
Efficient Euclidean Projections in Linear Time

Jun Liu J.LIU@ASU.EDU

Jieping Ye JIEPING.YE@ASU.EDU

Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287, USA

Abstract
We consider the problem of computing the Eu-
clidean projection of a vector of length n onto
a closed convex set including the �1 ball and
the specialized polyhedra employed in (Shalev-
Shwartz & Singer, 2006). These problems have
played building block roles in solving several �1-
norm based sparse learning problems. Existing
methods have a worst-case time complexity of
O(n log n). In this paper, we propose to cast
both Euclidean projections as root finding prob-
lems associated with specific auxiliary functions,
which can be solved in linear time via bisec-
tion. We further make use of the special struc-
ture of the auxiliary functions, and propose an
improved bisection algorithm. Empirical stud-
ies demonstrate that the proposed algorithms are
much more efficient than the competing ones for
computing the projections.

1. Introduction

The Euclidean projection of a vector v ∈ R
n onto a set

G ⊆ R
n is defined as:

πG(v) = argmin
x∈G

1
2
‖x− v‖2, (1)

where ‖.‖ is the Euclidean (�2) norm. Since the objective
function in (1) is strictly convex, its solution is unique for a
closed and convex set G. When the set G is simple, e.g., the
hyperplane, the halfspace, and the rectangle, the problem
in (1) has an analytical solution (Boyd & Vandenberghe,
2004). However, for a general closed and convex set G,
the problem in (1) does not admit an analytical solution.
For example, when G is a general polyhedra, (1) leads to a
Quadratic Programming problem.

In this paper, we address the problem of computing the Eu-
clidean projection onto the following two closed and con-

Appearing in Proceedings of the 26th International Conference
on Machine Learning, Montreal, Canada, 2009. Copyright 2009
by the author(s)/owner(s).

0

C

C

C

x

0,1 2x x x

, 1 2C Cx x x

1x

2x

0,2 1x x x

Figure 1. Illustration of the set G2 in the three dimension case
(p = 2, n = 3). G2 is the region that is bounded by the following
three lines: 1) x1 = 0, x2 = x; 2) x2 = 0, x1 = x; and 3)
x = C, x1 + x2 = C.

vex sets: (see Fig. 1 for an illustration of G2):

G1 = {x ∈ R
n| ‖x‖1 ≤ z}, (2)

G2 = {x = (x,x) ∈ R
n,x ∈ R

p,x ∈ R
n−p|

x ≥ 0,x ≥ 0, ‖x‖1 = ‖x‖1 ≤ C}, (3)

where ‖.‖1 denotes the �1 norm, and z > 0 and C > 0
denote the radiuses of the ‖.‖1 balls. These two Euclidean
projections have played building block roles in solving sev-
eral �1-norm based sparse learning problems (Tibshirani,
1996; Koh et al., 2007; Ng, 2004; Duchi et al., 2008;
Shalev-Shwartz & Singer, 2006; Shalev-Shwartz, 2007).

The Euclidean projection onto the �1 ball (G1) can be ap-
plied to solve the �1 ball constrained learning problem:

min
x:‖x‖1≤z

loss(x), (4)

where loss(.) is a given convex loss function. For exam-
ple, setting loss(.) to the least squares loss leads to the
well-known Lasso problem (Tibshirani, 1996); and setting
loss(.) to the empirical logistic loss leads to the �1 ball con-
strained logistic regression problem (Koh et al., 2007).

The use of the �1 ball constraint (or equivalently the �1

norm regularization) results in sparse solutions and em-
pirical success in various applications (Candès & Wakin,

Efficient Euclidean Projections in Linear Time

2008; Donoho, 2006; Ng, 2004; Koh et al., 2007; Shalev-
Shwartz & Srebro, 2008; Tibshirani, 1996). To solve
(4) in the large-scale scenario, one may rely on the first-
order methods—those using at each iteration function val-
ues and (sub)gradients only. Well-known first-order meth-
ods include subgradient descent, gradient descent, and
Nesterov’s optimal method (Nesterov, 2003; Nemirovski,
1994). When applied to solve (4), one key building block
is the Euclidean projection onto the �1 ball. Duchi et al.
(2008) proposed two algorithms for solving this projection.
The first algorithm is motivated by the work of (Shalev-
Shwartz & Singer, 2006; Shalev-Shwartz, 2007), and it
works by sorting the elements of the vector, and then ob-
taining the projection by thresholding. The resulting al-
gorithm has a time complexity of O(n log n). The second
algorithm is based a modification of the randomized me-
dian finding algorithm (Cormen et al., 2001), and it has an
expected (not the worst-case) time complexity of O(n).

