent component analysis (Hyvarinen et al.,
2001), computational auditory scene analysis (Wang
& Brown, 2006), and probabilistic inference (Roweis,
2000). Compared to these other approaches, we gener-
ally start from different assumptions and work toward
different goals. However, as shown in section 5, our ap-
proach can potentially be used for source separation.

Our paper builds on recently proposed frame-
works for sparse decomposition of mixed audio sig-
nals (Nakashizuka, 2008; Cho & Saul, 2009). Pre-
vious studies addressed the problem of inference in
this framework: given autoregressive models of time
domain waveforms for a large number K of possi-
ble sources, how to identify which k � K of these
sources occur in single microphone recordings? Using
ideas from basis pursuit (Chen et al., 1998), this prob-
lem can be studied without performing an exponential
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search through all possible K!/(k!(K−k)!) combina-
tions of sources. In this paper, we also address the
problem of learning in this framework: how to esti-
mate stable autoregressive models of possible sources
that comprise the dictionary for basis pursuit?

The organization of this paper is as follows. In sec-
tion 2, we review the generalized formulation of ba-
sis pursuit (Cho & Saul, 2009) in which each dictio-
nary entry stores the coefficients of an autoregressive
model. Given a mixed audio signal, a sparse decompo-
sition into constituent sources is computed by balanc-
ing the modeling errors from individual sources against
a regularization term on their initial conditions. The
required optimizations are convex and can be solved
efficiently by iterative descent algorithms.

In section 3, we discuss the problem of learning in this
framework. We can estimate the coefficients of autore-
gressive models using simple least squares methods,
but these methods do not guarantee that the result-
ing models are stable: i.e., that their predictions will
not diverge as the models are evolved through time.
Imposing stability constraints on the estimation pro-
cedure leads to a non-convex optimization. We review
previous approaches to this problem in the more gen-
eral setting of linear dynamical systems (Lacy & Bern-
stein, 2002; Siddiqi et al., 2008), then describe a simple
approach that works well in our setting. In particular,
by appealing to Gershgorin circle theorem for eigen-
value bounds (Golub & Loan, 1996), we show that
stability is guaranteed by imposing a simple `1-norm
constraint on the model coefficients.

The last three sections of the paper present our empir-
ical findings and conclusions. In section 4, we present
experimental results on the learning of dictionaries
of musical notes. Here we contrast the results ob-
tained by autoregressive modeling in the time domain
to those obtained by nonnegative matrix factoriza-
tion (NMF) (Lee & Seung, 2001) in the magnitude
frequency domain (Smaragdis & Brown, 2003; Cont,
2006; Cheng et al., 2008). In section 5, we use the dic-
tionaries learned by autoregressive modeling and NMF
to analyze polyphonic musical recordings. We com-
pare the performance of these competing approaches
in terms of the precision and recall of musical notes
detected in sliding audio windows of each recording.
Finally, in section 6, we conclude by suggesting sev-
eral directions for future work.

2. Model

In this section we review how ideas from basis pur-
suit (Chen et al., 1998) have been extended to audio

scene analysis with autoregressive models as dictionary
elements (Nakashizuka, 2008; Cho & Saul, 2009).

2.1. Review of basis pursuit

Basis pursuit (BP) is a popular method for decompos-
ing a signal ~x into an optimal superposition of dictio-
nary elements {~si}Ki=1. In particular, BP computes a
sparse set of linear coefficients {βi}Ki=1 such that:

~x =
K∑
i=1

βi~si. (1)

Typically, the dictionary is overcomplete, with the
number of dictionary elements K exceeding the dimen-
sionality of the signal ~x. Of the many decompositions
satisfying eq. (1), BP favors the sparse decomposition
that minimizes:

min
K∑
i=1

|βi| subject to ~x =
K∑
i=1

βi~si. (2)

The optimization in eq. (2) minimizes the `1-norm
of the linear coefficients subject to the constraint in
eq. (1). It is convex with no local minima.

