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Abstract

We present an algorithm for finding an s-
sparse vector x that minimizes the square-
error ‖y − Φx‖2 where Φ satisfies the re-
stricted isometry property (RIP), with iso-
metric constant δ2s < 1/3. Our algorithm,
called GraDeS (Gradient Descent with Spar-
sification) iteratively updates x as:

x← Hs

(
x+

1
γ
· Φ>(y − Φx)

)
where γ > 1 and Hs sets all but s largest
magnitude coordinates to zero. GraDeS con-
verges to the correct solution in constant
number of iterations. The condition δ2s <
1/3 is most general for which a near-linear
time algorithm is known. In comparison,
the best condition under which a polynomial-
time algorithm is known, is δ2s <

√
2− 1.

Our Matlab implementation of GraDeS out-
performs previously proposed algorithms like
Subspace Pursuit, StOMP, OMP, and Lasso
by an order of magnitude. Curiously,
our experiments also uncovered cases where
L1-regularized regression (Lasso) fails but
GraDeS finds the correct solution.

1. Introduction

Finding a sparse solution to a system of linear equa-
tions has been an important problem in multiple do-
mains such as model selection in statistics and ma-
chine learning (Golub & Loan, 1996; Efron et al., 2004;
Wainwright et al., 2006; Ranzato et al., 2007), sparse
principal component analysis (Zou et al., 2006), image
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deconvolution and de-noising (Figueiredo & Nowak,
2005) and compressed sensing (Candès & Wakin,
2008). The recent results in the area of compressed
sensing, especially those relating to the properties of
random matrices (Candès & Tao, 2006; Candès et al.,
2006) has exploded the interest in this area which is
finding applications in diverse domains such as coding
and information theory, signal processing, artificial in-
telligence, and imaging. Due to these developments,
efficient algorithms to find sparse solutions are increas-
ingly becoming very important.

Consider a system of linear equations of the form

y = Φx (1)

where y ∈ <m is an m-dimensional vector of “mea-
surements”, x ∈ <n is the unknown signal to be recon-
structed and Φ ∈ <m×n is the measurement matrix.
The signal x is represented in a suitable (possibly over-
complete) basis and is assumed to be “s-sparse” (i.e.
at most s out of n components in x are non-zero). The
sparse reconstruction problem is

min
x̃∈<n

||x̃||0 subject to y = Φx̃ (2)

where ||x̃||0 represents the number of non-zero entries
in x̃. This problem is not only NP-hard (Natarajan,
1995), but also hard to approximate within a factor
O(2log1−ε(m)) of the optimal solution (Neylon, 2006).

RIP and its implications. The above problem be-
comes computationally tractable if the matrix Φ sat-
isfies a restricted isometry property. Define isometry
constant of Φ as the smallest number δs such that the
following holds for all s-sparse vectors x ∈ <n

(1− δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22 (3)

It has been shown (Candès & Tao, 2005; Candès, 2008)
that if y = Φx∗ for some s-sparse vector x∗ and δ2s <√

2− 1 or δs + δ2s + δ3s < 1, then the solution to the
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program (2) is equivalent to the solution to the linear
program (4) given below.

min
x̃∈<n

||x̃||1 subject to y = Φx̃ (4)

The above program can be solved in polynomial time
using standard linear programming techniques.

Approaches to solve sparse regression problem.
In order for this theory to be applied in practice, effi-
cient algorithms to solve program (2) or (4) are needed.
This is more so in some applications such as medical
imaging, where the image sizes (n) are in the range
107 to 109. In these applications, almost linear time
algorithm with small runtime-constants are needed.

Algorithms to solve the sparse regression problems
may be classified into “L0-minimization algorithms”
that directly attempt to solve the program (2), “L1-
minimization algorithms” that find sparse solutions by
solving the program (4) and joint encoding/recovery
techniques that design the measurement matrix Φ
along with efficient algorithm for recovery.

Examples of L0-minimization algorithms include the
classical Matching Pursuit (MP) (Mallat & Zhang,
1993), Orthogonal Matching Pursuit (OMP) (Tropp
& Gilbert, 2007), stagewise OMP (StOMP) (Donoho
et al., 2006), regularized OMP (ROMP) (Needell
& Vershynin, 2009), subspace pursuits (Dai &
Milenkovic, 2008), CoSaMP (Needell & Tropp, 2008),
SAMP (Do et al., 2008) and iterative hard threshold-
ing (IHTs) (Blumensath & Davies, 2008).