The Euclidean projection onto the specialized polyhedra
G2 was studied in (Shalev-Shwartz & Singer, 2006) in the
context of learning to rank labels from a feedback graph.
Shalev-Shwartz and Singer (2006) reformulated their pro-
posed model as a Quadratic Programming problem sub-
ject to a set of affine constraints, in which the projection
onto G2 is a key building block. To solve this projection,
Shalev-Shwartz and Singer (2006) proposed to first sort the
elements of the vectors v and v, then solve a piecewise
quadratic minimization problem, and finally obtain the so-
lution by thresholding. The resulting algorithm has a time
complexity of O(n log n).

In this paper, we propose to cast both Euclidean projections
as root finding problems associated with specific auxiliary
functions. Based on such reformulations, we propose to
solve both problems using bisection, which has a (worst-
case) linear time complexity. We further make use of the
special structure of the auxiliary functions, and propose an
improved bisection algorithm. Empirical studies demon-
strate the efficiency of the proposed algorithms in compar-
ison with existing algorithms.

Notation: Vectors are denoted by lower case bold face
letters, e.g., x ∈ R

n is an n-dimensional vector. The i-th
element of x is denoted by xi. ‖.‖ denotes the Euclidean
(�2) norm, and ‖.‖1 denotes the �1 norm.

Organization: We cast both Euclidean projections as root
finding problems in Section 2, propose efficient projection
algorithms in Section 3, report empirical results in Sec-
tion 4, and conclude this paper in Section 5.

2. Reformulation as Root Finding Problems

In this section, we reformulate both Euclidean projections
as root finding problems using the Lagrangian technique.

2.1. Projection onto the �1 Ball

The problem of Euclidean projections onto the � 1 ball G1

can be formally defined as:

πG1(v) = arg min
x:‖x‖1≤z

1
2
‖x− v‖2. (5)

Introducing the Lagrangian variable λ for the constraint
‖x‖1 ≤ z, we can write the Lagrangian of (5) as

L(x, λ) =
1
2
‖x− v‖2 + λ(‖x‖1 − z).

Let x� be the primal optimal point, and λ� be the dual op-
timal point. The primal and dual optimal points x� and
λ� should satisfy ‖x�‖1 ≤ z and λ� ≥ 0. Moreover, the
�1 ball constraint in (5) satisfies Slater’s condition (Boyd
& Vandenberghe, 2004, Section 5.2.3) since ‖0‖ 1 < z.
Therefore, strong duality holds, the primal and dual optimal
values are equal, and we have the complementary slackness
condition:

λ�(‖x�‖1 − z) = 0. (6)

We show how to compute the primal optimal point x� when
the dual optimal point λ� is known. x� is the optimal solu-
tion to the following problem:

x� = arg min
x

L(x, λ�). (7)

The problem in (7) has a unique solution, since L(., .) is
strictly convex in the first argument. Since the variables in
(7) are decoupled, we have

x�
i = argmin

xi

1
2
(xi − vi)2 + λ�(|xi| − z),

which leads to

x�
i = sgn(vi)max(|vi| − λ�, 0), (8)

where sgn(t) is the signum function: if t > 0, sgn(t) = 1;
if t < 0, sgn(t) = −1; and if t = 0, sgn(t) = 0.

Our methodology for solving the problem (5) is to first
solve the dual optimal point λ�, with which we can obtain
the primal optimal point x� based on (8). We consider the
following two cases: ‖v‖1 ≤ z and ‖v‖1 > z. We show in
the following lemma that for the first case, we have λ� = 0:

Lemma 1 If ‖v‖1 ≤ z, then the dual optimal point λ� is
zero and the primal optimal point x� is given by x� = v.

Proof: We first prove λ� = 0 by contradiction. Assume
that λ� > 0. It follows from (8) that

‖x�‖1 < z,

thus λ�(‖x�‖1 − z) �= 0, which contradicts with the com-
plementary slackness condition in (6). Therefore, λ� = 0.
It follows from (8) that x� = v. �

Efficient Euclidean Projections in Linear Time

Next, we focus on the case when ‖v‖1 > z. We show that
λ� can be obtained by computing the root of an auxiliary
function, as summarized in the following theorem:

Theorem 1 If ‖v‖1 > z, then the dual optimal point λ� is
positive, and λ� is given by the unique root of

f(λ) =
n∑

i=1

max(|vi| − λ, 0) − z. (9)

Proof: We first prove that the auxiliary function f(.) has a
unique root, and then prove that λ� > 0 is the root of f(.).

Denote the maximal absolute element in v by vmax, that is,
vmax = maxi |vi|. It is clear that for any i, max(|vi|−λ, 0)
is continuous and monotonically decreasing in (−∞, +∞)
with respect to λ, and strictly decreasing in (−∞, |vi|].
Thus, f(.) is continuous and monotonically decreasing in
(−∞, +∞), and strictly decreasing in (−∞, vmax]. From
(9), we have f(0) > 0 (since ‖v‖1 > z), f(vmax − z) ≥ 0,
and f(vmax) = −z < 0. According to the Intermediate
Value Theorem, f(.) has a unique root lying in the interval
[max(0, vmax − z), vmax).

