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Abstract

Group-Lasso estimators, useful in many applica-

tions, suffer from lack of meaningful variance es-

timates for regression coefficients. To overcome

such problems, we propose a full Bayesian treat-

ment of the Group-Lasso, extending the stan-

dard Bayesian Lasso, using hierarchical expan-

sion. The method is then applied to Poisson mod-

els for contingency tables using a highly efficient

MCMC algorithm. The simulated experiments

validate the performance of this method on arti-

ficial datasets with known ground-truth. When

applied to a breast cancer dataset, the method

demonstrates the capability of identifying the dif-

ferences in interactions patterns of marker pro-

teins between different patient groups.

1. Introduction and Related Work

The identification of important explanatory factors for a

process is a key task in many practical learning problems.

In the context of standard linear regression, the Lasso (Tib-

shirani, 1996) has become a popular method for this pur-

pose in the recent years. The Lasso optimizes a regression

functional under an ℓ1-constraint on the coefficient vector:

given a n × 1 vector of responses y = (y1, . . . , yn)t, yi ∈
R and observation vectors xi ∈ R

p arranged as rows of a
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n × p data matrix X , the Lasso minimizes

‖y − Xβ‖2
2 subject to ‖β‖1 ≤ κ. (1)

In many applications, however, explanatory factors do not

necessarily have a one-to-one correspondence with single

features (main effects) but rather require a more complex

representation, for instance, by considering not only single

features but higher order interactions between some/all fea-

tures. As a further extension to this idea, the factors (main

effects + higher order interactions) may need to be repre-

sented as groups of variables. A popular example of this

kind is the representation of categorical variables (i.e. “fac-

tors” in the usual statistical terminology and/or their inter-

actions) as groups of “dummy” variables.

To address such situations, the Group-Lasso (Yuan & Lin,

2006) is an ideal choice since it serves as a natural exten-

sion of the Lasso by finding solutions that are sparse at the

level of groups of variables which, for instance, might rep-

resent categorical variables and/or interaction terms. De-

spite the fact that the Group-Lasso estimators have proven

useful in many applications (Kim et al., 2006; Meier et al.,

2008; Roth & Fischer, 2008), their main problem concerns

the definition of meaningful variance estimates for the re-

gression coefficients. This problem because the Hessian is

not defined at the optimal solution. In this paper, we sug-

gest a full Bayesian treatment of the Group-Lasso to over-

come this problem. The proposed model uses a hierarchi-

cal expansion and directly extends corresponding Bayesian

versions of the standard Lasso (Figueiredo & Jain, 2001;

Park & Casella, 2008) to handle grouped predictors.
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While the Bayesian Group-Lasso is applicable for many

different likelihood models, the focus of this paper is on

Poisson models for contingency tables. In applications of

this kind, the “dummy” covariates x represent factor inter-

actions up to a certain order, and sparsity induced by the

Group-Lasso corresponds to selecting edges in the hyper-

graph defining the interaction structure among these fac-

tors. Implementation approaches include the method de-

scribed in (Figueiredo & Jain, 2001) which basically re-

duces to MAP point estimation without essential Bayesian

features such as posterior variances, whereas (Park &

Casella, 2008) describes a full Bayesian approach based

on MCMC sampling. A third class of methods falls in be-

tween these extremes by utilizing approximation schemes

like expectation propagation (Seeger, 2008). By exploit-

ing a special orthogonality property of design matrices in

the Poisson model for contingency tables, we are able to

derive a highly efficient MCMC sampling algorithm that

makes it possible to follow the full Bayesian route with-

out resorting to approximation schemes even in large real-

world examples. The availability of posterior variances and

correlations overcomes several problems of a related penal-

ized likelihood (or MAP) approach introduced in (Dahin-

den et al., 2007). Moreover, our algorithm is applicable to

contingency tables stemming from arbitrary factors rather

than being restricted to binary variables. We show that our

method is capable of identifying relevant high-order in-

teraction patterns both in toy examples and in large-scale

medical applications.

2. The Bayesian Group-Lasso

For the following derivation, it is convenient to partition

the data matrix X , and the coefficients β into G subgroups:

X = (X1, . . . , XG),

βt =
(
βt

1, . . . ,βt
G

)
. (2)

The size of the g-th subgroup will be denoted by pg .

