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Abstract
We consider the problem of embedding arbitrary
objects (e.g., images, audio, documents) into Eu-
clidean space subject to a partial order over pair-
wise distances. Partial order constraints arise nat-
urally when modeling human perception of simi-
larity. Our partial order framework enables the
use of graph-theoretic tools to more efficiently
produce the embedding, and exploit global struc-
ture within the constraint set.

We present an embedding algorithm based on
semidefinite programming, which can be param-
eterized by multiple kernels to yield a unified
space from heterogeneous features.

1. Introduction
A notion of distance between objects can be a powerful tool
for predicting labels, retrieving similar objects, or visualiz-
ing high-dimensional data. Due to its simplicity and math-
ematical properties, the Euclidean distance metric is often
applied directly to data, even when there is little evidence
that said data lies in a Euclidean space. It has become the
focus of much research to design algorithms which adapt
the space so that Euclidean distance between objects con-
forms to some other presupposed notion of similarity, e.g.,
class labels or human perception measurements.

When dealing with multi-modal data, the simplest first step
is to concatenate all of the features together, resulting in
a single vector space on which metric learning algorithms
can be applied. This approach suffers in situations where
features cannot be directly concatenated, such as in ker-
nel methods, where the features are represented (implic-
itly) by infinite-dimensional vectors. For example, if each
object consists of mixed audio, video, and text content, en-
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tirely different types of transformations may be natural for
each modality. It may therefore be better to learn a sepa-
rate transformation for each type of feature. When design-
ing metric learning algorithms for heterogeneous data, care
must be taken to ensure that the transformation of features
is carried out in a principled manner.

Moreover, in such feature-rich data sets, a notion of simi-
larity may itself be subjective, varying from person to per-
son. This is particularly true of multimedia data, where
a person may not be able to consistently decide if two ob-
jects (e.g., songs or movies) are similar or not, but can more
reliably produce an ordering of similarity over pairs. Al-
gorithms in this regime must use a sufficiently expressive
language to describe similarity constraints.

Our goal is to construct an algorithm which integrates sub-
jective similarity measurements and heterogeneous data to
produce a low-dimensional embedding. The main, novel
contributions of this paper are two-fold. First, we develop
the partial order embedding framework, which allows us
to apply graph-theoretic tools to solve relative comparison
embedding problems more efficiently. Our second contri-
bution is a novel kernel combination technique to produce
a unified Euclidean space from multi-modal data.

The remainder of this paper is structured as follows. Sec-
tion 2 formalizes the embedding problem and develops
some mathematical tools to guide algorithm design. Sec-
tion 3 provides algorithms for non-parametric and multi-
kernel embedding. Section 4 describes two experiments:
one on synthetic and one on human-derived constraint sets.
Section 5 discusses the complexity of exact dimensionality
minimization in the partial order setting.

1.1. Related work

Metric learning algorithms adapt the space to fit some pro-
vided similarity constraints, typically consisting of pairs
which are known to be neighbors or belong to the same
class (Wagstaff et al., 2001; Xing et al., 2003; Tsang &
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Kwok, 2003; Bilenko et al., 2004; Hadsell et al., 2006;
Weinberger et al., 2006; Globerson & Roweis, 2007).

Schultz and Joachims (2004) present an SVM-type algo-
rithm to learn a metric from relative comparisons, with ap-
plications to text classification. Their formulation consid-
ered metrics derived from axis-aligned scaling, which in
the kernelized version, translates to a weighting over the
training set. Agarwal et al. (2007), motivated by mod-
eling human perception data, present a semidefinite pro-
gramming (SDP) algorithm to construct an embedding of
general objects from paired comparisons. Both of these al-
gorithms treat constraints individually, and do not exploit
global structure (e.g., transitivity).

Song et al. (2008) describe a metric learning algorithm that
seeks a locally isometric embedding which is maximally
aligned to a PSD matrix derived from side information. Al-
though our use of (multiple) side-information sources dif-
fers from that of (Song et al., 2008), and we do not attempt
to preserve local isometry, the techniques are not mutually
exclusive.