BP models the observed signal by an additive combi-
nation of dictionary elements (i.e., basis vectors) with
varying amplitudes. This model is very well suited to
data compression using Fourier or wavelet dictionaries.
However, it is not ideally suited to audio scene analy-
sis with dictionaries whose entries store waveforms of
naturally occurring sounds. These sounds are likely
to vary not only in terms of amplitude from one re-
alization to the next, but also in terms of duration,
phase, and timbre. While variations in phase can be ef-
ficiently encoded using shift-invariant schemes (Grosse
et al., 2007), variations in duration and timbre do not
admit similar solutions. Representing these variations
explicitly by different dictionary elements would ex-
plode the dictionary size.

2.2. Extension to autoregressive modeling

For audio scene analysis, we wish to decompose the
waveform {xt}Tt=1 of a mixed audio signal into the
waveforms of its constituent sources. The waveforms
of individual acoustic sources may exhibit consider-
able variability from one realization to the next. We
can characterize this variability in a simple way us-
ing autoregressive models with linear predictive coef-
ficients (Makhoul, 1975). Specifically, suppose that
waveforms {sit}Tt=1 from the ith source approximately
satisfy the mth order linear recursion relation

sit ≈
m∑
τ=1

αiτ sit−τ (3)
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for samples at times t > m. The particular realiza-
tion of the ith source’s waveform is determined by
the m initial conditions to the recursion relation which
we denote by {uit}m−1

t=0 . Eq. (3) can be extended to all
times t by making the identification:

sit = ui|t| for t ≤ 0. (4)

Note that each autoregressive model describes an m-
dimensional family of signals in which the differing ini-
tial conditions can not only parameterize variations in
amplitude (by scaling uit), but also variations in phase
(by shifting uit), and timbre (by reweighting uit). Fi-
nally, signals of variable duration T can be described
by simply evolving the recursion relation in eq. (3) for
different numbers of time steps.

Basis pursuit can be extended by viewing these au-
toregressive models as dictionary entries for individ-
ual acoustic sources (Cho & Saul, 2009). Specifically,
we can compute sparse decompositions of mixed au-
dio signals {xt}Tt=1 in terms of a few (k � K) active
sources by the following optimization:

min
s,u

{
1
2

K∑
i=1

T∑
t=1

(
sit−

m∑
τ=1

αiτ sit−τ

)2

+ γ

K∑
i=1

‖ui‖2

}

subject to xt =
K∑
i=1

sit and sit = ui|t| for t ≤ 0. (5)

The optimization is to be performed over all K source
waveforms {sit}Tt=1 and initial conditions {uiτ}m−1

τ=0 .
Most of the terms in the optimization are already fa-
miliar. The first term measures the fidelity of each
source to its autoregressive model. The constraints
enforce the identification in eq. (4), as well as the fact
that the sum of the sources must reproduce the ob-
served signal. The final term (Nakashizuka, 2008)
in the cost function is an `2-norm penalty on each
source’s initial conditions:

K∑
i=1

‖ui‖2 =
K∑
i=1

√√√√m−1∑
τ=0

u2
iτ . (6)

This term favors sparse solutions in which many
sources have zero excitation (i.e., all zero initial condi-
tions, with uiτ = 0 for all τ); we interpret such sources
as inactive. The two terms measuring modeling error
and sparsity are balanced by the regularization param-
eter γ > 0 that also appears in eq. (5).

The optimization in eq. (5) is convex. It can be
most efficiently solved by first eliminating the variables
{sit}t>0 representing source waveforms. These vari-
ables appear quadratically with a simple linear con-
straint on their sum at each time t. Thus they can be

eliminated analytically, leaving an unconstrained opti-
mization to be performed over the source initial condi-
tions {uiτ}m−1

τ=0 . The final optimization over these vari-
ables has the same form as regularized linear regression
in group Lasso problems (Yuan & Lin, 2006). More de-
tails on block coordinate relaxation methods (Sardy
et al., 2000) for these problems are discussed else-
where (Nakashizuka, 2008; Cho & Saul, 2009).