The Group-Lasso minimizes the negative log-likelihood

viewed as a function in β , l = l(β), under a constraint

on the sum of the ℓ2-norms of the subvectors βg:

minimize l(β) s.t.
∑G

g=1 ‖βg‖ ≤ κ. (3)

From a probabilistic perspective, the Group-Lasso with

Gaussian likelihood can be understood as a standard lin-

ear regression model with Gaussian noise and a product

of multivariate Laplacian priors over the regression coeffi-

cients. The observations y = (y1, . . . , yn)t are assumed to

be generated according to

yi = xt
iβ + εi, with εi ∼ N(0, σ2), (4)

which implies a likelihood of the form

p(y|X, β, σ2) ∝ exp
{
−‖y − Xβ‖2/(2σ2)

}

∝ (σ2)−p/2 exp

{
−

1

2σ2
(β − β̂)tXtX(β − β̂)

}

· (σ2)−ν/2 exp

{
−

SSE

2σ2

}
,

(5)

where β̂ is the least-squares solution, SSE = (y −

Xβ̂)t(y−Xβ̂) is the sum of squared errors, and ν = n−p.

The last equation results from “completing the squares”

which is standard in Bayesian regression, see for instance

(Gelman et al., 1995). Assuming a multivariate (spherical)

pg-dimensional Multi-Laplacian prior over each group of

regression coefficients,

M-Laplace(βg|0, c−1) ∝ cpg/2 exp(−c‖βg‖2), (6)

the classical group-Lasso in eq. (3) is recovered as the

MAP-solution in log-space, with σ2c having the role of a

fixed Lagrange parameter. For a full Bayesian treatment, on

the other hand, we would like to place (hyper)priors over

c and σ2 and integrate out these parameters. In practice,

these integrations will not be possible analytically, and we

propose to use a Gibbs sampling strategy for stochastic in-

tegration.

Hierarchical expansion. For finding a representation in

which all conditionals have a standard form, we use the

following hierarchical expansion which extends the respec-

tive derivation for the standard Lasso in (Figueiredo & Jain,

2001) to grouped predictors: the prior can be expressed as

a two-level hierarchical model involving independent zero-

mean Gaussian priors over βg and Gamma priors over λg .

Defining ag = pgρ and bg = ‖βg‖
2
2/σ2 (for each group

g), the Multi-Laplacian prior on βg can be expressed as a

hierarchical Normal-Gamma model:

p(βg|ρ) =
∫ ∞

0
N(βg|0, σ2λ2

g)Gamma(λ2
g|

pg+1
2 , 2

ag
) dλ2

g

= (σ2)−
pg
2

∞∫
0

(λ2
g)

− 1
2 exp

[
−

bg

2λ2
g
− λ2

g
ag

2

]

︸ ︷︷ ︸
(

bg
ag

)
1
4 K 1

2

[

(agbg)
1
2

]

·GIG(λ2
g|

1
2
,ag,bg)

a
pg+1

2
g dλ2

g

∝ (σ2)−
pg
2 (

bg

ag
)

1
4 (agbg)

− 1
4 a

pg+1

2
g exp

[
−(agbg)

1
2

]

= (ag/σ2)
pg
2 exp(−(ag/σ2)

1
2 ‖βg‖2)

∝ M-Laplace(βg|0, (ag/σ2)−
1
2 ).

(7)

In the above derivation we have used the definition of the

generalized inverse Gaussian distribution

GIG
(
λ2

g|
1
2 , ag, bg

)
= (

bg

ag
)−

1
4 K−1

1
2

[
(agbg)

1
2

]

· (λ2
g)

− 1
2 exp

[
− 1

2

(
bg

λ2
g

+ λ2
gag

)]
,

(8)
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with K 1
2
(x) =

√
π/(2x) exp[−x] denoting a special case

of the spherical Bessel functions.

For the standard linear model we can, thus, “expand” the

Group-Lasso in terms of a Gaussian likelihood, Gaussian

priors over the regression coefficients and Gamma priors

over the corresponding variances. The model is completed

by introducing a prior on σ2 (we use the standard conjugate

joint prior p(β, σ2) = p(β|σ2)p(σ2) = N(β|µ, σ2Σ) ·
Inv-χ2(σ2|ν0, s

2
0)) and a conjugate Gamma(ρ|r, s) prior on

ρ.