Next, consider the dual optimal point λ�. First, we show
that λ� must be positive. Otherwise, if λ� = 0, we have
x� = v from (8), and ‖x�‖1 = ‖v‖1 > z, which contra-
dicts with ‖x�‖1 ≤ z. It follows from the complementary
slackness condition in (6) that ‖x�‖1 = z. Following (8),
we have f(λ�) = 0. �

2.2. Projection onto the Specialized Polyhedra

The Euclidean projection onto the specialized polyhedra
G2 can be formally defined as:

πG2(v) = arg min
x=(x,x)

{
1
2
‖x− v‖2 +

1
2
‖x − v‖2

}
,

s.t. x ≥ 0,x ≥ 0,xT e = xT e ≤ C
(10)

where v = (v, v),x,v, e ∈ R
p, x,v, e ∈ R

n−p, and the
elements of e and e are all 1’s.

Introducing the Lagrangian variables λ, μ, ν and η for the
constraints xTe = xTe,x ≥ 0,x ≥ 0 and xT e ≤ C,
respectively, we can write the Lagrangian of (10) as

L(x,x, λ, μ, ν) =
1
2
‖x − v‖2 +

1
2
‖x − v‖2+

λ(xTe − xTe)+η(xTe− C) − μT x− νTx.

Let x� = (x�,x�) be the primal optimal point, and λ�, μ�,
ν� and η� be the dual optimal points. It is easy to verify
that the objective function in (10) is convex and differen-
tiable, and the constraint functions are differentiable, thus
the duality gap is zero, and any points that satisfy the KKT

conditions are primal and dual optimal (Boyd & Vanden-
berghe, 2004, Chapter 5.5.3).

The KKT conditions for (10) are given by

x�
i ≥ 0, x�

i = vi − λ� − η� + μ�
i , (11)

x�
j ≥ 0, x�

j = vj + λ� + ν�
j , (12)

μ�
i ≥ 0, μ�

i x
�
i = 0, ν�

j ≥ 0, ν�
j x�

j = 0, (13)

η� ≥ 0, η�(
p∑

i=1

x�
i − C) = 0,

p∑
i=1

x�
i ≤ C, (14)

p∑
i=1

x�
i =

n−p∑
j=1

x�
i , (15)

for all i = 1, 2, . . . , p, and j = 1, 2, . . . , n − p.

We show in the following lemma that the KKT condi-
tions (11-15) can be simplified:

Lemma 2 The conditions in (11-13) are equivalent to:

x�
i = max(vi − λ� − η�, 0), (16)

x�
j = max(vj + λ�, 0). (17)

Proof: First, we show that if (11-13) hold, then (16-17)
hold. If vi − λ� − η� > 0, we have x�

i > 0 from (11),
μ�

i = 0 from (13), and thus x�
i = vi−λ�−η� by using (11);

if vi−λ�−η� ≤ 0, we have x�
i = 0, because if x�

i > 0, we
have μ�

i > 0 from (11), and x�
i = 0 from (13), leading to

a contradiction. Therefore, (16) holds. Following similar
arguments, we can obtain (17).

Next, we assume (16-17) hold. By constructing μ�
i = x�

i −
(vi−λ� −η�) and ν�

j = x�
j − (vj +λ�), we can verify that

(11-13) hold. �
Based on Lemma 2, the KKT conditions (11-15) can be
simplified as (14-17). In the following discussions, we fo-
cus on computing the primal and dual optimal points by the
simplified KKT conditions. We define the following three
auxiliary functions:

g(λ) =
p∑

i=1

max(vi − λ, 0) − C, (18)

g(λ) =
n−p∑
j=1

max(vj + λ, 0) − C, (19)

g(λ) = g(λ) − g(λ). (20)

Using similar arguments as in the proof of Theorem 1, we
obtain the following properties of these functions:

Lemma 3 Denote vmax = maxi vi and vmax = maxj vj .

i) g(.) is continuous and monotonically decreasing in
(−∞, +∞), and strictly decreasing in (−∞, vmax];

Efficient Euclidean Projections in Linear Time

ii) The root of g(.) is unique and lies in [vmax − C, vmax);

iii) g(.) is continuous and monotonically increasing in
(−∞, +∞), and strictly increasing in [−vmax, +∞);

iv) The root of g(.) is unique and lies in (−vmax,−vmax +
C];

v) g(.) is continuous and monotonically decreasing in
(−∞, +∞), and strictly increasing in both (−∞, vmax]
and [−vmax, +∞).

vi) g(.) has at leat one root. Moreover, if vmax > −vmax,
then the root of g(.) is unique and lies in (−vmax, vmax).