The L1-minimization algorithms include the classi-
cal basis pursuit (Chen et al., 2001) algorithm, the
Lasso-modification to LARS (Efron et al., 2004), ran-
dom projections onto convex sets (Candès & Romberg,
2004), homotopy (Donoho & Tsaig, 2006), weighted
least squares (Jung et al., 2007), iterative algorithms
based on gradient thresholding and other gradient
based approaches (Lustig, 2008; Ma et al., 2008).

Joint encoding/recovery techniques in which the mea-
surement matrix Φ is designed along with the recovery
algorithm include Sudocodes (Sarvotham et al., 2006),
unbalanced expander matrices (Berinde et al., 2008),
among others.

While comparing these algorithms, the following key
properties need to be examined:

Worst case computational cost. Is there a upper
bound on the number of steps needed by the algo-
rithm? For large scale problems where mn is in the
range 1010 − 1013 and s in the range 103 − 108, algo-
rithms requiring O(mns) time are not useful. In such
cases, algorithms with runtime bounded by a constant

multiple of mn are needed.

Runtime in practice. A good asymptotic theo-
retical bound is not very useful if the runtime con-
stants are very big. From a practical perspective, it is
very important to quantify the exact number of steps
needed by the algorithm (e.g., number of iterations,
number of floating point operations per iteration).

Guarantees on recovery. It is important to un-
derstand the conditions under which the algorithm is
guaranteed to find the correct solution. While some al-
gorithms do not offer any such guarantee, some others
can possibly find the correct solution if some condi-
tions on the RIP constants δs, δ2s, δ3s, . . . are satisfied.

A comparison of a few key algorithms for sparse recov-
ery is presented in Table 1. For a meaningful compari-
son, an attempt is made to report the exact constants
in the runtime of these algorithms. However, when
the constants are large or are not available, the order
notation O(.) is used.

The encoding/recovery techniques that design the
measurement matrix Φ, are fast and guarantee exact
recovery. However, the application of these techniques
is restricted to compressed sensing domains where a
good control is available on the measurement process.

The L1-minimization techniques offer tight guarantees
on recovery (δ2s <

√
2−1 follows from (Candès, 2008)

and δs + δ2s + δ3s < 1 from (Candès & Tao, 2005)),
provided the algorithm converges to optimal solution
to the program (4). These techniques are generally
applicable to a broader class of problems of optimizing
a convex objective function with L1-penalty. For these
techniques, typically the exact bound on the runtime
are either very large or not available.

The L0-minimization techniques are most promising
because they are often based on the greedy approaches
that find the solution quickly. Traditional techniques
such as MP (Mallat & Zhang, 1993) or OMP (Tropp &
Gilbert, 2007) add one variable at a time to the solu-
tion leading to a runtime of O(mns). However, newer
techniques such as StOMP, ROMP, subspace-pursuit
and IHTs add multiple variables to the solution and
fall in the class of near linear-time algorithms with a
runtime of O(mn poly(log(mn))). Most of these tech-
niques also have conditions on RIP constants δ under
which the exact recovery is guaranteed.

Our results and techniques. We give the first near
linear-time algorithm that is guaranteed to find solu-
tion to the program (2) under the condition δ2s < 1/3.
This is the most general condition under which the
problem can be solved in near linear-time (the best
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Table 1. A comparison of algorithms for sparse recovery. Here m and n denote the number of rows and
columns of matrix Φ, K denotes the time taken in performing two matrix operations Φx and ΦT y. It is
equal to 2mn for dense matrices. It may be much less for sparse matrices or special transform which can
be computed efficiently (e.g., Fourier, Wavelet transforms). s denotes the sparsity of the solution to be con-
structed, L denotes the desired bit-precision of the solution and δt denote the isometry constants of Φ.