Multiplying the priors with the likelihood and rearrang-

ing the relevant terms yields the full conditional posteriors,

which are needed in the Gibbs sampler for carrying out the

stochastic integrations. Concerning β and σ2, the resulting

conditionals have the standard form in Bayesian regression:

p(σ2|•) = Inv-χ2, and

p(β|•) =N(β|µ̃, σ2Σ̃) with Σ̃ = (XtX + Λ−1)−1,

and µ̃ = Σ̃XtXβ̂,
(9)

where Λ is a diagonal matrix consisting of λ2
g’s as diagonal

elements, with each λ2
g repeated pg times. The conditional

posterior of ρ is again Gamma due to conjugacy,

p(ρ|•) = ρGr exp
[
−ρ

(
G
s + 1

2

∑G
g=1 λ2

gpg

)]
, (10)

where r and s are the shape- and scale hyperparameters of

the Gamma prior on ρ. Finally, the conditional of λ2
g is

generalized inverse Gaussian:

p(λ2
g|•) = GIG

(
λ2

g|
1
2 , ag, bg

)
(11)

3. Poisson Models for Contingency Tables

While in principle the Bayesian Group-Lasso introduced

in the last section is applicable for many different likeli-

hoods, in this paper we focus on Poisson models for an-

alyzing count data in contingency tables. The reason for

this choice is threefold: (i) count data for certain compo-

sitions of discrete properties occur frequently in practical

applications, particularly in a bio-medical context; (ii) fea-

ture selection for categorical variables is directly related to

methods inferring sparsity on the level of groups of predic-

tors; (iii) the use of certain encoding schemes for categori-

cal variables allows us to derive a highly efficient sampling

algorithm that makes full Bayesian inference practical in

large-scale applications.

Denote by z = (z1, . . . , zn) the observed counts in a con-

tingency table with n cells. The standard approach to mod-

eling count data is Poisson regression which involves a log-

linear model with independent terms: for i = 1, . . . , n :

zi|µi ∼ Poisson(µi) =
µzi

i e−µi

zi!
, (12)

with the Poisson mean µi = eηi , and ηi = xiβ. Using a

random link

ηi = xt
iβ + ǫi, ǫi ∼ N(0, σ2) (13)

makes it possible to allow for deviations from the log-linear

model. For instance, overdispersed Poisson models (which

are common in practice) can be modeled with random link

functions. In the Bayesian context such random links cor-

respond to a conditional Gaussian prior on η:

p(ηi|β, σ2) = N(ηi|x
t
iβ, σ2). (14)

Note that inputs are available only as counts z. Assuming

that the total number of counts is fixed, the observed vector

of individual counts z = (z1, . . . , zn) can be considered as

a realization drawn from a multinomial distribution. This is

the approach taken in (Dahinden et al., 2007) in a penalized

likelihood framework. If, on the other hand, we assume a

sampling model in which the total number of counts itself

is random and the time period of observing the counts is

fixed, we arrive at the Poisson model (12). This sampling

model is plausible for many practical situations. For exam-

ple, a clinical study of fixed length where the counts cor-

respond to the number of patients with certain properties

visiting the hospital. The main technical advantage of the

Poisson model lies in the factorization over the cells, given

the means µi (see eq. (12)). To understand the nature of the

“dummy” covariates x, the following notations are helpful:

assume our contingency table is based on observations of d
categorical random variables or factors, C1, ..., Cd, where

each Cj has Kj levels. The “dummy” covariates x rep-

resent factor interactions, starting with the interactions of

order zero (the main effects) up to all interactions of a cer-

tain maximum order Q. Interactions are denoted by the

colon operator (:). There is one group of dummy variables

used for encoding each interaction term. This corresponds

to assuming that the means of the ηi (which are in turn the

log Poisson means) can be expressed (in vector form) as

η̄ = Xβ, with the design matrix X composed of individ-

ual submatrices:

X =[1, XC1 , . . . , XCd

︸ ︷︷ ︸
main effects

, XC1:C2 , . . . , XCd−1:Cd

︸ ︷︷ ︸
1st order interactions

,

. . . , XC1:···:CQ+1 , . . . , XCd−Q:···:Cd

︸ ︷︷ ︸
highest order interactions

].
(15)

To avoid over-parametrization, identifiability constraints

are imposed on the individual submatrices in the form of

contrast codes which encode a factor with K levels into a

matrix with K − 1 columns. Interaction terms are basi-

cally column-wise product expansions of these individual

(main-effect) matrices. In many practical applications we

are given ordered factors, i.e. ordinal variables for which

a natural ordering is involved. Examples of this kind are
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for instance intensity levels. For such ordinal categorical

variables, the use of polynomial contrast codes is a natural

choice. These encodings employ orthogonal polynomials

and have the practical advantage that the (typically huge)

design matrix is orthogonal, i.e. XtX = I .