We summarize the main results of this section in the fol-
lowing theorem:

Theorem 2 Denote the unique roots of g(.) and g(.) by λ
and λ, respectively.

i) If λ ≥ λ, then by setting λ� = λ, η� = λ − λ, and
the primal points according to (16) and (17), the simplified
KKT conditions hold;

ii) If λ < λ, then by setting η� = 0, λ� as a root of g(.), and
the primal points according to (16) and (17), the simplified
KKT conditions hold. Moreover, if vmax > −vmax, then λ�

is the unique root of g(.); and if vmax ≤ −vmax, then λ�

can be any element in [vmax,−vmax], and meanwhile the
primal optimal point x� is a zero vector.

Proof: In both cases, (16) and (17) hold, so we only need
to verify the conditions in (14) and (15).

We first prove i). Since λ and λ are the roots of g(.) and
g(.), respectively, we have g(λ) = 0 and g(λ) = 0. Since
we set λ� = λ and η� = λ − λ, we have λ� + η� = λ,
and g(λ� + η�) = 0. It follows from (16) and (18) that∑p

i=1 x�
i = C. Similarly, we can verify that

∑n−p
j=1 x�

i =
C. Therefore, (15) holds. Since η� = λ − λ ≥ 0 due to
λ ≥ λ, and

∑p
i=1 x�

i = C, we verify (14).

Next, we prove ii). We first show that λ� ∈ (λ, λ). Accord-
ing to the second property in Lemma 3, we have λ < v max;
similarly, we have λ > −vmax, according to the fourth
property in Lemma 3. From the first property in Lemma 3,
g(.) is strictly decreasing in (−∞, vmax] and monotoni-
cally decreasing in (−∞, +∞), thus

g(λ) < g(λ) = 0. (21)

Similarly, from the third property in Lemma 3, we have

g(λ) < g(λ) = 0. (22)

It follows from (20), (21), and (22) that

g(λ) = g(λ) − g(λ) > 0, g(λ) = g(λ) − g(λ) < 0.

Since g(.) is continuous and monotonically decreasing (see
the fifth property in Lemma 3), we have λ� ∈ (λ, λ). Fol-
lowing the similar arguments for obtaining (21), we have
g(λ�) < 0. Since we set η� = 0, we have

∑p
i=1 x�

i =∑p
i=1 max(vi − λ�, 0) = g(λ�) + C < C by using (16)

and (18). Therefore, (14) holds. It follows from (16-20)
together with g(λ�) = 0 and η� = 0 that (15) holds.

From the sixth property in Lemma 3, the root of g(.) is
unique, if vmax > −vmax. If vmax ≤ −vmax, then fol-
lowing (18) and (19), we have g(λ) = g(λ) = −C and
g(λ) = 0, ∀λ ∈ [vmax,−vmax]. Meanwhile, from (16)
and (17), we have x�

i = x�
j = 0, ∀i, j, so that the primal

optimal point x� is a zero vector. �
Following Theorem 2, we propose the following procedure
for solving (10). First, we compute λ and λ, the unique
roots of g(.) and g(.). If λ ≥ λ, we set λ� = λ and η� =
λ − λ; if λ < λ and vmax > −vmax, we set η� = 0 and
compute λ� as the unique root of g(.); and if λ < λ and
vmax ≤ −vmax, we set η� = 0 and choose any element
in [vmax,−vmax] as λ�. Finally, with the computed dual
optimal points, we obtain the primal optimal points from
(16) and (17).

3. Efficient Euclidean Projections

We reformulated the Euclidean projection as root finding
problems in the last section. In this section, we present
efficient algorithms for computing the roots. Specifically,
we present the bisection algorithm in Section 3.1, and an
improved bisection algorithm in Section 3.2.

3.1. Euclidean Projections by Bisection

We first propose to make use of bisection for computing
the dual optimal points. Bisection works by producing a
sequence of intervals of uncertainty with strictly decreasing
lengths. It is known that, for any continuous function with
a unique root in the interval [a, b], the number of bisection
iterations is upper-bounded by
log2(

b−a
δ)�, where b−a is

the length of the initial interval of uncertainty and δ denotes
the pre-specified precision parameter.

When applying bisection for solving the roots of f(.), g(.),
g(.) and g(.), it costs O(n), O(p), O(n−p) and O(n) float-
ing operations (flops) for evaluating the function values
once, respectively. From Lemma 3 and Theorems 1 and 2,
the lengths of the initialized interval are upper-bounded by
z, C, C and |vmax+vmax|, respectively, so the bisection it-
erations are upper-bounded by
log2(z/δ)�,
log2(C/δ)�,

log2(C/δ)� and
log2(|vmax + vmax|/δ)�, respectively.
Once the dual optimal point(s) have been computed, we can
recover the primal optimal point x� from (8), (16) and (17)
in O(n) flops. Therefore, the time complexity for solving
these two Euclidean projections by bisection is O(n).

Efficient Euclidean Projections in Linear Time

3.2. Euclidean Projections by Improved Bisection

Although bisection can solve the Euclidean projections in
linear time, it has the limitation that its efficiency is inde-
pendent of the function, and it cannot be improved even
when the function is “well-behaved”. The underlying rea-
son is that, bisection only utilizes the signs of the function
at the two boundary points, but not their values.