Lanckriet et al. (2004) present a method to combine multi-
ple kernels into a single kernel, outperforming the original
kernels in a classification task. To our knowledge, simi-
lar results have not yet been demonstrated for the present
metric learning problem.

1.2. Preliminaries

LetX denote a set of n objects. Let C denote a partial order
over pairs drawn from X :

C = {(i, j, k, `) : i, j, k, ` ∈ X , (i, j) < (k, `)},

where the less than relation is interpreted over dissimilar-
ity between objects. Because C is a partial order, it can
be represented by a DAG with vertices in X 2 (see Fig-
ure 1). For any pair (i, j), let depth(i, j) denote the length
of the longest path from a source to (i, j) in the DAG.
Let diam(C) denote the length of the longest (possibly
weighted) source-to-sink path in C, and let length(C) de-
note the number of edges in the path.

ij

ik
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Figure 1. A partial order over similarity in DAG form: vertices
represent pairs, and a directed edge from (i, j) to (i, k) indicates
that (i, j) are more similar than (i, k).

A Euclidean embedding is a function g : X → Rn which
maps X into n−dimensional space equipped with the Eu-
clidean (`2) metric: ‖x− y‖ =

√
(x− y)T(x− y).

A symmetric matrix A ∈ Rn×n has eigen-decomposition
A = V ΛV T, where Λ is a diagonal matrix con-
taining the eigenvalues of A in descending order:
λ1 ≥ λ2 ≥ · · · ≥ λn. A is positive semidefinite (PSD), de-
noted A � 0, if each of its eigen-values is non-negative.
For A � 0, let A1/2 denote the matrix Λ1/2V T. Finally,
for any matrix B, let Bi denote its ith column vector.

2. Partial order embedding
Previous work has considered the setting where similar-
ity information is coded as tuples (i, j, k, `) where objects
(i, j) are more similar than (k, `), but treat each tuple in-
dividually and without directly taking into consideration
larger-scale structure within the constraints. Such global
structure can be revealed by the graph representation of the
constraints.

If the constraints do not form a partial order, then the corre-
sponding graph must contain a cycle, and therefore cannot
be satisfied by any embedding. Moreover, it is easy to lo-
calize subsets of constraints which cannot all be satisfied by
looking at the strongly-connected components of the graph.

We therefore restrict attention to constraint sets which sat-
isfy the properties of a partial order: transitivity and anti-
symmetry. Exploiting transitivity allows us to more com-
pactly represent otherwise large sets of independently con-
sidered local constraints, which can improve the efficiency
of the algorithm.

2.1. Problem statement

Formally, the partial order embedding problem is defined
as follows: given a set X of n objects, and a partial order C
over X 2, produce a map g : X → Rn such that

∀ (i, j, k, `) ∈ C : ‖g(i)− g(j)‖2 < ‖g(k)− g(`)‖2.

For numerical stability, g is restricted to force margins be-
tween constrained distances:

∀ (i, j, k, `) ∈ C : ‖g(i)−g(j)‖2+eijk` < ‖g(k)−g(`)‖2.

Many algorithms take eijk` = 1 out of convenience, but
uniform margins are not strictly necessary. We augment
the DAG representation of C with positive edge weights
corresponding to the desired margins. We will refer to this
representation as a margin-weighted constraint graph, and
(X , C) as a margin-weighted instance.

In the special case where C is a total ordering over all
pairs (i.e., a chain graph), the problem reduces to non-
metric multidimensional scaling (Kruskal, 1964), and a
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Algorithm 1 Naïve total order construction
Input: objects X , margin-weighted partial order C
Output: symmetric dissimilarity matrix ∆ ∈ Rn×n

for each i in 1 . . . n do
∆ii ← 0

end for
for each (k, `) in topological order do

if in-degree(k, `) = 0 then
∆k`,∆`k ← 1

else
∆k`,∆`k ← max

(i,j,k,`)∈C
∆ij + eijk`

end if
end for

constraint-satisfying embedding can always be found by
constant-shift embedding (Roth et al., 2003). In general,
C is not a total order, but a C-respecting embedding can al-
ways be produced by reducing the partial order to a total
order (see Algorithm 1).