The use of random links not only allows for deviations from

the parametric model, but also greatly simplifies Gibbs

sampling: when conditioning on ηi, sampling of β and σ
follows the standard procedure in Bayesian regression. The

orthogonality property of the design matrix, XtX = I ,

makes it possible to sample from very high-dimensional

models in an efficient and numerically stable way since

only diagonal matrices have to be inverted, see eq. (9). Up-

dating ηi, on the other hand, is more difficult because the

corresponding conditional is not of recognized form:

p(ηi|β, σ2, X, z) ∝ exp
[∑

i

ηizi − exp(ηi)

−
1

2σ2
(xt

iβ − ηi)
2
]
.

(16)

However, the above conditional posterior is log-concave

which makes it possible to use “black-box” sampling meth-

ods like adaptive rejection sampling. Alternatively, we

propose to use a Laplace approximation similar to that

in (Green & Park, 2004), which in practice turns out to

give results which are almost indistinguishable from adap-

tive rejection sampling while speeding up the computations

considerably. Figure 1 summarizes the hierarchical struc-

ture of the Poisson Group-Lasso model.

Λ

r, s

η

x

z

ρ

ν0, s
2

0

(σ2, β)

Gamma(ρ|r, s)

Gamma(λ2

g|•, •ρ
−1)

N(η|xtβ, σ2)

Poisson(z| exp(η))

Inv-χ2(σ2|ν0, s
2

0
)

N(β|•, σ2Λ)

Figure 1. Dependency structure of the hierarchical Poisson

Group-Lasso model. On top of this hierarchy are the hyperparam-

eters (r, s) for the Gamma prior on ρ and (ν0, s
2

0) for the Inv-χ2

prior on σ
2. On the other end there are the observed vector of

counts z and the “dummy” covariates x. The core of the diagram

represents the hierarchical Normal-Gamma prior on the regres-

sion coefficients β and the Normal random link between η and

the covariates and coefficients.

Hyperparameter selection. A side effect of using the

Laplace approximation for ηi is a good intuition about

reasonable priors on σ2. Such a prior should be roughly

centered around the reciprocal value of the average of all

counts, see (Green & Park, 2004) for details. In our im-

plementation we use this rule of thumb by setting s2
0 in the

Inv-χ2(n0, s
2
0) prior on σ2 to 1/(1 + median(z)). Note

that the influence of the Inv-χ2 prior can be interpreted as

adding n0 virtual samples with variance s2
0. The only other

hyperparameters in the model are the shape r and scale s in

the Gamma(r, s) prior on ρ. Testing for suitable values can

be done straightforwardly by first sampling ρ from the hy-

perprior and in turn sampling λ2
g from Gamma(

pg+1
2 , 2

pgρ ).

The fraction of “large” λ2
g values encodes our prior belief

about the sparsity of the model: since λ2
g is a variance pa-

rameter for the g-th group of regression coefficients, the

fraction of large λ2
g values essentially determines the ex-

pected sparsity. As a default setting in our implementation

we use the criterion that roughly 1% of the λ2
g values shoud

exceed 5 · median(λ2).

4. Simulated Example

In order to illustrate the performance of the Bayesian Group

Lasso, experiments were carried out on simulated data. The

data was constructed by assuming 8 categorical variables

with 3 levels each (main effects) and all higher order inter-

action terms upto 2nd order (total of 92 groups represent-

ing the interaction terms, and 6561 combinations of levels).

The orthogonal (6561 × 577) design matrix X was gen-

erated with polynomial contrast codes as described in the

previous section. Then three factors were chosen for gen-

erating the counts, namely one main effect (variable 1), a

first order interaction (1:5) and a second order interaction

(6:7:8). For these factors, positive values of β were taken,

with all other β values fixed to zero. The counts were then

generated using eq. (12) and eq. (13) with σ2 = 0.1. Hy-

perparameters were specified using our default procedure

described above. The example traceplot in the lower panel

of Figure 2 indicates that the Markov chain converges al-

most immediately, an observation which is corroborated by

a length control diagnosis according to (Raftery & Lewis,

1992) indicating that the necessary burn-in-period is prob-

ably ≪ 100 samples.