Algorithm Cost/ iter. Max. # iters. Recovery condition
Basis pursuit (Chen et al., 2001) O((m+ n)3) NA δs + δ2s + δ3s < 1

or δ2s <
√

2− 1
LARS (Efron et al., 2004) K +O(s2) Unbounded same as above

Homotopy (Donoho & Tsaig, 2006) K s ΦTi Φj:i 6=j ≤ 1
2s−1

Sudocodes (Sarvotham et al., 2006) O(s log(s) log(n)) NA Always
Unbalanced expander (Berinde et al., 2008) O(n log(n/s)) NA Always

OMP (Tropp & Gilbert, 2007) K +O(msL) s ΦTi Φj:i6=j < 1/(2s)
StOMP (Donoho et al., 2006) K +O(msL) O(1) one

ROMP (Needell & Vershynin, 2009) K +O(msL) s δ2s <
0.03√
log(s)

Subspace pursuit (Dai & Milenkovic, 2008) K +O(msL) L/ log( 1−δ3s√
10δ3s

) δ3s < 0.06

SAMP (Do et al., 2008) K +O(msL) s δ3s < 0.06
CoSaMP (Needell & Tropp, 2008) K +O(msL) L δ4s < 0.1

IHTs (Blumensath & Davies, 2008) K L δ3s < 1/
√

32

GraDeS (This paper) K 2L/ log( 1−δ2s
2δ2s

) δ2s < 1/3

known so far was δ3s < 1/
√

32 needed by the IHTs
algorithm (Blumensath & Davies, 2008)), and is re-
markably close to the condition δ2s <

√
2−1 (Candès,

2008) (which requires computationally expensive lin-
ear programming solver). The algorithm is intuitive,
easy to implement and has small runtime constants.

The algorithm (given in Algorithm 1) is called GraDeS
or “Gradient Descent with Sparsification”. It starts
from an arbitrary sparse x ∈ <n and iteratively moves
along the gradient to reduce the error Ψ(x) = ‖y −
Φx‖2 by a step length 1/γ and then performs hard-
thresholding to restore the sparsity of the current solu-
tion. The gradient descent step reduces the error Ψ(x)
by a constant factor, while the RIP of Φ implies that
the sparsification step does not increase the error Ψ(x)
by too much. An important contribution of the paper
is to analyze how the hard-thresholding function Hs

acts w.r.t. the potential Ψ(x) (see Lemma 2.4). We
believe that this analysis may be of independent in-
terest. Overall, a logarithmic number of iterations are
needed to reduce the error below a given threshold.

A similar analysis also holds for a recovery with noise,
where the “best” sparse vector x∗ is only approxi-
mately related to the observation y, i.e., y = Φx∗ + e
for some error vector e.

We implemented the algorithm in Matlab and found
that it outperformed the publicly available implemen-
tations of several newly developed near-linear time al-
gorithms by an order of magnitude. The trends sug-
gest a higher speedup for larger matrices. We also

found that while Lasso provides the best theoretical
conditions for exact recovery, its LARS-based imple-
mentation is first to fail as the sparsity is increased.

2. Algorithm GraDeS and its properties

We begin with some notation. For a positive integer
n, let [n] = {1, 2, . . . , n}. For a vector x ∈ <n, let
supp(x) denote the set of coordinates i ∈ [n] such that
xi 6= 0, thus ‖x‖0 = |supp(x)|. For a non-negative
integer s, we say that x is s-sparse if ‖x‖0 ≤ s. We
also use ‖x‖1 =

∑n
i=1 |xi| and ‖x‖2 = (

∑n
i=1 x

2
i )

1/2

to denote the `1 and `2 norms of x respectively. For
brevity, we use ‖x‖ to denote ‖x‖2.

Definition 2.1 Let Hs : <n → <n be a function that
sets all but s largest coordinates in absolute value to
zero. More precisely, for x ∈ <n, let π be a permu-
tation of [n] such that |xπ(1)| ≥ · · · ≥ |xπ(n)|. Then
the vector Hs(x) is a vector x′ where x′π(i) = xπ(i) for
i ≤ s and x′π(i) = 0 for i ≥ s+ 1.

The above operator is called hard-thresholding and
gives the best s-sparse approximation of vector x, i.e.,
Hs(x) = argminx′∈<n:‖x′‖0≤s‖x− x

′‖2 where the min-
imum is taken over all s-sparse vectors x′ ∈ <n.

Noiseless recovery. Our main result for the noiseless
recovery is given below.

Theorem 2.1 Suppose x∗ is an s-sparse vector sat-
isfying (1) and the isometry constants of the ma-
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Algorithm 1 Algorithm GraDeS (γ) for solving (1).
Initialize x← 0.
while Ψ(x) > ε do

x← Hs

(
x+

1
γ
· Φ>(y − Φx)

)
.

end while

trix Φ satisfy δ2s < 1/3. Algorithm 1, GraDeS with
γ = 1 + δ2s, computes an s-sparse vector x ∈ <n such
that ‖y − Φx‖2 ≤ ε in⌈

1
log((1− δ2s)/2δ2s)

· log
(
‖y‖2

ε

)⌉
iterations. Each iteration computes one multiplication
of Φ and one multiplication of Φ> with vectors.

