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Abstract

We propose a deterministic method to eval-
uate the integral of a positive function based
on soft-binning functions that smoothly cut
the integral into smaller integrals that are
easier to approximate. In combination with
mean-field approximations for each individ-
ual sub-part this leads to a tractable algo-
rithm that alternates between the optimiza-
tion of the bins and the approximation of the
local integrals. We introduce suitable choices
for the binning functions such that a stan-
dard mean field approximation can be ex-
tended to a split mean field approximation
without the need for extra derivations. The
method can be seen as a revival of the ideas
underlying the mixture mean field approach.
The latter can be obtained as a special case
by taking soft-max functions for the binning.

1. Introduction

Many methods in (Bayesian) machine learning and op-
timal control have at their heart a large-scale integra-
tion problem. For instance the computation of the
data log-likelihood in the presence of nuisance param-
eters, prediction in the presence of missing data, and
the computation of the posterior distribution over pa-
rameters all can be simply expressed as integration
problems.

In this paper we will look at the computation of the
integral of a positive function f :

I =

∫

X

f(x)dx, ∀x∈X f(x) ≥ 0 . (1)

The integrals encountered in real world applications
are often of a very high dimension, of a particularly
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unpleasant form not amenable to analytic solutions,
or both.

Recent advances in variational approaches such as
mean-field (Opper & Saad, 2001) methods, loopy belief
propagation (Frey & Mackay, 1998), and expectation
propagation (Minka, 2001) have provided useful ap-
proximations for many interesting models. Although
they are relatively fast to compute and accurate for
some models they can yield poor results if the shape
of the function f(x) cannot be accurately captured by
the variational distribution. For instance a Gaussian
approximation to a multi-modal, an asymmetric, or a
heavy-tailed function f(x) will yield coarse results.

A simple but powerful idea that is at the basis of the
techniques developed in this paper is to choose soft-
binning functions S = {s1, · · · sK}, such that the orig-
inal objective function f(x) can be split into K func-
tions, that individually are easier to approximate.

The parametric functions sk : X × B 7→ [0, 1] are bin-
ning functions on the space X if

∀x∈X ,β∈B

K
∑

k=1

sk(x;β) = 1 . (2)

Using such binning functions, the original objective
can be written in terms of K integrals

Ik(β) =

∫

X

sk(x;β)f(x)dx ,

as

I =

K
∑

k=1

Ik(β) .

To estimate I, any form of sk can be chosen and any
method can be used to approximate the Ik’s. For in-
stance with sk “hard” binning functions and constant
(resp. affine) functions to approximate f(x) on the
support of sk(.;β) one obtains the classic rectangular
rule (resp. trapezoidal rule). These classic rules work
well for low-dimensional integrals and are based on
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binning functions that divide X into non-overlapping
intervals. We use the term soft-bins to emphasize that
it is useful to look at “bins” that have full support on
X and aim to alter the shape of the original function f

to make it more amenable to a variational approxima-
tion. A second difference from the classical trapezoidal
rule is that the presence of the parameter β makes it
possible to improve the approximation by optimizing
over the binning. To this end it will be interesting to
consider bounds

Ik(qk,β) ≤ Ik(β) ,

with variational parameters qk. Bounds allow the use
of coordinate ascent style algorithms to optimize both
over β and the qk’s. In addition, perhaps more impor-
tantly, they ensure guaranteed improvements as the
number of bins K is increased.

Split variational inference is a generally applicable
method and could also be used to construct upper
bounds. To demonstrate some of its potential we will
focus in this paper on a combination with mean-field
techniques. Such a split mean field approach can be
seen as a revisit of mixture mean field (Jaakkola &
Jordan, 1999; Bishop et al., 1998): the methods share
the idea of introducing extra components in the vari-
ational approximation with the aim of increasing the
lower bound. The main difference is that the multiple
components are by construction introduced as a mix-
ture of Gaussians in mixture mean field, whereas in
split mean field any choice for the binning functions
can be made to introduce extra components in the ap-
proximation in more flexible ways.