Gibbs sampling was executed for 1000000 iterations, and

the posterior distributions of the coefficients βi were an-

alyzed based on every 25th sample. The upper panel of

Figure 2 shows the resulting estimation of significant in-

teraction terms, with significance measured by either the

fraction of positive or negative samples, depending on the

sign of the mean value β̄i. The size of the circles encodes

this significance measure for the main effects; the linewidth

of the blue edges (1st order interactions) and reddish trian-
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1
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Trace of 6:7:8

150000 300000 600000 900000
Iterations

Figure 2. Simulated data: 8 categorical variables with 3 levels

each, and three “truly” nonzero interaction terms: 1, 1:5, 6:7:8.

Upper panel: interactions identified from the posterior distribu-

tions. The size of the circles indicates the estimated significance

of the main effects: 97.5% of the posterior samples for variable

1 have a positive sign. Correspondingly, the linewidth of the in-

teractions (blue lines: 1st-order, reddish triangles: 2nd-order) in-

dicates their significance. Lower panel: Example traceplot and

moving average for the 2nd-order interaction 6:7:8

gles represents the importance of the higher-order terms,

ranging from 0.7 (thinnest lines plotted) to 0.975. Note

that a level of 0.5 represents complete randomness. All

three interaction terms could be clearly identified. There

are 3 additional spurious interaction terms whose signifi-

cance level, however, is very low (0.7).

5. Application to Breast Cancer Studies

Breast cancer and immunohistochemistry. In Western

societies breast cancer is one of the leading causes of

tumor-induced death in women. Despite improvements in

the identification of prognostic and predictive parameters,

novel biomarkers are needed to improve patient risk strati-

fication and to optimize patient outcome. Furthermore, the

identification of molecules that are differentially regulated

during tumorigenesis may lead to the development of per-

sonalized therapeutic approaches.

Recently, independent research groups were able to iden-

tify five distinct gene expression patterns which are (i)

highly predictive for the patients’ prognosis and (ii) may re-

flect the biological behavior better compared to established

parameters. According to this model, a basal as well as

two distinct luminal-like expression patterns in addition to

a her2 (ERBB2) overexpressing and a normal breast-like

group could be distinguished (Perou et al., 2000).

Even though results from mRNA expression profiling are

very convincing, there are still some limitations to its clin-

ical application due to the high costs. Several studies have

shown that biologically distinct classes of breast cancer as

defined by mRNA expression analysis can also be iden-

tified with cost efficient immunohistochemistry (Abd El-

Rehim et al., 2005; Diallo-Danebrock et al., 2007). Def-

initions of the basal phenotype by the former and other

groups using different cytokeratin antibodies (e.g. anti-

CK5/6) prove to be robust and allow the identification of

this tumor type on a routine basis.

Tissue microarrays. In the present study, intensity

levels of the following immunohistochemical markers

in tissue samples have been measured utilizing the tis-

sue microarray (TMA) technology: the estrogen recep-

tor (er), karyopherin-alpha-2 (KPNA2) , anti-cytokeratin

CK5/6, fibrous structural protein Collagen-6, membrane-

associated tetraspanin protein Claudin-7, inter-α-trypsin

inhibitor ITIH5, and the human epidermal growth fac-

tor receptor her2. The TMA technology promises to sig-

nificantly accelerate studies seeking for associations be-

tween molecular changes and clinical endpoints (Kononen

& Bubendorf, L. et al, 1998).
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Figure 3. Kaplan-Meier curves regarding overall survival for the

low-risk (upper red curve) and the high-risk group (lower blue

curve) of breast cancer patients. Error bars define standard 95%

confidence intervals.

Experimental design. After histopathological grading of

tumors according to (Elston & Ellis, 1991), patients were

divided into a low-risk (grade 1-2) and a high-risk (grade

3) group. The overall goal of this experiment was to iden-

tify differences in interaction patterns of marker proteins

between these groups. Kaplan-Meier survival analysis in

Figure 3 shows that the split chosen is meaningful in the

sense that the survival probability differs significantly be-

tween these two groups. This observation was corroborated

by the analysis of mean protein expression levels in the two

groups (Figure 4). As expected for the low-risk class of pa-

tients (grade 1-2), there was marked estrogen receptor (er)

expression, whereas CK5/6 and KPNA2 were negative.
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er

KPNA2

CK5/6

collagen6

claudin7

her2

ITIH5

er

KPNA2

collagen6

claudin7

her2

ITIH5CK5/6

Low risk group High risk group

Figure 4. Distribution of protein expression levels (3 bins corre-

sponding to “low”, “intermediate”, “high”) in the low-risk group

(left) and the high-risk group (right).