3. Learning

When prior knowledge is not available about individ-
ual acoustic sources, their autoregressive models must
be learned from audio examples. In this section, we
describe a stable alternative to simple least squares
methods for this problem.

3.1. Least squares

To learn an autoregressive model for a particular
acoustic source, we must estimate the linear predic-
tive coefficients {αiτ}mτ=1 in eq. (3) from audio exam-
ples of that source’s time domain waveforms. In this
paper, we consider the simplest learning scenario in
which the autoregressive models for different sources
are estimated independently of one another. Then,
after these different models are estimated, we simply
collect and combine them to constitute the dictionary
entries for basis pursuit. Because we focus on learning
one autoregressive model at a time, in the rest of this
section, we simplify notation by dropping the index i
indicating the particular source being modeled.

The most straightforward way to estimate each autore-
gressive model is to minimize the fitting error from
the approximation in eq. (3). For simplicity, we as-
sume that each model is being estimated from a single
time domain waveform. In this case, we can estimate
the linear predictive coefficient by solving the uncon-
strained optimization:

min
α

1
2

T∑
t=m+1

(
st −

m∑
τ=1

ατ st−τ

)2

. (7)

Eq. (7) can be solved by simple least squares and pseu-
doinverse methods.

3.2. Stable least squares

An autoregressive model is stable if its predictions over
time do not diverge. There are two reasons why we
wish to estimate autoregressive models with this prop-
erty. First, in practice we have observed that the nu-
merical optimizations for inference in section 2.2 can
be ill-conditioned or unstable when the autoregressive
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models are not constrained in this way. Second, we
can view stability as a form of prior knowledge about
the sources we are modeling; namely, we expect their
waveforms to remain bounded over time. Though sim-
ple least squares methods suffice to minimize the ap-
proximation error in eq. (3), they do not necessarily
yield stable models. Thus, for stability, we must im-
pose other constraints on the estimation procedure.

The stability of an autoregressive model depends on
the values of its linear predictive coefficients. We
can see this dependence by formulating these mod-
els in a slightly different way. In particular, let
St = [st st+1 . . . st+m−1]> denote the vector of m con-
secutive samples starting at time t. Then we can
rewrite the recursion relation in eq. (3) as an mth order
linear dynamical system that acts on these vectors. To
specify this system, we define the update matrix:

A =



0 1 0 0 0 0
0 0 1 0 0 0
...

...
0 0 0 0 1 0
0 0 0 0 0 1
αm αm−1 αm−2 · · · α2 α1


. (8)

The nonzero elements of the update matrix A consist
of ones just above the diagonal, as well as the linear
predictive coefficients ατ , which appear in the bottom
row. In terms of this matrix, we can rewrite the recur-
sion relation in eq (3) as simply:

St ≈ At−1S1. (9)

Eq. (9) shows that in general the model predictions
will diverge unless A has no eigenvalues of magnitude
greater than one. Thus for stability we require:

max |λ(A)| ≤ 1. (10)

The stability constraint in eq. (10) is easy to state
but not to impose. In particular, the constraint is not
convex, and the least squares problem in eq. (7) cannot
be solved in closed form with eq. (10) imposed as an
additional constraint.

The general problem of estimating stable dynamical
systems (for arbitrary matrices A) has been widely
studied. One tractable approach replaces the eigen-
value constraint in eq. (7) by the stricter constraint
that singular values of A are bounded by one (Lacy &
Bernstein, 2002). This constraint is convex and equiv-
alent to bounding the eigenvalues of AA>:

max |λ(AA>)| ≤ 1. (11)

An even more successful approach relaxes the con-
straint in eq. (11), incrementally generating and im-
posing only as many linear constraints on the up-
date matrix A as are required to obtain a stable solu-
tion (Siddiqi et al., 2008).