2. Mean Field Bounds

The local integrals Ik, can be lower bounded using
standard mean field approximations. The mean-field
bound (Parisi, 1987; Opper & Saad, 2001) can be de-
rived using the fact that the Kullback-Leibler (KL)
divergence between two distributions p and q

KL(p||q) ≡

∫

X

p(x) log
p(x)

q(x)
,

is never negative, and 0 if and only if p = q (See
e.g. (Cover & Thomas, 1991)). Using a KL as a slack
term with variational parameter qk we obtain

Ik(β) ≥ Ik(β) × exp

(

−KL

(

qk||
fk(x;β)

Ik(β)

))

= exp

(

−

∫

X

qk(x) log
qk(x)

sk(x;β)f(x)

)

(3)

≡ Ik(β) .

The KL slack term ensures that the bound is tight in
the sense that if no further restrictions are placed on
Q, the family from which qk is chosen, at q∗k = fk

Ik

the bound touches. This also implies that if we as-
sume that the original integral (1) is not tractable
to compute, the unrestricted optimization is also not
tractable to perform. In mean-field approximations
the family Q is restricted to tractable distributions
such as fully factorized distributions, multivariate
Gaussians, or tree structured graphical models.

3. Binning Functions: Product of

Sigmoids

A product of sigmoids proves to be a flexible and pow-
erful choice for sk. In its simplest form, without the
product, two sigmoidal functions

s1(x;β) = σ(βT x + α) (4)

s2(x;β) = σ(−βT x − α) , (5)

with σ(x) ≡ 1
1+e−x form a binning of the space X since

s1(x;β) = 1 − s2(x;β) .

We can think of this as a soft partioning of X into two
“soft” half spaces.

Multiple splits can be obtained by taking products of
sigmoids. By organizing the sigmoidal functions into
a tree as in Figure 1 a flexible structure for the bins
is obtained: each soft-bin can be split independently.
As a comparison, a straightforward use of a product of
sigmoids is a special case of the tree construction where
all splits in a single level share the same parameters.
Formally, each bin sk in a tree with K leaves is the
product of K − 1 sigmoidal functions, i.e.:

sk(x;β) =

K−1
∏

`=1

σ
(

dk`(β
T
` x + α`)

)|dk`|
,

where dk` ∈ {−1, 0, 1} are constants that follow from
the path from the root to leave k. A simple recur-
sion argument shows that this construction satisfies
the binning property

∑K
k=1 sk(x,β) = 1 for any x ∈ X

and any β ∈ B. The key interest is that the product
is transformed into a sum in (3) so that expectations
are decoupled.

It is instructive to look at the relationship between
mixture mean field and split mean field in more de-
tail. Mixture mean field starts with the original ob-
jective (1) and introduces a mean field approximation
analogous to (3) only once, and directly to I. The
family of Q is subsequently restricted to a mixture of
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Figure 1. An example of a soft-binning of X based on products of sigmoids. The tree ensures that the bins defined by
level l are independently sub-divided in level l + 1.

tractable distributions. For easy of notation we con-
sider in this section log I, yielding the mixture mean
field lower bound

log I ≥

(

−

∫

X

K
∑

k=1

πkqk(x) log

∑K
k′=1 πk′qk′(x)

f(x)
dx

)

.

(6)
If we introduce additional variational parameters wk

with
∑K

k=1 wk = 1 into the split mean field objective:

log

K
∑

k=1

Ik ≥
K
∑

k=1

wk log Ik +

K
∑

k=1

wk log wk (7)

=

K
∑

k=1

wk

∫

X

qk(x) log
wkqk(x)

sk(x)f(x)
dx,(8)

and restrict the binning function sk to be the soft-max

sk(x) =
πkqk(x)

∑K
k′=1 πk′qk′(x)

, (9)

we see that we recover mixture mean field (6) if we
identify wk = πk.

Note that the additional bound introduced in (7) can
be derived using Jensen’s inequality and is tight: with
wk ∝ Ik an equality is obtained.

In mixture mean field, and in split mean field with
the above choice for the binning function, a problem
remains that the sum inside the log in (6) is hard to
deal with. The reinterpretation of mixture mean field
as a split mean field algorithm allows for approxima-
tions based on changes of sk: for example the product
of sigmoids outlined in Section 3.