Data analysis and interpretation. Having identified a

meaningful subdivision into patient groups, we focused on

identifying interaction patterns in each of the groups. The

observed expression of each of the proteins was represented

as a factor with 3 levels (“low”, “intermediate”, “high”).

The resulting contingency tables were separately analyzed

for each group with our Bayesian Poisson Group-Lasso

model. Interaction terms up to the second order (i.e. in-

teractions between triples of factors) were analyzed. One

million Gibbs samples were drawn, the burn-in phase con-

tained the first 200,000 samples, and every 25th of the

remaining samples was used for computing the posterior

densities. Due to our efficient algorithm, it took less than

one hour to compute all 1 000 0000 samples on a standard

computer. Traceplots indicated that the convergence of

the Markov chain was not really an issue in this experi-

ment (see Figure 6 for an example), an observation which

is corroborated by a length control diagnosis according to

(Raftery & Lewis, 1992) indicating that the necessary burn-

in-period is probably ≪ 1000.

In the low-risk group the following interaction terms ap-

peared to be highly significant: the two main effects

of KPNA2 and CK5/6 expression, the first-order inter-

action KPNA2:CK5/6 and the second order interaction

KPNA2:CK5/6:her2, see Figure 5. Interpreting high-order

interaction terms can be a complex problem. A close anal-

ysis of the contrast codes and the sign of the regression co-

efficients showed, however, that all these interaction terms

explain observed counts by either marginal or joint nega-

tive immunoreactivity for KPNA2, CK5/6 and her2, re-

spectively.

er

KPNA2

CK5/6

collagen6

claudin7

her2

ITIH5

er

KPNA2

collagen6

claudin7

her2

ITIH5

CK5/6

Figure 5. Identified interaction patterns for the low-risk group

(left) and the high-risk group (right). The size of the circles indi-

cates the estimated significance of the main effects. For instance,

the largest circle for CK5/6 means that more than 95% of the pos-

terior samples are negative. Correspondingly, the linewidth of the

interactions (blue lines: 1st-order, reddish triangles: 2nd-order)

indicates their significance, see Figure 6 for an example.

The high-risk group showed a distinctly different inter-

action pattern which is dominated by the main effect of

claudin7 expression, the interaction claudin7:KPNA2 and

the (weaker) interaction er:claudin7:ITIH5. Again, look-

ing into the contrast codes and the signs, we concluded

that the main effect of claudin7 explains the counts by

an over-represented “intermediate” bin and both under-

represented “low” and “high” bins. The interaction term

claudin7:KPNA2 explains counts mainly by a joint “inter-

mediate” expression.

These interaction patterns are in line with known gene ex-

pression patterns of breast cancer. Non-high grade breast

cancers (grade 1-2) were mainly hormone-receptor pos-

itive, and negative for the high-grade markers KPNA2,

CK5/6 and her2. In a study by Dahl et al. (Dahl et al.,

2006), high rates of KPNA2 expression were significantly

associated with positive TP53 and her2 immunoreactivity

and a high proliferation index. Besides CK5/6, KPNA2

seemed to be characteristic of the basal-like subtype of

breast cancers, possibly representing a different clinical en-

tity of breast tumors, which is associated with shorter sur-

vival times and a high frequency of TP53 mutations.

Control experiments. In order to compare our results

with other analysis methods we conducted two control ex-

periments. For the low-risk group, Figure 7 shows the “so-

lution path” computed by the non-Bayesian analogue of

our method, the standard Group-Lasso with Poisson like-

lihood. We used the algorithm described in (Roth & Fis-

cher, 2008). The solution path shows the evolution of

the individual group norms when relaxing the constraint

κ, see eq. (3). The plot indicates that the main effects

CK5/6 and KPNA2 and the interactions KPNA2:CK5/6

and KPNA2:CK5/6:her2 have a dominating role, which is

in perfect agreement with our results. At the same time, the

more diffuse picture for large constraint values κ > 100 to-
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Figure 6. Example traceplot for to the very strong 1st-order-

interaction KPNA2:CK5/6 in the low-risk group, and moving

average (upper panel). Corresponding posterior density (lower

panel). More than 90% of the samples exceed zero (red area).

gether with the difficulty of defining meaningful variance

estimates nicely demonstrates the inherent interpretation

problems of classical Group-Lasso solutions.
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Figure 7. Comparison with non-Bayesian analogue for the low-

risk group: evolution of group norms (“solution path”) obtained

by relaxing the constraint in the standard Group-Lasso with Pois-

son likelihood.