Algorithm 1 produces arbitrary distances for unconstrained
pairs, and is therefore unsuitable for applications where
the solution must be constrained to somehow respect fea-
tures of the objects. However, it can be used to construct
an upper bound on the diameter of a satisfying solution,
which will be useful when designing more sophisticated
algorithms in Section 3.

2.2. A diameter bound

Let ∆ be the output of Algorithm 1 on an instance (X , C).
An embedding can be found by first applying classical mul-
tidimensional scaling (MDS) (Cox & Cox, 1994) to ∆:

A = −1
2
H∆H, (1)

whereH = I − 1
n11T is the n× n centering matrix. Shift-

ing the spectrum of A yields

A− λn(A)I = A∗ � 0, (2)

where λn(A) is the minimum eigenvalue of A. The em-
bedding g can be found by decomposing A∗ = V Λ∗V T,
so that g(i) is the ith column of (A∗)1/2; this is the so-
lution constructed by the constant-shift embedding non-
metric MDS algorithm (Roth et al., 2003).

The construction of A∗ leads to a bound on the embed-
ding’s diameter which depends only on the size of X and
the diameter of the margin-weighted constraint graph.

Lemma 2.1. For every margin-weighted instance (X , C),
there exists a margin-preserving map g : X → Rn−1 such

that for all i 6= j,

1 ≤ ‖g(i)− g(j)‖ ≤
√

(4n+ 1)(diam(C) + 1).

Proof. Let ∆ be the output of Algorithm 1 on (X , C), and
A,A∗ as defined in (1) and (2). From (2), the squared-
distance matrix derived from A∗ can be expressed as

∆∗ij = ∆ij − 2λn(A)1i 6=j . (3)

Expanding (1) yields

Aij = ∆ij −
1
n

∆T
i 1−

1
n
1T∆j +

1
n2

1T∆1,

and since ∆ij ≥ 0, it is straightforward to verify the fol-
lowing inequalities:

∀i, j : − 2 max
x,y

∆xy ≤ Aij ≤ 2 max
x,y

∆xy.

It follows from the Geršgorin circle theorem (Varga, 2004)
that

λn(A) ≥ −2nmax
x,y

∆xy. (4)

Since ∆ij ≤ 1 + diam(C), substituting (4) into (3) yields
the desired result.

In general, unconstrained distances can lie anywhere in the
range [1,diam(C) + 1], and Lemma 2.1 still applies. Even
within a bounded diameter, there are infinitely many possi-
ble solutions, so we must further specify optimality criteria
to define a unique solution.

2.3. Constraint graphs

The partial order framework enables pre-processing of the
constraint set by operations performed directly on the con-
straint graph. This has the advantage that redundancies and
inconsistencies (i.e., cycles) can be identified and resolved
ahead of time, resulting in more robust solutions.

In particular, the transitivity property can be exploited to
dramatically simplify a constraint set: any redundant edges
may be safely removed from the graph without altering
its semantics. We can therefore operate equivalently on
the transitive reduction of the constraint graph (Aho et al.,
1972).

Additionally, real constraint data can exhibit inconsisten-
cies, in which case we would like to produce a maximal,
consistent subset of the constraints. If the data contains
sufficient variability, it may be reasonable to assume that
inconsistencies are confined to small (local) regions of the
graph. This corresponds to subsets of pairs which are too
close in perceived similarity to reliably distinguish. Prun-
ing edges within strongly connected components (SCC)
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can resolve local inconsistencies while retaining the unam-
biguous constraints. By construction, this always produces
a valid partial order.

Some data sets, such as in Section 4.1, exhibit insufficient
variability for the SCC method. If it is possible to obtain
multiple observations for candidate constraints, the results
may be filtered by majority vote or hypothesis testing to
generate a robust subset of the constraints.