Algorithm 1 Split Mean Field

q = InitializeFactoredDistributions
do

βnew = OptimizeBins(q,β)
for k = 1, . . . ,K

qnew
k = UpdateBound(f, s(·,βnew), qk)

end

while Ik(βnew, qnew
k ) not converged

4. Split Mean Field

The general split mean field algorithm outlined in Al-
gorithm 1 can be used in many different settings. De-
pending on the characteristics of f , and trade-offs be-
tween speed and accuracy one obtains slight variants
of the basic algorithm. In this section we discuss sev-
eral cases. Table 1 gives an overview.

4.1. Continuous Problems

Let us first consider continuous spaces X = R
D (the

left half in Table 1). For these cases we will concen-
trate on Gaussian mean field approximations. Inspect-
ing (3) we see that to evaluate the lower bound we need
to evaluate 〈log sk(x;β)〉qk(x) and 〈log f(x)〉qk(x). If we
can compute these integrals and the derivatives with
respect to their (variational) parameters, we can opti-
mize the lower bound using a suitable unconstrained
gradient based method such as BFGS. Since sk and f

appear as separate terms in (3) due to the log we can
consider them one by one. For some f(x) the required
expectation and derivatives can be computed analyti-
cally. This is for instance the case if f is Gaussian and
for the Gumbel, expsin, and products of sigmoids ex-
amples from Section 5.1. For other important classes
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Table 1. Implementation details for different problem characteristics and different speed-accuracy trade-offs.

X = R
D X = {1, . . . ,M}D

f(x) Gaussian f(x) non-Gaussian

EN (x;µ,Σ) [log f(x)] Analytic Gaussian f(x, η)

Special function for
EN (x;0,1)[log sk(x)]

Gradient Ascent Gradient Ascent Gradient Ascent Intractable

Gaussian sk(ξk,β) Section 4.1.2 Gradient Ascent Section 4.1.2 Section 4.2

of f(x) useful Gaussian lower bounds are known based
on local variational parameters η

f(x; η) ≡ exp

(

−
1

2
xT A(η)x + b(η)T x + c(η)

)

≤ f(x) .

This is for instance the case for the Cauchy example
in Section 5.1 and in general for many heavy-tailed
distributions. If Gaussian lower bounds to f(x) are
used, additional coordinate ascent steps will be made
in η.

The second term to evaluate is 〈log sk(x;β)〉qk(x).
With the choice of sk as a product of sigmoids we only
need to consider the case of a single sigmoid again due
to the log in (3). One way to proceed is to construct
special functions which correspond to 1D integrals

γ(µ, σ) =

∫

N (x;µ, σ) log
1

1 + e−x
dx ,

∇µγ(µ, σ) =

∫

d

dµ
N (x;µ, σ) log

1

1 + e−x
dx ,

∇σγ(µ, σ) =

∫

d

dσ
N (x;µ, σ) log

1

1 + e−x
dx ,

either by tabulating or finding solutions akin to the
numerical approximation of the erf function1. Note
that the fact that the Gaussian family is closed under
linear transformations implies that a special function
which takes only two parameters suffices for the prob-
lems where there are two relevant parameters in qk and
two in β.

If D is of medium size, i.e. such that inverting a
D × D matrix is feasible, the Gaussian variational
distributions qk can have a full covariance matrix.
For larger D, to obtain a tractable distribution the
qk’s can be restricted to fully factorized distributions
qk(x) =

∏D
d=1 qkd(xd) or to form tree structured mod-

els.

1We use the trapezoidal methods for ease of implemen-
tation in the illustrations. The error can be made as small
as machine precision, but formally speaking, the use of the
trapezoidal method implies a loss of the bound property.

This completes the description of the top row of the
continuous problems in Table 1. It is important to
note that the optimization problem factorizes by con-
struction and that the derivations and implementa-
tions required to handle the binning functions sk are
independent of the form of f and can be done once.
That means that if there already is a standard Gaus-
sian mean field approximation for f no additional work
is needed.