The test for uniqueness/completeness of solutions proposed

in (Roth & Fischer, 2008) reveals another problem: for any

reasonable numerical tolerance parameter in the optimiza-

tion process, the solutions found by the Group-Lasso are

probably not uniquely identifiable. For constraint values

κ > 90 there is an increasing amount of inactive (i.e. zero

norm) groups that might become active in alternative solu-

tions which are ǫ-close (in terms of likelihood) to the found

“optimal” solution. This problem might be viewed as an-

other strong argument for following the Bayesian paradigm

of averaging over Group-Lasso solutions, instead of focus-

ing on a single (penalized) maximum likelihood solution.

For a second control experiment we used the same data to

estimate a Bayesian network. Concerning the identifica-

tion of interactions, the main technical differences to our

Group-Lasso model are the restriction to a graph (instead of

Score: −308.8926 Score: −308.7683 
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collagen6
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her2

ITIH5

CK5/6

Figure 8. Two examples of the top-scoring Bayes nets with al-

most indistinguishable scores, showing typical variations in topol-

ogy. For quantifying the score differences we made a perturba-

tion experiment: when randomly leaving out 10% of the obser-

vations, the standard deviation of the individual maximum scores

is σ ≈ 2.2. More than 50 different networks in the unperturbed

problem lie within the highest one-σ region.

a hypergraph), and the use of directed edges which in some

cases can be used for inferring causal relations. We used

the deal-Package (Bøttcher & Dethlefsen, 2003; Bøttcher

& Dethlefsen., 2009) that finds the topology on the ba-

sis of the network score which is basically the log of the

joint probability of the graph and the data. In the resulting

analysis, we observe many similarities between the Markov

blankets from the Bayes nets and from our model. On the

other hand, neither the network topology nor the direction

of edges seems to be very stable. Among the top-scoring

models many variants of the network have almost indistin-

guishable scores. Most of these fluctuation concern the de-

pendencies between the three variables KPNA2, claudin7

and her2, see Figure 8 for an example. The clear identifica-

tion of a second-order interaction between these three vari-

ables in our model (the bold red triangle in the left panel of

Figure 5) might be interpreted as a strong advantage of ex-

plicitly modeling high-order interactions in a hypergraph.

6. Conclusion

This paper has presented a full Bayesian treatment of the

Group-Lasso which is applicable to many real-world learn-

ing problems. Despite the generality of the proposed

model, the main focus was on Poisson likelihood models

for analyzing count data in contingency tables, with feature

selection, because (i) they occur frequently in a bio-medical

context, (ii) they are endowed with an inherent group struc-

ture representing the interaction terms of the categorical

variables and (iii) they allow for efficient Gibbs sampling

models making it practical in real-world examples.

On the theoretical side we have derived a hierarchical

Normal-Gamma expansion of the Multi-Laplace prior on

the regression coefficients. This expansion is one of the

key components for rewriting the Group-Lasso model in

a form that is suitable for efficient Gibbs sampling. The

second key component is the orthogonality property of the

design matrix representing dummy encodings for categori-



The Bayesian Group-Lasso for Analyzing Contingency Tables

cal variables which ensures that sampling becomes numer-

ically stable and highly efficient.

When applied to a real-world breast-cancer study, the pro-

posed method identifies the differences in interactions pat-

terns of marker proteins between multiple patient groups.

To our knowledge, this is the first study which system-

atically analyzes the influence of high-order interactions

based on immunohistochemical data for breast cancer. In-

terpretation of the results by pathologists further validates

our approach since the findings are in line with known gene

expression patterns of breast cancer and hence supporting

the usage of cost-effective immunohistochemical markers.

The comparison of the method to standard approaches

(standard Group-Lasso, Bayesian network) validates the re-

sults and also highlights the advantages of the proposed

method over existing approaches. The related software is

going to be published as an R package.
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