The following corollary follows immediately by setting
ε = 2−2L(1− δ2s).

Corollary 2.2 Suppose there exists s-sparse vector x∗

satisfying (1) and the isometry constants of the matrix
Φ satisfy δ2s < 1. The vector x∗ can be approximated
up to L bits of accuracy in⌈

2(L+ log ‖y‖) + log(1/(1− δ2s))
log((1− δ2s)/2δ2s)

⌉
iterations of Algorithm 1 with γ = 1 + δ2s.

Recovery with noise. Our result for the recovery
with noise is as follows.

Theorem 2.3 Suppose x∗ is an s-sparse vector satis-
fying y = Φx∗ + e for an error vector e ∈ <m and the
isometry constant of the matrix Φ satisfies δ2s < 1/3.
There exists a constant D > 0 that depends only on
δ2s, such that Algorithm 1 with γ = 1 + δ2s, computes
an s-sparse vector x ∈ <n satisfying ‖x∗ − x‖ ≤ D‖e‖
in at most⌈

1
log((1− δ2s)/4δ2s)

· log
(
‖y‖2

‖e‖2

)⌉
iterations.

2.1. Proof of Theorem 2.1

For x ∈ <n, let Ψ(x) = ‖y − Φx‖2 be a potential
function. Our algorithm 1 starts with some initial
value of x that is s-sparse, say x = 0, and iteratively
reduces Ψ(x), while maintaining the s-sparsity, until
Ψ(x) ≤ ε. In each iteration, we compute a gradient of
Ψ(x) = ‖y − Φx‖2,

∇Ψ(x) = −2Φ>(y − Φx).

Then, we move in the direction opposite to the gradi-
ent by a step length given by a parameter γ and per-
form hard-thresholding in order to preserve sparsity.
Note that each iteration needs just two multiplications
by Φ or Φ> and linear extra work.

We now prove Theorem 2.1. Fix an iteration and let x
be the current solution. Let x′ = Hs(x+ 1

γ ·Φ
>(y−Φx))

be the solution computed at the end of this iteration.
Let ∆x = x′−x and let ∆x∗ = x∗−x. Note that both
∆x and ∆x∗ are 2s-sparse. Now the reduction in the
potential Ψ in this iteration is given by

Ψ(x′)−Ψ(x)
= −2Φ>(y − Φx) ·∆x+ ∆x>Φ>Φ∆x
≤ −2Φ>(y − Φx) ·∆x+ (1 + δ2s)‖∆x‖2 (5)
≤ −2Φ>(y − Φx) ·∆x+ γ‖∆x‖2 (6)

The inequality (5) follows from RIP. Let g = −2Φ>(y−
Φx). Now we prove an important component of our
analysis.

Lemma 2.4 The vector ∆x achieves the minimum of
g·v+γ‖v‖2 over all vectors v such that x+v is s-sparse,
i.e., ∆x = argminv∈<n:‖x+v‖0≤s

(
g · v + γ‖v‖2

)
.

Proof. Let v = v∗ denote the vector such that x + v
is s-sparse and that F (v) = g · v+γ‖v‖2 is minimized.
Let x′′ = x + v∗. Let SO = supp(x) \ supp(x + v∗)
be the old coordinates in x that are set to zero. Let
SN = supp(x+v∗)\supp(x) be the new coordinates in
x+v∗. Similarly, let SI = supp(x)∩supp(x+v∗) be the
common coordinates. Note that F (v∗) =

∑
i∈[n](gi ·

v∗i + γ(v∗i )2). Note that the value of gi · vi + γ(vi)2 is
minimized for vi = −gi/(2γ). Therefore we get that
v∗i = −gi/(2γ) for all i ∈ supp(x + v∗) and v∗i = −xi
for all i ∈ SO. Thus we have

F (v∗)

=
∑
i∈SO

(−gi · xi + γx2
i ) +

∑
i∈SI∪SN

(
gi ·
−gi
2γ

+
g2
i

4γ

)