To improve the efficiency, one natural alternative is the in-
terpolation method (Brent, 1971) that has a better local con-
vergence rate than bisection. Well-known linear interpola-
tion methods include Newton’s method and Secant which
have locally Q-quadratic and Q-superlinear convergence
rates, respectively. However, both Newton’s method and
Secant can diverge. To overcome this limitation, the safe-
guarded methods (Brent, 1971) have been proposed. The
interpolation methods such as Newton’s method, Secant
and their safeguarded versions are developed for solving
the general purpose root finding problems. In this subsec-
tion, we aim at developing an efficient improved bisection
algorithm for finding the root by explicitly using the “struc-
ture” of the auxiliary functions.

Due to similarities of these auxiliary functions, we take
f(.) as an example in the following discussions. We note
that, the two key factors that influence the efficiency of the
root finding algorithm are: (1) the cost for evaluating the
function value, and (2) the number of iterations. In what
follows, we detail how to reduce the cost for evaluating
f(λ) in Section 3.2.1 and reduce the number of iterations
in Section 3.2.2.

For convenience of illustration, we denote u = |v|, that is,
ui = |vi|, with which the auxiliary function f(.) in (9) can
be written as f(λ) =

∑n
i=1 max(ui − λ, 0) − z. We first

reveal the convexity property of f(λ). Since max(u i−λ, 0)
is convex for all i, the auxiliary function f(λ) is convex, as
summarized in the following lemma:

Lemma 4 The auxiliary function f(λ) in (9) is convex.

3.2.1. EFFICIENT EVALUATION OF f(λ)

In this subsection, we aim to reduce the computational cost
for evaluating f(.). Denote

Rλ = {i|i ∈ [n], ui > λ},
we can write f(λ) as

f(λ) =
n∑

i=1

max(ui − λ, 0) − z

=
∑
i∈Rλ

(ui − λ) − z =
∑
i∈Rλ

ui − λ|Rλ| − z,
(23)

where |Rλ| denotes the number of elements in Rλ.

u(4) u(3) u(2) u(1)

f()

-z

0 u(4) u(3) u(2) u(1)

f'()

0

Figure 2. Illustration of the auxiliary function f(λ) (left) and its
subgradient f ′(λ) (right).

It is easy to verify that f(λ) is a piece-wise linear function,
as illustrated in the left figure of Fig. 21. It is clear that f(λ)
is not differentiable at ui, for i = 1, 2, . . . , n. However, as
revealed in Lemma 4, f(λ) is convex, and we can define
the subgradient (Nemirovski, 1994) of f(λ) as

f ′(λ) = −|Rλ|. (24)

Thus, f ′(λ) is monotonically increasing and non-positive,
and f ′(λ) = 0 if and only if λ ≥ u(1) = vmax. The right
figure of Fig. 2 illustrates the subgradient f ′(λ), which is
also a piece-wise linear function. From (23) and (24), we
can rewrite f(λ) as:

f(λ) = f ′(λ)λ + b(λ), (25)

where

b(λ) =
∑
i∈Rλ

ui − z

is the bias of the piece-wise linear function at λ. (25) im-
plies that the efficient evaluation of f(λ) lies in the efficient
calculation of f ′(λ) and b(λ).

Let the current interval of uncertainty be [λ1, λ2], and
f ′(λ2) and b(λ2) have been computed. We show how to
evaluate the value of f(λ) for any λ ∈ [λ1, λ2]. Denote
Uλ = {i|λ < ui ≤ λ2}, we can compute f ′(λ) and b(λ) as

f ′(λ) = −|Uλ| + f ′(λ2),

b(λ) =
∑
i∈Uλ

ui + b(λ2),

which shows that we focus on those elements in the interval
(λ1, λ2] only for computing the subgradient f ′(λ) and the
bias b(λ) for any λ ∈ [λ1, λ2]. Note that the number of el-
ements in the interval (λ1, λ2] decreases when the iterative
procedure proceeds (for example, the length of the interval
is decreased by a factor of 2 in each iteration of bisection),
thus reducing the computational cost for evaluating f(λ).

1For illustration convenience, we denote u(i) as the i-th order
statistic of u, i.e., u(1) ≥ u(2) ≥ . . . ≥ u(n). However, in the
proposed algorithm, we do not need to sort the elements in u.

Efficient Euclidean Projections in Linear Time

T1()

-z

0 1 2T1

T2()

-z

0 1 2T2

S()

-z

0 1 2S

1

f(1)>0

2

f(2)<0

T

f(T) 0

S

f(S) 0

Figure 3. Illustration of the three constructed models and the rela-
tionship among the roots of the models. The dashed piecewise lin-
ear line denotes f(.), and the solid line is the constructed model.