4.1.1. Bounding the Bins

The bottom row in Table 1 denotes a different treat-
ment of sk: instead of evaluating 〈log sk(x;β)〉qk(x)

exactly and relying on gradient steps, it is also pos-
sible to construct a Gaussian lower bound on sk. A
useful Gaussian lower bound to the logistic sigmoid is
provided in (Jaakkola & Jordan, 1996) which is based
on the fact that the log is upper bounded by any of its
tangents. For the product of sigmoids in sk this gives
the following lower bound

sk(x;β) ≥ exp

(

−
1

2
xT Akx + bT

k x + ck

)

, (10)

≡ sk(x; ξk,β) , (11)

where

Ak({ξk`},β) = 2

K−1
∑

`=1

|dk`|λ(ξk`)(β`β
T
` )

bk({ξk`},β) =
K−1
∑

`=1

|dk`|(
dk`

2
− 2α`λ(ξk`))β`

ck({ξk`},β) =
K−1
∑

`=1

|dk`|
(

λ(ξk`)(ξ
2
k` − α2

` )

+
dk`α` + ξk`

2
− log(1 + eξk`)

)

and

λ(y) =
1

2y

(

σ(y) −
1

2

)

.

The bound holds for any ξk` ∈ R.
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The lower bound (10) is a Gaussian potential: its pre-
cision matrix is of rank at most K − 1 and its scaling
factor is such that it is below the product of sigmoids
everywhere.

4.1.2. Coordinate Ascent
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Figure 2. First 9 iterations of the 4-components split mean
field algorithm. The red ellipse is the true function. The
blue circles are the factored distribution approximating it.
The green lines represent the component splits.

In the case of a Gaussian lower bound on sk and a
Gaussian lower bound or exact Gaussian f(x) we ob-
tain closed form updates for all parameters in a co-
ordinate ascent algorithm. This makes it possible to
work with very high numbers of bins, K. Using a sec-
ond underline to denote the introduction of additional
local variational parameters, the objective we aim to
optimize can be expressed as

I(β, η, ξ, {qk}) =

K
∑

k=1

exp

(

−

∫

X

qk(x) log
qk(x)

sk(x; ξ,β)f(x; ηk)
dx

)

(12)

Update of β. The Gaussian lower bound sk is a
product of Gaussian potentials. The log in (12) makes
that we can treat each independently. On inspection
of (12) and the Gaussian form of sk we notice that
the optimization problem with respect to parameters
(βl, αl) for a single Gaussian potential, with all other
parameters fixed, is an unconstrained quadratic func-
tion.

Update of η. The optimization of η is just as for β
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Figure 3. Split mean-field applied to 1D functions. The
bottom row shows the result of the algorithm based on
quadratic lower bounds to the splits log sk and the log-
functions log f . The top row is based on the exact compu-
tation of 〈log sk〉qk

.

an unconstrained quadratic optimization problem.

Update of ξ. Perhaps more surprisingly than for
β and η, a closed form solution for ξ exists as well
(Jaakkola & Jordan, 1996).

Update for qk. We observe that (12) has a KL form.
Hence qk is minimized if we take qk = skfk. If qk is
restricted to be a fully factorized distribution we have
the similar arguments for each of the marginals qkd.

To complete the discussion of the continuous cases in
Table 1: if sk is lower bounded, but fk is non-linear,
optimization of β and ξ can be performed in closed
form as outlined above, but the optimization with re-
spect to qk will require gradient based methods.

4.2. Discrete Problems

The binned mean field algorithm is not restricted to
continuous X . In a discrete setting, where we interpret
the integral in (1) as a high-dimensional sum, we can
obtain useful bounds based on factorized discrete dis-
tributions qk(x) =

∏d
i=1

∏M
j=1 π

xij

ij where xij ∈ {0, 1}
and

∑

j xij = 1 for all variable i and πij are the varia-
tional parameters (in the simplex). The update for qk

is

qk(x) = Discrete(x|πij) ,

where

πij ∝ exp{Aij(χk) + Λkij + bij(χk) + νkij} .
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Figure 5. Bayesian logistic regression computation on Australian (13 dimensions) and Diabetes (9 dimensions) datasets.
The y−axis indicates the value of log

∫

Θ
p0(θ)

∏

i
p(yi|xi, θ)dθ. The black error bars indicates the 80% confidence interval

from AIS. The colored points indicate the values of the split mean field bound, where component additions correspond
to a change of color. The small plot at the bottom right is a zoom of the large axis to see the bound improvement as a
function of the CPU time.