=
∑
i∈SO

(−gi · xi + γx2
i ) +

∑
i∈SI∪SN

−g2
i

4γ

=
∑
i∈SO

(
−gi · xi + γx2

i +
g2
i

4γ

)
+

∑
i∈SO∪SI∪SN

−g2
i

4γ

=
∑
i∈SO

γ

(
xi −

gi
2γ

)2

+
∑

i∈SO∪SI∪SN

−g2
i

4γ

= γ
∑
i∈SO

(
xi −

gi
2γ

)2

+ γ
∑

i∈SO∪SI∪SN

−
(
gi
2γ

)2
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Thus, in order to minimize F (v∗), we have to pick the
coordinates i ∈ SO to be those with the least value of
|xi − gi/(2γ)| and pick the coordinates j ∈ SN to be
those with the largest value of gj/(2γ) = |xj−gj/(2γ)|.
Note that −gi/(2γ) = (1/γ) ·Φ>(y−Φx) which is the
expression used in the while loop of the Algorithm 1.
Hence the proof is complete from the definition of Hs.

From inequality (6), Lemma 2.4, and the fact that
x∗ = x+ ∆x∗ is s-sparse, we get

Ψ(x′)−Ψ(x)
≤ −2Φ>(y − Φx) ·∆x∗ + γ‖∆x∗‖2

= −2Φ>(y − Φx) ·∆x∗ + (1− δ2s)‖∆x∗‖2

+(γ − 1 + δ2s)‖∆x∗‖2

≤ −2Φ>(y − Φx) ·∆x∗ + (∆x∗)>Φ>Φ∆x∗

+(γ − 1 + δ2s)‖∆x∗‖2 (7)
= Ψ(x∗)−Ψ(x) + (γ − 1 + δ2s)‖∆x∗‖2

≤ −Ψ(x) +
γ − 1 + δ2s

1− δ2s
· ‖Φ∆x∗‖2 (8)

≤ −Ψ(x) +
γ − 1 + δ2s

1− δ2s
·Ψ(x) (9)

The inequalities (7) and (8) follow from RIP, while (9)
follows from the fact that ‖Φ∆x∗‖2 = Ψ(x). Thus we
get Ψ(x′) ≤ Ψ(x) · (γ − 1 + δ2s)/(1 − δ2s). Now note
that δ2s < 1/3 implies that (γ−1 + δ2s)/(1− δ2s) < 1,
and hence the potential decreases by a multiplicative
factor in each iteration. If we start with x = 0, the
initial potential is ‖y‖2. Thus after⌈

1
log((1− δ2s)/(γ − 1 + δ2s)

· log
(
‖y‖2

ε

)⌉
iterations, the potential becomes less than ε. Setting
γ = 1 + δ2s, we get the desired bounds.

If the value of δ2s is not known, by setting γ = 4/3,
the same algorithm computes the above solution in⌈

1
log((1− δ2s)/(1/3 + δ2s))

· log
(
‖y‖2

ε

)⌉
iterations.

2.2. Proof of Theorem 2.3

The recovery under noise corresponds to the case
where there exists an s-sparse vector x∗ ∈ <n such
that

y = Φx∗ + e (10)

for some error vector e ∈ <m. In order to prove The-
orem 2.3, we prove the following stronger lemma.

Lemma 2.5 Let C > 0 be a constant satisfying δ2s <
C2

3C2+4C+2 . Algorithm 1 computes an s-sparse vector
x ∈ <n such that ‖y − Φx‖2 ≤ C2‖e‖2 in⌈

1
log((1− δ2s)/2δ2s · C2/(C + 1)2)

· log
(
‖y‖2

C2‖e‖2

)⌉
iterations if we set γ = 1 + δ2s.

Note that the output x in the above lemma satisfies

‖Φx∗ − Φx‖2 ≤ ‖y − Φx‖2 + 2(y − Φx)>(y − Φx∗)
+‖y − Φx∗‖2

≤ C2‖e‖2 + 2C‖e‖ · ‖e‖+ ‖e‖2

= (C + 1)2‖e‖2.

This combined with RIP implies that ‖x∗ − x‖2 ≤
(C + 1)2‖e‖2/(1− δ2s), thereby proving Theorem 2.3.