Although real data typically contains inconsistencies, de-
noising the constraint set is not the focus of this paper. For
the remainder of this paper, we assume that the constraints
have already been pre-processed to yield a valid partial or-
dering.

3. Algorithms
The naïve embedding algorithm in Section 2 gives no prin-
cipled way to determine unconstrained distances, and may
artificially inflate the dimensionality of the data to sat-
isfy the ordering. Previous algorithms address these prob-
lems by filling in unconstrained distances according to the
optimum of an objective function (Agarwal et al., 2007;
Schultz & Joachims, 2004).

Often, the objective function used is a convex approxi-
mation to the rank of the embedding. We take a differ-
ent approach here, and use a maximum-variance unfolding
(MVU) objective to stretch all distances while obeying the
constraints (Weinberger et al., 2004). This choice of objec-
tive relates more closely to the form of the constraints (dis-
tances), and in practice yields low-dimensional solutions.

3.1. Non-parametric embedding

In the non-parametric embedding problem, we seek a map
g : X → Rn which respects C. We do not assume any
explicit representation of the elements of X . Our algorithm
optimizes the MVU objective: max

∑
i,j ‖g(i) − g(j)‖2,

subject to C.

To ensure that the objective is bounded, it suffices to bound
the diameter of the embedding. Unlike the original MVU
algorithm for manifold learning, we do not assume the ex-
istence of a neighborhood graph, so we cannot deduce an
implicit bound. Instead, we use Lemma 2.1 to achieve an
explicit bound on the objective, thereby resolving scale in-
variance of the solution.

Similarly, without a neighborhood graph, there is no di-
rect way to choose which distances to preserve (or mini-
mize) and which to maximize. However, we can exploit the
acyclic structure of C by constructing margins eijk` which
grow with depth in C. This creates nested families of neigh-
borhoods around each constrained point. For certain prob-
lems, it is possible to automatically construct margin values

Algorithm 2 Partial order embedding
Input: objects X , margin-weighted partial order C
Output: inner product matrix A of embedded points

Let d(i, j) = Aii +Ajj − 2Aij .

max
A

∑
i,j

d(i, j)

∀i, j ∈ X (4n+ 1)(diam(C) + 1) ≥ d(i, j)
∀(i, j, k, `) ∈ C d(i, j) + eijk` ≤ d(k, `)∑

i,j

Aij = 0, A � 0

to ensure rapid neighborhood growth. Section 4.2 provides
one such example.

By combining the MVU objective with the diameter bound,
margin constraints, and a centering constraint to resolve
translation invariance, we arrive at Algorithm 2.

3.2. Parametric embedding

In the parametric embedding problem, we are provided side
information about X (e.g., vector representations), which
parameterizes the map g. The simplest such parameteriza-
tion is a linear projection M , yielding g(x) = Mx. As
in (Globerson & Roweis, 2007), this generalizes to non-
linear transformations by using kernels.

In this setting, including a regularization term Tr(MTM)
(scaled by a factor γ > 0) in the objective function
allows us to invoke the generalized representer theo-
rem (Schölkopf et al., 2001). It follows that an optimal
solution must lie in the span of the training data: if X
contains the training set features as column vectors, then
M = NXT for some matrix N . Therefore, the regulariza-
tion term can be expressed as

Tr(MTM) = Tr(XNTNXT) = Tr(NTNXTX).

Because the embedding function depends only upon in-
ner products between feature vectors, the procedure can
be generalized to non-linear transformations by the ker-
nel trick. Let K be a kernel matrix over X , i.e.
Kij = 〈φ(i), φ(j)〉 for some feature map φ. Then we can
replace the inner products in g(·) with the kernel function,
yielding an embedding of the form g(x) = NKx, where
Kx is the column vector formed by evaluating the kernel
function at x against the training set.

Within the optimization, all distance calculations between
embedded points can be expressed in terms of inner prod-
ucts:

‖g(i)− g(j)‖2 = (Ki −Kj)TNTN(Ki −Kj).