Our problem requires a different starting point than
the singular value constraint in eq. (11); in particular,
this constraint is actually degenerate for matrices of
the special form in eq. (8). For our problem, we in-
stead appeal to the Gershgorin circle theorem, which
accounts for how well the diagonal elements of a ma-
trix approximate its eigenvalues (Golub & Loan, 1996).
The theorem states that every eigenvalue of a matrix A
lies in the region:

λ(A) ⊆
m⋃
i=1

Di

where Di = {z ∈ C : |z − aii| ≤
∑
j 6=i

|aij |}.
(12)

For matrices of the form in eq. (8), the Gershgorin
circle theorem implies that the stability constraint in
eq. (10) is guaranteed by the simple `1-norm con-
straint:

‖α‖1 ≤ 1. (13)

We can therefore estimate stable autoregressive models
by replacing the unconstrained optimization in eq. (7)
by the constrained optimization:

min
α

1
2

T∑
t=m+1

(
st −

m∑
τ=1

ατ st−τ

)2

subject to ‖α‖1 ≤ 1.

(14)

The `1-norm regularization in eq. (14) not only yields
stable autoregressive models, but also favors sparse so-
lutions in which only a few of the ατ are non-zero.
Such solutions have been observed to avoid overfitting
in many other contexts (Tibshirani, 1996). The re-
quired optimization is convex and can be solved by
standard packages.

4. Musical note dictionaries

We experimented with the methods in the previous
section to learn autoregressive models of musical notes.
The models were trained on publicly available record-
ings (Fritts, 1997) of 73 individual notes (C2–C8) on
the piano. Specifically, each note’s model was trained
on a 90 msec window clipped from the loudest part of
the note’s recording and sampled at 22050 Hz. Mu-
sical notes provide a useful testbed for these methods
because their waveforms can be idealized as periodic
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Figure 1. Coefficients of different autoregressive models for
the piano note A4 with period 2.27 msec. Only the first 100
of m=350 total coefficients are shown.

signals with known frequencies. This prior knowledge
makes it easier to visualize, interpret, and compare the
results of different training procedures. We also com-
pared the results from autoregressive modeling to the
spectral templates of musical notes estimated in the
magnitude frequency domain.

4.1. Autoregressive models in the time domain

Fig. 1 shows the linear predictive coefficients of three
different autoregressive models for the piano note A4.
The model in the bottom plot was constructed by
prior knowledge, so we explain it first as a useful
reference. The musical note A4 has a frequency of
440 Hz. This periodicity is not perfectly realized by
audio samples from any actual instrument recording,
but we can construct a fairly accurate autoregressive
model with this idealization in mind. Note that for
a periodic signal whose period ρ = k∆ is exactly
equal to an integer multiple k of the sampling resolu-
tion ∆, a simple but perfectly accurate autoregressive
model (Nakashizuka, 2008) has zero coefficients every-
where except at αk = 1. More generally, for any peri-
odic signal, we can construct a highly accurate autore-
gressive model by setting all its coefficients to be zero
except at lags very close to the signal’s period. The
values of these non-zero coefficients can be determined
by a simple polynomial (e.g., cubic) interpolation (Cho
& Saul, 2009). The bottom plot in Fig. 1 shows these
idealized coefficients for the musical note A4.
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Figure 2. A spectral template for the piano note A4 with
frequency 440 Hz.

The autoregressive model in the top plot of Fig. 1 was
estimated by minimizing the approximation error in
eq. (7). Though this least squares solution yields the
smallest fitting error on the training samples, the co-
efficients do not reflect any underlying periodic struc-
ture. In fact, despite having been trained on multiple
cycles of the note’s period, the largest coefficient in
this model is α1, indicating that the model attempts
to predict each sample mainly from the immediately
preceding one. This property was also observed for
the models of other musical notes estimated by least
squares.

The autoregressive model in the middle plot of Fig. 1
was estimated by the constrained optimization in
eq. (14). The `1-norm regularization in this optimiza-
tion alleviates the susceptibility to noise of the least
squares estimator. The coefficients of this model are
not only stable, but also succeed in recovering the un-
derlying periodic structure of the training data. Most
of the coefficients are zero, except at very small lags
and at lags near the actual period of A4. This behav-
ior was also observed for the models of other musical
notes trained by `1-regularized least squares.