Proof of Lemma 2.5: We work with the same no-
tation as in Section 2.1. Let the current solution
x satisfy Ψ(x) = ‖y − Φx‖2 > C2‖e‖2, let x′ =
Hs(x+ 1

γ ·Φ
>(y−Φx)) be the solution computed at the

end of an iteration, let ∆x = x′−x and ∆x∗ = x∗−x.
The initial part of the analysis is same as that in Sec-
tion 2.1. Using (10), we get

‖Φ∆x∗‖2 = ‖y − Φx− e‖2

= Ψ(x)− 2e>(y − Φx) + ‖e‖2

≤ Ψ(x) +
2
C
‖y − Φx‖2 +

1
C2
·Ψ(x)

≤
(

1 +
1
C

)2

·Ψ(x).

Using the above inequality in inequality (8), we get

Ψ(x′) ≤ γ − 1 + δ2s
1− δ2s

·
(

1 +
1
C

)2

·Ψ(x).

Our assumption δ2s < C2

3C2+4C+2 implies that γ−1+δ2s
1−δ2s ·(

1 + 1
C

)2 = 2δ2s
1−δ2s ·

(
1 + 1

C

)2
< 1. This implies that as

long as Ψ(x) > C2‖e‖2, the potential Ψ(x) decreases
by a multiplicative factor. Lemma 2.5 thus follows.

3. Implementation Results

To evaluate usefulness of GraDeS in practice, it was
compared with LARS-based implementation of Lasso
(Efron et al., 2004) (referred to as Lasso/LARS), Or-
thogonal Matching Pursuit (OMP), Stagewise OMP
(StOMP) and Subspace Pursuit. The algorithms were
selected to span the spectrum of the algorithms – on
one extreme, Lasso/LARS, that provides the best re-
covery conditions but a poor bound on its runtime and
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Lasso/LARS OMP StOMP Subspace PursuitGraDeS (3) GraDeS (4/3)

3000 38.71 22.04 9.57

4000 66.28 51.36 23.29 23.72 10.06 3.78

5000 69.54 62.13 29.45 22.71 10.41 3.71

6000 77.64 74.73 35.14 25.9 11.44 4.27

7000 89.99 86.84 41.97 30.08 12.24 4.23

8000 101.07 98.47 45.18 34.31 13.53 4.82
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Figure 1. Dependence of the running times of different al-
gorithms on the number of rows (m). Here number of
columns n = 8000 and sparsity s = 500.

in the other extreme, near linear-time algorithms with
weaker recovery conditions but very good run times.

Matlab implementation of all the algorithms were used
for evaluation. The SparseLab (Donoho & Others,
2009) package, which contains the implementation of
Lasso/LARS, OMP and StOMP algorithms was used.
In addition, a publicly available optimized Matlab im-
plementation of Subspace Pursuit, provided by one
of its authors, was used. The algorithm GraDeS was
also implemented in Matlab for a fair comparison.
GraDeS(γ = 4/3) for which all our results hold was
evaluated along with GraDeS(γ = 3) which was a bit
slower but had better recovery properties. All the ex-
periments were run on a 3 GHz dual-core Pentium sys-
tem with 3.5 GB memory running the Linux operating
system. Care was taken to ensure that no other pro-
gram was actively consuming the CPU time while the
experiments were in progress.

First, a random matrix Φ of size m×n with (iid) nor-
mally distributed entries and a random s-sparse vector
x were generated. The columns of Φ were normalized
to zero mean and unit norm. The vector y = Φx was
computed. Now the matrix Φ, the vector y and the pa-
rameter s were given to each of the algorithms as the
input. The output of every algorithm was compared
with the correct solution x.

Figure 1 shows the runtime of all the algorithms as
a function of the number of rows m. The algo-
rithms Lasso/LARS and OMP take the maximum time
which increases linearly with m. This is followed by
StOMP and Subspace Pursuit that also show a linear
increase in runtime as a function of m. The algorithm
GraDeS(4/3) has the smallest runtime which is a fac-
tor 20 better than the runtime of Lasso/LARS and

Lasso/LARS OMP StOMP Subspace PursuitGraDeS (3) GraDeS (4/3)

6000 56.86 42.67 21.91 23.01 8.14 2.95

8000 71.11 54.76 26.73 25.16 10.72 4.05

10000 60.34 27.53 25.22 12.21 4.76

12000 66.89 32.84 23.82 15.01 5.93

14000 76.35 36.84 23.58 19.6 7.36

16000 89.07 40.08 29.74 20.22 8.94
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Figure 2. Dependence of the running times of different al-
gorithms on the number of columns (n). Here number of
rows m = 4000 and sparsity s = 500.