Partial Order Embedding with Multiple Kernels

This allows us to formulate the optimization over a PSD
matrix W = NTN . The regularization term can be
expressed equivalently as Tr(WK), and the inner prod-
uct matrix for the embedded points is A = KWK.
We can then factor W to obtain an embedding function
g(x) = W 1/2Kx.

As in (Schultz & Joachims, 2004), this formulation
can be interpreted as learning a Mahalanobis distance
metric ΦWΦT in the feature space of K, where for
i ∈ X , Φi = φ(i). If we further restrictW to be a diagonal
matrix, it can be interpreted as learning a weighting over
the training set which forms a C-respecting metric. More-
over, restricting W to be diagonal changes the semidefinite
constraint to a set of linear constraints: Wii ≥ 0, so the
resulting problem can be solved by linear programming.

To allow for a tradeoff between dimensionality and
constraint-satisfaction, we relax the distance constraints by
introducing slack variables, which are then penalized with
a positive scaling parameter β. We assume that K is pre-
centered, allowing us to drop the centering constraint on
A. The resulting algorithm can be seen as a special case of
Algorithm 3.

3.3. Multiple kernels

For heterogeneous data, we learn a unified space from mul-
tiple kernels, each of which may code for different features.
We now extend the reasoning of Section 3.2 to construct a
multi-kernel embedding algorithm.

Let K(1),K(2), . . . ,K(m) be a set of kernel matrices, each
having a corresponding feature map φ(p), for p ∈ 1, . . . ,m.
One natural way to combine the kernels is to look at the
product space:

φ(i) =
(
φ(p)(i)

)m
p=1

,

with inner product

〈φ(i), φ(j)〉 =
m∑
p=1

〈
φ(p)(i), φ(p)(j)

〉
.

The product space kernel matrix can be conveniently rep-
resented in terms of the original kernels: K̂ =

∑
pK

(p).

Previous kernel combination algorithms learn a weight-
ing

∑
p apK

(p) such that informative kernels get higher
weight, thereby contributing more to the final predic-
tion (Lanckriet et al., 2004). In general, the discriminative
power of each K(p) may vary over different subsets of X ,
and learning a single transformation of the combined kernel
could fail to exploit this effect.

We therefore extend the formulation from the previous sec-
tion by learning a separate transformation matrix W (p) for

Algorithm 3 Multi-kernel partial order embedding
Input: objects X , margin-weighted partial order C, ker-
nel matrices K(1),K(2), . . . ,K(m) over X
Output: matrices W1,W2, . . . ,Wm � 0.

Let d(i, j) =
∑
p d

(p)(i, j).

max
W (p),ξ

∑
i,j

d(i, j)− β
∑
C
ξijk`

−γ
∑
p

Tr
(
W (p)K(p)

)
∀i, j ∈ X (4n+ 1)(diam(C) + 1) ≥ d(i, j)
∀(i, j, k, `) ∈ C d(i, j) + eijk` − ξijk` ≤ d(k, `)

ξijk` ≥ 0

∀p ∈ 1, 2, . . . ,m W (p) � 0

each kernel K(p). Each W (p) defines a partial embedding

g(p)(x) =
(
W (p)

)1/2

K(p)
x ,

wherein the distance is defined as

d(p)(i, j) =
(
K

(p)
i −K

(p)
j

)T

W (p)
(
K

(p)
i −K

(p)
j

)
.

If we then concatenate the partial embeddings to form a sin-
gle vector g(x) =

(
g(p)(x)

)m
p=1
∈ Rnm, the total distance

is
d(i, j) =

∑
p

d(p)(i, j) = ‖g(i)− g(j)‖2.

We can then add regularization terms Tr(W (p)K(p)) and
apply the analysis from Section 3.2 to each portion of the
objective and embedding function independently. The final
multi-kernel embedding algorithm is given as Algorithm 3.