5. Experiments

5.1. Toy examples

In Figure 3, we show several example of functions
whose integrals can be efficiently approximated using
split mean-field. Standard algebra enable use to com-
pute a quadratic lower bound to the Cauchy pdf, the

expsin function (f(x) = e−
x2

20
+sin(x)) and the sigmoid

and therefore apply algorithm 2. In the top row, we
applied the approximate techniques based on the lower
bound of the binning function. We see that even in
the 10-component case, the approximation is still far
from optimal, but the algorithm is very fast in prac-
tice and allows us to work with several thousands of
components. One the bottom row, the use of exact in-
tegrals of the sigmoids enable a better fit to the func-
tions, with a nearly perfect approximation in the 10-
component case.

Correlated Gaussian The method is illustrated in
Figure 2. In this example, we used a 2D function

f(x) = N

(

x|

[

0
0

]

,

[

1.6 −0.3
−0.3 0.7

]−1
)

. We use

uncorrelated Gaussian distributions as mean field com-
ponents: qk(x) = N (x|mk, Sk) where Sk is a diagonal
matrix. For standard mean field, this example was de-
scribed in detail in Bishop (2006), Chapter 10. We
used exactly the same updates for the optimization of
the factored distributions. In this example, the use of
a 2-components (resp 4-components) mixture reduces

the relative error of factored mean field by more than
40% (resp 55%) relative to the exact value of the 2D
integral.

A non-trivial 2D integral is shown on Figure 4. It
corresponds to the product of a normal distribution
with two sigmoids. We used the function γ previously
defined to do exact computation of the integrals, both
for the means and the splits. To have an idea of the
improvement over standard mean-field, we plotted the
evolution of the free energies during the iterations of
the algorithm.

The mixture-based approach consistently outperforms
the standard mean-field. We also see that the inclusion
of new splits does not decrease the likelihood, because
the mixture components are initialized based on the
previous solution. The two-dimensional contours of
the function show that the orientation of the mixture
components is aligned with the sharp angles of the
original function (see e.g. the two-component mixture
in the top right panel), showing that complex depen-
dencies can be models through this approach. The last
contour plot containing 14 components is not perfect
but the left curve shows that its integral is very close
to the optimal one.

Figure 6 shows a comparison of sigmoidal split func-
tions and the softmax from Eq. 9 (MMF). As discussed
in Section 3 the sum of the softmax in the entropy
term of the objective requires additional approxima-
tions. The experiments are based on the advanced ad-
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Figure 4. A 2D example of split Mean-Field for f(x) =
N (x)σ(20x1 + 4)σ(20x2 − 10x1 + 4). The true function
is given by light contours, the mixture approximation by
dark contours and the individual Gaussian components by
light elliptic contours. Iterations 1, 2, 3 and 300 are shown.
There were 14 components at the 300th iteration.

ditional bounds from (Jaakkola & Jordan, 1999). For
small K we see a relative increased performance of
the sigmoidal split functions. We believe that for this
example this is largely due to the absence of the addi-
tional bound. The most important difference observed
in our experiments is that the soft-max split function
is very sensitive to initialization in contrast to the tree
of sigmoids (only the best result for the soft-max split
function is shown).

5.2. Bayesian inference

We tested our method on the popular logistic regres-
sion model p(y|x, θ) = σ(yθT x) where x ∈ <D is the
input vector and y ∈ {−1, 1} is the output label. The
goal is to have a accurate approximation of the pos-
terior distribution whose normalization factor is a D-
dimensional integral I =

∫

Θ
p0(θ)

∏n
i=1 p(yi|xi, θ)dθ.