Lasso/LARS OMP StOMP Subspace PursuitGraDeS (3) GraDeS (4/3)

100 11.47 11.05 6.65 1.26 7.95 2.65

200 24.65 23.75 11.31 4.23 9.23 3.25

300 39.06 38.17 15.08 8.72 10.05 3.84

400 58.18 54.27 25.14 17.95 12.07 4.24

500 86.33 75.36 31.02 22.28 13.53 5.02

600 115.17 94.46 38.48 44.24 14.88 5.51
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Figure 3. Dependence of the running times of different al-
gorithms on the sparsity (s). Here number of rows m =
5000 and number of columns n = 10000.

a factor 7 better than that of Subspace Pursuit for
m = 8000, n = 8000 and s = 500. GraDeS(3) takes
more time than GraDeS(4/3) as expected. It is sur-
prising to observe that, contrary to the expectations,
the runtime of GraDeS did not increase substantially
as m was increased. It was found that GraDeS needed
fewer iterations offsetting the additional time needed
to compute products of matrices with larger m.

Figure 2 shows the runtime of these algorithms as the
number of column, n is varied. Here, all the algorithms
seem to scale linearly with n as expected. In this case,
Lasso/LARS did not give correct results for n > 8000
and hence its runtime was omitted from the graph. As
expected, the runtime of GraDeS is an order of magni-
tude smaller than that of OMP and Lasso/LARS.

Figure 3 shows the runtime of the algorithms as a func-
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Table 2. A comparison of different algorithms for various
parameter values. An entry “Y” indicates that the algo-
rithm could recover a sparse solution, while an empty entry
indicates otherwise.
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3000 10000 2100
3000 10000 1050 Y Y
3000 8000 500 Y Y Y
3000 10000 600 Y Y Y Y
6000 8000 500 Y Y Y Y
3000 10000 300 Y Y Y Y Y
4000 10000 500 Y Y Y Y Y
8000 8000 500 Y Y Y Y Y Y

tion of the sparsity parameter s. The increase in the
runtime of Lasso/LARS and OMP is super-linear (as
opposed to a linear theoretical bound for OMP). Al-
though, the theoretical analysis of StOMP and Sub-
space Pursuit shows very little dependence on s, their
actual run times do increase significantly as s is in-
creased. In contrast, the run times of GraDeS increase
only marginally (due to a small increase in the num-
ber of iterations needed for convergence) as s is in-
creased. For s = 600, GraDeS(4/3) is factor 20 faster
than Lasso/LARS and a factor 7 faster than StOMP,
the second best algorithm after GraDeS.

Table 2 shows the recovery results for these algorithms.
Quite surprisingly, although the theoretical recovery
conditions for Lasso are the most general (see Table 1),
it was found that the LARS-based implementation of
Lasso was first to fail in recovery as s is increased.

A careful examination revealed that as s was increased,
the output of Lasso/LARS became sensitive to er-
ror tolerance parameters used in the implementation.
With careful tuning of these parameters, the recovery
property of Lasso/LARS could be improved. The re-
covery could be improved further by replacing some in-
cremental computations with slower non-incremental
computations. One such computation was incremen-
tal Cholesky factorization. These changes adversly im-
pacted the running time of the algorithm, increasing
its cost per iteration from K +O(s2) to 2K +O(s3).

Even after these changes, some instances were discov-
ered for which Lasso/LARS did not produce the cor-
rect sparse (though it computed the optimal solution
of the program (4)), but GraDeS(3) found the correct

solution. However, instances for which Lasso/LARS
gave the correct sparse solution but GraDeS failed,
were also found.

4. Conclusions

In summary, we have presented an efficient algorithm
for solving the sparse reconstruction problem provided
the isometry constants of the constraint matrix sat-
isfy δ2s < 1/3. Although the recovery conditions for
GraDeS are stronger than those for L1-regularized re-
gression (Lasso), our results indicate that whenever
Lasso/LARS finds the correct solution, GraDeS also
finds it. Conversely, there are cases where GraDeS
(and other algorithms) find the correct solution but
Lasso/LARS fails due to numerical issues. In the ab-
sence of efficient and numerically stable algorithms, it
is not clear whether L1-regularization offers any ad-
vantages to practitioners over simpler and faster algo-
rithms such as OMP or GraDeS when the matrix Φ
satisfies RIP. A systematic study is needed to explore
this. Finally, finding more general conditions than RIP
under which the sparse reconstruction problem can be
solved efficiently is a very challenging open question.
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