3.2.2. REDUCING THE NUMBER OF ITERATIONS

To reduce the number of iterations, we propose to employ
several models including Newton’s method and Secant to
obtain some approximate solutions for tightening the inter-
val of uncertainty. We then apply bisection to this tight-
ened interval to obtain a new interval of uncertainty. Our
method is an improved bisection algorithm, which effec-
tively integrates Newton’s method and Secant in bisection.
Our method can decrease the interval of uncertainty by a
factor strictly larger than 2 in each iteration.

Let the current interval of uncertainty be [λ1, λ2] (f(λ1) >
0 and f(λ2) < 0), and the following values have been
obtained: the subgradients f ′(λ1) and f ′(λ2), the func-
tion values f(λ1) and f(λ2), and the biases b(λ1) and
b(λ2). We construct three models for approximating f(.)
(see Fig. 3).

The first model corresponds to the line that passes through
(λ1, f(λ1)) with derivative f ′(λ1):

T1(λ) = f(λ1) + f ′(λ1)(λ − λ1). (26)

The second model corresponds to the line that passes
through (λ2, f(λ2)) with derivative f ′(λ2):

T2(λ) = f(λ2) + f ′(λ2)(λ − λ2). (27)

When λ1 �= ui for any i, T1(.) is the tangent line of f(.) at
λ1. Similarly, when λ2 �= ui for any i, T2(.) is the tangent
line of f(.) at λ2.

Based on the definition of f ′(λ) in (24) and λ1 < vmax, we
have f ′(λ1) < 0. Therefore, the unique root of T1(.) is

λT1 = λ1 − f(λ1)/f ′(λ1), (28)

which satisfies λT1 > λ1 since f(λ1) > 0 and f ′(λ1) < 0.
Similarly, when f ′(λ2) is nonzero, the unique root of T2(.)
can be computed as:

λT2 = λ2 − f(λ2)/f ′(λ2). (29)

Since f(.) is convex and f ′(.) is the subgradient of f(.),
the lines T1(.) and T2(.) always underestimate f(.), i.e.,

f(λT1) ≥ T1(λT1) = 0,

f(λT2) ≥ T2(λT2) = 0.

Denote
λT = max(λT1, λT2). (30)

It follows that f(λT) ≥ 0, and λT > λ1. Thus, λT forms a
tighter lower-bound of the interval of uncertainty than λ 1.

The third model is based on the line passing through the
two points (λ1, f(λ1)) and (λ2, f(λ2)):

S(λ) = f(λ2) +
f(λ2) − f(λ1)

λ2 − λ1
(λ − λ2). (31)

Since f(λ1) �= f(λ2) (note that, f(λ1) > 0, f(λ2) < 0),
the unique root of S(.) can be written as

λS = λ2 − f(λ2)
λ2 − λ1

f(λ2) − f(λ1)
, (32)

where λS < λ2, since f(λ2) λ2−λ1
f(λ2)−f(λ1)

> 0. From the
convexity of f(.), we have

f(λS) =f

(
f(λ2)

f(λ2) − f(λ1)
λ1 +

−f(λ1)
f(λ2) − f(λ1)

λ2

)

≤ 0.

Thus, λS forms a tighter upper-bound of the interval of un-
certainty than λ2.

Since f(.) is monotonically decreasing, we obtain the fol-
lowing relationship among λ1, λ2, λT , and λS (see Fig. 3):

λ1 < λT ≤ λS < λ2, (33)

where λT = λS if and only if f(λT) = f(λS) = 0.

With the computed tighter interval of uncertainty [λT , λS],
we can choose λ used in bisection as the middle point of
λT and λS :

λ =
1
2
(λT + λS). (34)

The updated interval of uncertainty is [λ, λS] if f(λ) > 0,
and [λT , λ] if f(λ) < 0. The length of interval of uncer-
tainty is decreased by a factor strictly larger than 2, since

λ − λT = λS − λ =
1
2
(λS − λT) <

1
2
(λ1 − λ2). (35)

Efficient Euclidean Projections in Linear Time

Table 1. Illustration of the improved bisection algorithm: each
row corresponds to an iteration; [λ1, λ2] denotes the current in-
terval, and |U | denotes its size; λT is computed from the two
models T1(.) and T2(.); λS is computed from the model S(.); λ
is the middle point of λT and λS ; and the found root is in bold.
|U | λ1 λT λ λS λ2

105 0 0.79907 2.49512 4.19116 4.19641
1242 2.49512 2.72716 3.24086 3.75455 4.19116
502 2.72716 2.85927 2.93296 3.00665 3.24086
88 2.85927 2.89934 2.90139 2.90343 2.93296
1 2.89934 2.90105 2.90105 2.90105 2.90139

3.2.3. DISCUSSIONS

The improved bisection algorithm enjoys the following two
properties: (1) consistently decreasing computation cost
for evaluating f(.) with increasing iterations; and (2) fewer
iterations than bisection, benefited by the good local con-
vergence rate of Newton’s method and Secant.