4.2. Spectral templates in the magnitude
frequency domain

Fig. 2 shows the magnitude power spectrum of the pi-
ano note A4 for the same audio samples used to esti-
mate the models in the previous section. The spectrum
has peaks at integer multiples of 440 Hz, correspond-
ing to the note’s fundamental frequency. In addition,
the shape of the spectrum conveys information about
the timbre of this note on the piano.

To establish another reference for the autoregressive
models in the previous section, we also constructed
a dictionary of spectral templates, one for each note,
in the magnitude frequency domain. These tem-
plates can be used to analyze mixtures of musical
notes using ideas from nonnegative matrix factoriza-
tion (NMF) (Smaragdis & Brown, 2003; Cont, 2006;
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Cheng et al., 2008). Specifically, let yµ denote the
magnitude spectrum of an observed signal, and let hiµ
denote the spectral template for the ith musical note.
We can compute the nonnegative weights wi ≥ 0 that
best reconstruct yµ ≈

∑
i wihiµ by minimizing one of

two error measures:

εLS =
∑
µ

(
yµ −

∑
i

wihiµ

)2

, (15)

εKL =
∑
µ

(
yµ log

yµ∑
i wihiµ

− yµ +
∑
i

wihiµ

)
.(16)

Eq. (15) computes the least squares error of the ap-
proximation, while eq. (16) computes a generalized
form of the Kullback-Leibler divergence. The optimal
weights that minimize both these errors can be com-
puted by simple iterative update rules (Lee & Seung,
2001). In section 5, we also evaluate the performance
of this approach.

We emphasize the basic modeling differences between
this approach and the one in the last section. Minimiz-
ing the errors in eq. (15–16) requires a precise match
of timbral profiles in the magnitude frequency domain,
whereas the stable autoregressive models in the previ-
ous section will accurately fit any periodic signals at
the modeled frequencies. In sum, the spectral tem-
plates offer increased specificity in the magnitude fre-
quency domain, while the autoregressive models offer
increased flexibility in the time domain. Our exper-
iments in the next section evaluate the tradeoffs of
these different approaches.

5. Evaluation

We evaluated the dictionaries of musical notes from
the last section by using them to analyze polyphonic
recordings. We analyzed three well-known pieces:
Etude Op.25, No.2 by Chopin, “The Entertainer” by
Joplin, and “La Donna e Mobile” by Verdi. The first
two of these are fast solo piano pieces, while the third
is a slower violin-cello duet. We worked with digi-
tal MIDI recordings1 so that we could evaluate our
inferred results against the musical score encoded by
the MIDI format.

Our experiments compared the performance of five dif-
ferent analyses on waveforms sampled at 22050 Hz
and segmented into non-overlapping 50 msec windows.
For the autoregressive models in the time domain, we
used the inference procedure in eq. (5) to identify con-
stituent musical notes, interpreting notes as active if
they had non-zero initial conditions. For the spec-

1Available at www.piano-midi.de and www.8notes.com.

Chopin Joplin Verdi
0

0.2

0.4

0.6

0.8

1
(a) Precision

 

 

Least squares Gershgorin Periodic NMF−LS NMF−KL

Chopin Joplin Verdi
0

0.2

0.4

0.6

0.8

1
(b) Recall

 

 

Least squares Gershgorin Periodic NMF−LS NMF−KL

Figure 3. Precision and recall results from all experiments.
See text for details.

tral templates in the magnitude frequency domain, we
identified constituent musical notes by those having
significant positive weights after minimizing the error
measures in eqs. (15–16). Overall performance was
measured by computing the precision and recall of
identified notes averaged over all the windows in each
song. For each song, we attempted to balance precision
and recall by tuning the regularization parameter γ in
eq. (5) as well as the threshold value used to identify
significant positive weights in the results from NMF.