In this context, diagonal constraints on W (p) not only sim-
plifies the problem to linear programming, but carries the
added interpretation of weighting the contribution of each
(kernel, training point) pair in the construction of the em-
bedding. A large value atW (p)

ii corresponds to point i being
a landmark for the features compared by K(p).

4. Experiments
The following experiments were conducted with the Se-
DuMi and YALMIP optimization packages (Sturm, 1999;
Löfberg, 2004). In the first experiment, we demonstrate
both the parametric and non-parametric algorithms on a
human perception modeling task. The second experiment
formulates a hierarchical multi-class visualization problem
as an instance of partial order embedding, which is then
solved with the multi-kernel algorithm.
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4.1. Relative image similarity

Our first experiment reproduces the human perception ex-
periment of (Agarwal et al., 2007). The data consists of 55
rendered images of rabbits with varying surface reflectance
properties, and 13049 human-derived relative similarity
measurements. The constraint set contains numerous re-
dundancies and inconsistencies, which we removed by ran-
domly sampling constraints to produce a maximal partial
order. This results in a constraint DAG of 8770 edges and
length 55.

The constraint graph was further simplified by computing
its transitive reduction (Aho et al., 1972), thereby suppress-
ing redundant constraints, i.e., those which can be deduced
from others. This results in an equivalent, but more com-
pact representation of 2369 unique constraints, and a much
simpler optimization problem.

Using unit margins, we first constructed a non-parametric
embedding (Figure 2(a)) with Algorithm 2. The results are
qualitatively similar to those presented in (Agarwal et al.,
2007); the x-axis in the figure roughly captures gloss, and
the y-axis captures brightness.

We then constructed a parametric embedding with a diag-
onally constrained W . For features, we used radial basis
function (RBF) kernels over image intensity histograms.
The embedding, shown in Figure 2(b), exhibits more struc-
ture than the non-parametric embedding, but still conforms
to the constraints. Unlike in (Agarwal et al., 2007), this
embedding extends to new points by applying the kernel
function to the novel point and each point in the training
set, and then applying the learned transformation to the re-
sulting vector.
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Figure 2. (a) Non-parametric embedding of the rabbit data set. (b)
Parametric embedding of the rabbit data set, using an RBF kernel
over intensity histograms.

4.2. Hierarchical embedding

Our second experiment is a hierarchical visualization task.
Given a set of labeled objects and a taxonomy over the
labels, we seek a low-dimensional embedding which re-
flects the global structure of the labels. We selected 10

classes from the Amsterdam Library of Object Images
(ALOI) (Geusebroek et al., 2005), which were then merged
into 3 higher-level classes to form the taxonomy in Table 1.

A label taxonomy can be translated into partial order con-
straints by following the subset relation up from the leaves
to the root of the hierarchy. Let LCA(i, j) denote the least
common ancestor of i and j in the taxonomy tree; that is,
the smallest subset which contains both i and j. For each
internal node S in the taxonomy tree, we generate con-
straints of the form:

{(i, j, i, k) : i, j, k ∈ S,LCA(i, j) 6= S,LCA(i, k) = S}.

From each of the 10 classes, we sampled 10 images, each
of varying out-of-plane rotation. Each image was full-color
with dimensions 192 × 144. We parameterized the em-
bedding by forming five kernels: K(1) is the inner prod-
uct between grayscale images, and K(2,...,5) are radial
basis function (RBF) kernels over histograms in the red,
green, blue channels, and grayscale intensity. All kernels
were centered by K 7→ HKH , and then normalized by
Kij 7→ Kij/

√
KiiKjj .

Figure 3(a) illustrates the PCA projection of the product-
space kernel for this experiment. Although each of the 10
classes are individually clustered, the product space does
not conform to the higher-level structure defined by the tax-
onomy.

When building the constraint graph, we randomly sampled
edges to obtain an equal number of constraints at each
depth. We supplied margin weights of the form eijk` =
2depth(k,`)−1. This forces tight clusters at lower levels
in the taxonomy, but subset diameters increase rapidly at
higher levels in the taxonomy. We applied Algorithm 3
with diagonal constraints on each W (p), resulting in the
embedding shown in Figure 3(b).