The improved bisection can also allow an initial guess of
the root (denoted by λ0), which can help reduce the num-
ber of iterations, if it is close to our target. Let the initial-
ized interval be [λ1, λ2], we can easily incorporate λ0 into
the improved bisection algorithm, by setting λ1 = λ0 if
f(λ0) > 0 and λ2 = λ0 otherwise. We note that, when
applying the Euclidean projections for solving problems
such as (4), the adjacent Euclidean projections usually have
close dual optimal points. Therefore, we can use the root
found in the previous projection as the “warm” start.

In deriving the improved bisection algorithm, we only
make use of the piecewise linear and convex “structures”
of the auxiliary function, and thus the improved bisection
is applicable to g(.) and g(.), which enjoy these two “struc-
tures”. By some careful deductions, this improved bisec-
tion algorithm can also be extended to solve the root of
g(.). The key observation is that g(.) is the difference of the
two convex and piecewise linear functions g(.) and g(.), so
that we can efficiently evaluate g(.) similar to f(.). More-
over, following similar ideas in Section 3.2.2, we can con-
struct models to obtain λT and λS to tighten the interval
of uncertainty as follows. Let [λ1, λ2] be the current in-
terval of uncertainty. We obtain λT as the intersection of
the tangent line of g(.) at λ1 and the secant model of g(.)
passing through (λ1, g(λ1)) and (λ2, g(λ2)), and λS as the
intersection of the tangent line of g(.) at λ2 and the secant
model of g(.) passing through (λ1, g(λ1)) and (λ2, g(λ2)).

4. Experiments

To study the performance of the proposed projection algo-
rithms, we randomly generated the input vector v accord-
ing to two distributions: (1) normal distribution with mean
0 and standard deviation 1, and (2) uniform distribution in

the interval [−1, 1]. We implement the proposed projection
algorithms in C, and carry out the experiments on an Intel
(R) Core (TM)2 Duo 3.00GHZ processor.

An Illustrative Example We first present an example to
illustrate the improved bisection algorithm. In this experi-
ment, we compute the Euclidean projection onto the � 1 ball
on a problem of size n = 105. We generate v from the
normal distribution, and set z = 100. The result is pre-
sented in Table 1. We can observe from this table that the
proposed improved bisection converges quite fast, and the
computational cost (proportional to |U |) for evaluating f(.)
decreases rapidly.

10
3

10
4

10
5

10
6

10
7

0

5

10

15

20

25

30

35

40

45

n
A

ve
ra

ge
 N

um
be

r
of

 I
te

ra
tio

ns

Uniform Distribution, z=100

ibis1
ibis2
mrmf
bis

10
3

10
4

10
5

10
6

10
7

0

5

10

15

20

25

30

35

40

45

n

A
ve

ra
ge

 N
um

be
r

of
 I

te
ra

tio
ns

Normal Distribution, z=100

ibis1
ibis2
mrmf
bis

Figure 4. Comparison of the average number of iterations over
1000 runs. v is generated from the uniform distribution in the
left figure, and from the normal distribution in the right figure.

Number of Iterations We compare the improved bisection
(ibis) with bisection (bis), and the modified randomized
median finding (mrmf) (Duchi et al., 2008), in terms of the
number of iterations for solving the projection onto the � 1

ball. For ibis, we try two different settings: (1) ibis1, which
does not require an initial guess of the root, (2) ibis2, which
employs the “warm” start, that is, the root found by the pre-
vious problem is used as a ‘warm” start (we solved 1000
different problems for a fixed size n). We set z = 100, and
report the results in Figure 4, where the average number of
iterations over 1000 runs is shown. We can observe from
these figures that: 1) the number of iterations by bisection
is around 40; 2) the number of iterations by mrmf is signif-
icantly smaller than that of bisection, which validates the
good practical behavior of the randomized median finding
algorithm; 3) the number of iterations for ibis1 is within 7,
which is less than that required by mrmf; and 4) by employ-
ing the “warm” start technique, the number of iterations for
ibis2 is further reduced to about 2.

Computation Efficiency We report the total computational
time (in seconds) for solving 1000 independent projection
onto the �1 ball by different methods in Tables 2 and 3, from
which we can observe that, all methods scale (roughly) lin-
early with n, and ibis1 is more efficient than bisection and
mrmf. With a “warm” start technique, ibis2 is much more
efficient than ibis1.