Fig. 3 summarizes the precision and recall results from
all of our experiments. Using the autoregressive mod-
els in the time domain, the best results are obtained
by the dictionary of idealized periodic signals, followed
closely by the dictionary whose entries were estimated
by `1-regularized methods. By contrast, the perfor-
mance is essentially random for the dictionary of au-
toregressive models estimated by simple least squares
methods. Using spectral templates in the magnitude
frequency domain, the best results are obtained by
nonnegative matrix factorization with the divergence
criterion in eq. (16). The results also illustrate the
tradeoffs between increased specificity in the magni-
tude frequency domain and increased flexibility in the
time domain. On the piano pieces, the best perfor-
mance is obtained from the spectral template dictio-
naries estimated from sampled piano notes, whereas
on the violin-cello duet, the best performance is ob-
tained by the dictionary of (instrument-independent)
autoregressive models for idealized periodic signals.

Though basis pursuit with autoregressive modeling
does not always yield the best results, we are encour-
aged by the overall level of performance as well as the
specific breakdown of errors. Fig. 4 analyzes the er-
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Figure 4. Breakdown of false positives and false negatives
due to octave errors and/or note transition errors.

rors using the dictionary of autoregressive models es-
timated by `1-regularized methods. In particular, the
figure shows the percentages of false positives and neg-
atives due specifically to octave and note transition
errors. The former are common in musical pitch esti-
mation; the latter are small alignment errors that arise
when the model incorrectly detects notes in adjacent
frames (yielding false positives), drops notes one frame
before they actually disappear, or misses notes until
one frame after they appear (yielding false negatives).
A large percentage of the observed errors can be at-
tributed to these causes, which do not seem especially
egregious to us in the larger context of audio scene
analysis. (For example, the number of transition errors
appears to be directly correlated with the tempo of the
analyzed pieces.) Discounting these types of errors,
the precision and recall results for the `1-regularized
autoregressive models improve from roughly 70% to
90% on the two piano pieces. For improved perfor-
mance, one might also consider more specialized ap-
proaches (Goto, 2006; Cont, 2006) for reducing these
types of common errors in musical analysis.

Basis pursuit with autoregressive models can also be
used for source separation. The framework was con-
ceived with different goals in mind, but because it op-
erates directly on time domain waveforms, it can be
also used to reconstruct individual sources. In par-
ticular, this approach does not need to fill in missing
phase information as when signals are decomposed in
the magnitude frequency domain. Fig. 5 shows an ex-
ample of source separation on a 50 msec window from
the violin-cello duet by Verdi. At this point in the
score, the violin is playing A4 and the cello is playing
D3 and C4. These notes were correctly detected by the
optimization in eq. (5) using the dictionary of autore-
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Figure 5. Example of source separation: cello and violin.

gressive models estimated by `1-regularized methods.
To separate the violin from the cello, we then decom-
posed the observed signal in this window using only
the dictionary entries for the detected notes. Finally,
using prior knowledge of the frequency ranges of these
instruments, the waveforms inferred for D3 and C4
were ascribed to the cello, and the waveform inferred
for A4 was ascribed to the violin. The figure contrasts
the predicted and actual waveforms of violin and cello
in this window.

6. Conclusion

In this paper, we have explored a framework to de-
tect sounds in mixed audio signals. Our framework
can be viewed as a generalization of basis pursuit in
which the dictionary entries are themselves stable au-
toregressive models. The results in the previous sec-
tion suggest several directions for further study. For
example, the approach in section 4.1 has the weak-
ness that it only learns to model the periodicity but
not the timbre of musical notes. Can we remedy this
deficiency by additionally incorporating a statistical
model for each note that distinguishes between likely
versus unlikely sets of initial conditions? More gener-
ally, for both musical and non-musical signals, many
interesting questions arise naturally in this framework.
Can we learn dictionaries of autoregressive models in
an unsupervised fashion, not from isolated recordings
of individual sources, but directly from mixed audio?
Can we catalogue the types of real-world sounds that
are accurately described by autoregressive models? Fi-
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nally, can we model the onsets and offsets of sources
across time by extending this framework with ideas
from hidden Markov modeling? These questions and
others are open for future work.
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