For every dataset, we choose the parameters of the
Gaussian prior p0 using a simple heuristic: on half
of the dataset we randomly build 100 datasets (with
replication) of 10 data points. For each of these small
datasets, we learned the MAP estimator of the logistic
regression with unit-variance prior. Finally, the mean
and variance of p0 were set to the empirical mean and
variance of the estimators. On the second half of the
dataset, we randomly chose 10 observation points for
the likelihood

∏n
i=1 p(yi|xi, θ). The integral I is there-
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Figure 6. A comparison between two estimates of the Gum-
bel distribution. One is based on sigmoidal soft-binning
functions, the other on the soft-max (MMF). Only the best
restart of MMF is shown.

fore a product between a Gaussian and 10 sigmoids,
which can be approximated using the split mean-field
approach or by Annealed Importance Sampling (AIS),
as described in (Neal, 1998).

Typical examples on the public datasets with binary
labels are shown in Figure 5. We see that during
the first iterations, the evaluation of the integral by
AIS is inaccurate compared to split mean-field which
gives very stable values with a constant improvement
over time. However, asymptotically, the AIS tends
to an unbiased estimate of the integral, that is larger
than the best value of our algorithm. As shown in
the zoomed axes, there is a relative bound improve-
ment of 0.7 ≈ log(2) in the Australian dataset (resp
1.2 ≈ log(3) in the Diabetes dataset), which means
that the integral given by split mean field is two times
bigger (resp. three times bigger) than the standard
mean-field approach. Such differences are likely to
create strong biases in the estimates of the Bayes fac-
tor when doing model selection (Beal & Ghahramani,
2003).

6. Discussion

In this paper we have revived the mixture mean
field idea of improving lower bounds to difficult high-
dimensional integrals by increasing the number of com-
ponents in the approximation. The interesting twist
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is that the additional components are not introduced
by working with variational mixtures directly. Instead
a suitable set of soft-binning functions sk are chosen
such that the original integral can be split into a sum
of integrals. The hope is that even if f(x) is hard to
approximate directly, the soft-binning functions can
be chosen such that the individual sk(x)f(x) can be
approximated accurately and efficiently.

This approach is very general, and the use of mean
field approximations for the K individual integrals is
only one possibility. A benefit of the mean field choice
is that the lower bound ensures that the approxima-
tion improves as K is increased. Also, as discussed in
Section 4.1.2, if a standard Gaussian mean field im-
plementation exists for a particular problem, the split
mean field algorithm can be used without any addi-
tional implementation overhead. Lastly, by choosing
soft-max functions for the binning functions sk we find
that we can retrieve the established mixture mean field
approach. Other choices for the local approximations
are a worthwhile pursuit.

The insight that multi-component approximations can
be created by suitable choices for the binning function
introduces many degrees of freedom over a mixture of
Gaussians choice. A flexible, powerful, and relatively
efficient choice is a product of sigmoids assembled in
a decision tree such that half spaces can be split in-
dependently. For small examples where very accurate
brute-force estimates of the objective function can be
found, we observe that even the introduction of a single
extra component reduces the error (gap between lower
bound and the exact integral) by typically 40%. Al-
though the algorithm is fast enough to handle a large
number of bins (hundreds), we found that in a time
that would be reasonable for practical use a gap will
always persist. Reductions of 40% of the error in 10
times the computation time of standard mean field and
more than 60% in 100 times are typical. This is ob-
served for multi-modal examples we have tried, that
are arguably particularly suited to the method, but
also for heavy-tailed and asymmetric examples.

For large examples from the UCI dataset we see sim-
ilar increases in the estimate of the log-likelihood as
the number of bins increases (an increase of the likeli-
hood by a factor of 2 or even 3). It is for these larger
problems impossible to accurately assess the relative
reduction in error, since annealed importance sampling
was not able to give reliable estimates of the exact in-
tegral. Annealed importance sampling is considered
to be among the state of the art in settings where ac-
curate estimates are of more concern than efficiency.
We have not tried other methods.

Split mean field with the choices made here has
proven to be an effective improvement upon standard
mean field approximations in time critical applica-
tions. Many generalizations and alternative uses of
split variational inference remain to be explored. Also
of great interest is a careful study of the behavior of
the approximation as K reaches infinity.
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