We also compare the improved bisection algorithm with
the soft projections onto polyhedra (sopopo) proposed in

Efficient Euclidean Projections in Linear Time

Table 2. The total computational time (in seconds) for solving
1000 independent projections onto the �1 ball: normal distribu-
tion with z = 10 (top half) and z = 100 (bottom half).

n 103 104 105 106 107

bis 0.0543 0.4323 4.691 78.35 788.9
mrmf 0.0130 0.2720 2.776 37.68 380.3
ibis1 0.0074 0.1276 1.509 19.62 196.2
ibis2 0.0024 0.0877 1.126 17.06 167.9
bis 0.1521 0.6178 4.926 78.52 790.3

mrmf 0.0319 0.2901 2.766 37.84 383.2
ibis1 0.0305 0.1843 1.541 19.61 196.5
ibis2 0.0195 0.0946 1.133 17.06 167.8

Table 3. The total computational time (in seconds) for solving
1000 independent projections onto the �1 ball: uniform distribu-
tion with z = 10 (top half) and z = 100 (bottom half).

n 103 104 105 106 107

bis 0.1247 0.7511 6.554 82.61 833.6
mrmf 0.0332 0.2941 2.992 37.99 389.0
ibis1 0.0286 0.1698 2.091 24.74 247.7
ibis2 0.0210 0.0946 1.332 17.46 173.7
bis 0.2030 1.1644 8.165 86.31 844.4

mrmf 0.0332 0.3373 3.187 39.43 394.7
ibis1 0.0266 0.1859 2.159 24.90 248.5
ibis2 0.0198 0.1135 1.416 17.48 175.4

(Shalev-Shwartz & Singer, 2006) for solving the projec-
tion onto the specialized polyhedra G2. The results are pre-
sented in Table 4. We can observe from the table that ibis1
and ibis2 are more efficient than sopopo. The experimental
results verify the efficiency of the proposed algorithms.

5. Conclusion

In this paper, we study the problem of Euclidean projec-
tions onto the �1 ball G1 and the specialized polyhedra G2.
Our main results show that both Euclidean projections can
be formulated as root finding problems. Based on such re-
formulation, we can solve the Euclidean projections in (the
worst-case) linear time via bisection. We further explore
the piecewise linear and convex “structures” of the auxil-
iary functions, and propose the improved bisection algo-
rithm. Empirical studies show that our proposed algorithms
are much more efficient that the competing ones.

We are currently investigating the �1 ball constrained sparse
learning problems by the first-order methods, which in-
clude the proposed Euclidean projections as a key build-
ing block. We plan to extend the proposed algorithms to
efficiently solve the projection πG(v + ε) when the result
of πG(v) is known and ε has sparse structure, which can
be useful in the scenario of online learning (Duchi et al.,
2008; Shalev-Shwartz, 2007). We also plan to explore ef-
ficient entropic projections (Shalev-Shwartz, 2007), which
uses the entropy instead of the Euclidean norm in (1).

Table 4. The total computational time (in seconds) for solving
1000 independent projections onto the specialized polyhedra G2

(we set p = n/2 and C = 10): normal distribution (top half) and
uniform distribution (bottom half).

n 103 104 105 106 107

sopopo 0.0934 0.8401 9.574 142.5 1593
ibis1 0.0274 0.1482 1.774 22.77 226.9
ibis2 0.0200 0.0920 1.249 18.50 185.2

sopopo 0.1147 0.9077 10.07 143.5 1605
ibis1 0.0288 0.1725 2.084 24.73 258.2
ibis2 0.0216 0.1002 1.364 18.57 191.4

Acknowledgments
This work was supported by NSF IIS-0612069, IIS-
0812551, CCF-0811790, and NGA HM1582-08-1-0016.

References
Boyd, S., & Vandenberghe, L. (2004). Convex optimiza-

tion. Cambridge University Press.
Brent, R. (1971). An algorithm with guaranteed conver-

gence for finding a zero of a function. Computer Jour-
nal, 14, 422–425.

Candès, E., & Wakin, M. (2008). An introduction to com-
pressive sampling. IEEE Signal Processing Magazine,
25, 21–30.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001).
Introduction to algorithms. MIT Press.

Donoho, D. (2006). Compressed sensing. IEEE Transac-
tions on Information Theory, 52, 1289–1306.

Duchi, J., Shalev-Shwartz, S., Singer, Y., & Tushar, C.
(2008). Efficient projection onto the l1-ball for learning
in high dimensions. International Conference on Ma-
chine Learning (pp. 272–279).

Koh, K., Kim, S., & Boyd, S. (2007). An interior-point
method for large-scale l1-regularized logistic regression.
Journal of Machine Learning Research, 8, 1519–1555.

Nemirovski, A. (1994). Efficient methods in convex pro-
gramming. Lecture Notes.

Nesterov, Y. (2003). Introductory lectures on convex opti-
mization: A basic course. Kluwer Academic Publishers.

Ng, A. (2004). Feature selection, �1 vs. �2 regularization,
and rotational invariance. International Conference on
Machine Learning (pp. 78–85).

Shalev-Shwartz, S. (2007). Online learning: Theory, algo-
rithms, and applications. Doctoral dissertation, Hebrew
University.

Shalev-Shwartz, S., & Singer, Y. (2006). Efficient learn-
ing of label ranking by soft projections onto polyhedra.
Journal of Machine Learning Research, 7, 1567–1599.

Shalev-Shwartz, S., & Srebro, N. (2008). Iterative loss
minimization with �1-norm constraint and guarantees on
sparsity (Technical Report). TTI.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society
Series B, 58, 267–288.