Table 2 shows the fraction of satisfied taxonomy constraints
(ignoring margins) for each kernel, before learning (i.e.,
distances native to the kernel) and after. The first 6 rows
were computed from the single-kernel algorithm of Sec-
tion 3.2, and the last was computed from the multi-kernel
algorithm. The metric derived from the dot product kernel
outperforms each other individual kernel, indicating that
colors are not generally discriminative in this set. The met-
ric learned from the product space kernel can be interpreted
as a weighting over the data, with uniform weighting over
kernels, and performs much worse than the single best ker-
nel. However, the multi-kernel metric adapts each kernel
individually, achieving the highest fraction of satisfied con-
straints.

Figure 3(c) depicts the weights learned by the algorithm.
Although there were 500 weight variables, only 42 received
non-zero values, largely eliminating the color features. As
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Table 1. The label taxonomy for the hierarchical embedding ex-
periment of Section 4.2.

All
Clothing Toys Fruit

Shoe Xmas bear Lemon
Hat Pink animal Pear

White shoe Red/yellow block Orange
Smurf

Table 2. The fraction of taxonomy constraints satisfied before and
after learning in each kernel individually, the product-space ker-
nel, and finally the multi-kernel embedding.

Kernel Before learning After learning
Dot product 0.8255 0.8526
RBF Red 0.6303 0.6339
RBF Green 0.6518 0.6746
RBF Blue 0.7717 0.8349
RBF Gray 0.6782 0.6927
Product 0.7628 0.7674
Multi — 0.9483

Table 2 indicates, the color features are relatively weak
when compared to the dot product kernel, but they can be
combined to produce a much better embedding.

5. Hardness in R1

So far, we’ve focused on algorithms that attempt to produce
low-dimensional embeddings, but it is natural to ask if so-
lutions of minimal dimensionality can be found efficiently.
As a special case, one may ask if any instance (X , C) can
be satisfied in R1. However, as Figure 4 demonstrates, not
all instances can be satisfied in the line.

Because rank constraints are not convex, convex optimiza-
tion techniques cannot efficiently minimize dimensionality.
This does not necessarily imply other techniques could not
work.

However, we show that it is NP-Complete to decide if a
given C can be satisfied in R1. A satisfying embedding
can be verified in polynomial time by traversing the con-
straint graph, so it remains to show that the R1 partial order
embedding problem (hereafter referred to as 1-POE) is NP-
Hard. We reduce from the following problem:

Definition 5.1 (Betweenness (Opatrny, 1979)). Given a fi-
nite set Z and a collection T of ordered triples (a, b, c)
of distinct elements from Z, is there a one-to-one func-
tion f : Z → R such that for each (a, b, c) ∈ T , either
f(a) < f(b) < f(c) or f(c) < f(b) < f(a)?

(a)

AB

AC BD

ADBC CD

(b)

Figure 4. (a) A square in R2. (b) The partial order over distances
induced by the square: each side is less than each diagonal. This
constraint set cannot be satisfied in R1.

Theorem 5.1. 1-POE is NP-Hard.

Proof. Let (Z, T ) be an instance of Betweenness. Let
X = Z, and for each (a, b, c) ∈ T , introduce constraints
(a, b, a, c) and (b, c, a, c) to C. Since Euclidean distance
in R1 is simply line distance, these constraints force b
to lie between a and c. Therefore, the original instance
(Z, T ) ∈ Betweenness if and only if the new instance
(X , C) ∈ 1-POE. Since Betweenness is NP-Hard, 1-POE
is NP-Hard as well.

6. Conclusion
We have presented a metric learning algorithm which con-
structs a single unified space from heterogeneous data
sources, supplied by multiple kernels. Our kernel combi-
nation technique adapts to varying utility of kernels over
the training set.

Gearing our algorithm toward subjective similarity moti-
vates the partial order framework, which enables graph-
theoretic analysis of the constraints. This leads to more
efficient algorithms and more reliable embeddings.
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