
SimpleNPKL : Simple Non-Parametric Kernel Learning

Jinfeng Zhuang ZHUA0016@NTU.EDU.SG
Ivor W. Tsang IVORTSANG@NTU.EDU.SG
Steven C.H. Hoi CHHOI@NTU.EDU.SG

School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Abstract
Previous studies of Non-Parametric Kernel
(NPK) learning usually reduce to solving some
Semi-Definite Programming (SDP) problem by
a standard SDP solver. However, time complex-
ity of standard interior-point SDP solvers could
be as high as O(n6.5). Such intensive compu-
tation cost prohibits NPK learning applicable to
real applications, even for data sets of moderate
size. In this paper, we propose an efficient ap-
proach to NPK learning from side information,
referred to as SimpleNPKL, which can efficiently
learn non-parametric kernels from large sets of
pairwise constraints. In particular, we show that
the proposed SimpleNPKL with linear loss has
a closed-form solution that can be simply com-
puted by the Lanczos algorithm. Moreover, we
show that the SimpleNPKL with square hinge
loss can be re-formulated as a saddle-point op-
timization task, which can be further solved by a
fast iterative algorithm. In contrast to the previ-
ous approaches, our empirical results show that
our new technique achieves the same accuracy,
but is significantly more efficient and scalable.

1. Introduction
Kernel methods have been widely applied in many real
applications and usually shown the state-of-the-art perfor-
mance. The choice of an effective kernel plays a crucial
role in many kernel based machine learning techniques.
Kernel methods, such as support vector machines (SVM),
often adopt a predefined kernel empirically chosen from
a pool of parametric kernel functions, such as polynomial
and gaussian kernels. One major limitation of standard ker-
nel methods is that choosing an appropriate kernel function
manually may require certain domain knowledge, which
may be difficult in some situations. Another limitation lies

Appearing in Proceedings of the 26 th International Conference
on Machine Learning, Montreal, Canada, 2009. Copyright 2009
by the author(s)/owner(s).

in the difficulty of tuning optimal parameters for the se-
lected parametric kernel functions.

To address the above limitations, learning effective kernels
from data automatically has been actively explored in re-
cent years. One group of recent studies focuses on semi-
supervised learning settings where the kernels are learned
from mixtures of labeled and unlabeled data (Kondor &
Lafferty, 2002; Chapelle et al., 2002; Zhang & Ando,
2005). Example techniques include diffusion kernels (Kon-
dor & Lafferty, 2002), cluster kernels (Chapelle et al.,
2002), and gaussian random field techniques (Zhu et al.,
2003). These techniques often assume certain parametric
forms of the target kernel functions and thus limit their ca-
pacity of fitting diverse patterns in real applications.

Instead of assuming parametric forms for target kernels,
an emerging group of kernel learning studies are devoted
to non-parametric kernel learning (Cristianini et al., 2001;
Lanckriet et al., 2004; Zhu et al., 2004; Kulis et al.,
2006). These include multiple kernel learning for learn-
ing a linear combination of multiple kernels from labeled
data, and semi-supervised kernel learning for learning non-
parametric kernel matrices from both labeled and unlabeled
data (Zhu et al., 2004; Hoi et al., 2006). Although these
techniques do not assume explicit parametric forms for the
target kernels, they attempt to find the optimal kernels by
linearly combining multiple kernels that are often paramet-
ric, which again may limit their performance.

Recently, Hoi et al. (2007) proposed a Non-Parametric
Kernel (NPK) learning technique that aims to learn a fully
non-parametric kernel matrix from pairwise constraints. In
their approach, an effective regularizer is first introduced
to exploit the local geometry of unlabeled data, and the
non-parametric kernel learning problem is then formulated
as a semi-definite program (SDP) that can be solved with
a global solution by existing convex optimization tech-
niques (Boyd & Vandenberghe, 2004). Unlike (Kulis et al.,
2006), the performance of this NPK learning does not de-
pend on the initial choice of the kernel matrix. The state-of-
the-art performance for clustering tasks has been shown in
(Hoi et al., 2007). Despite the promising performance, one

SimpleNPKL : Simple Non-Parametric Kernel Learning

major limitation of the previous work lies in the difficulty
of solving an SDP problem, which prohibits the technique
applicable to large applications.

In this paper, we aim at addressing the efficiency and scal-
ability issues related to the NPK learning technique (Hoi
et al., 2007). Our main contributions include:
1) We propose a Simple NPK learning (SimpleNPKL) al-
gorithm with linear loss from pairwise constraints. We
show that the SimpleNPKL algorithm has a closed-form
solution, which can be computed efficiently by sparse
eigen-decomposition techniques, such as the Lanczos al-
gorithm.
2) To have more robust performance, we propose another
SimpleNPKL algorithm with square hinge loss, which can
be re-formulated as a minimax optimization task. This op-
timization can be solved by an efficient iterative projection
algorithm that involves mainly the computation of sparse
eigen decomposition.
3) To further speedup our solutions, we also investigate
some active constraint selection technique to reduce the
computation cost in each iteration step.
4) Extensive experiments show that SimpleNPKL is sig-
nificantly more efficient than the existing NPKL method.
With the same linear loss function, SimpleNPKL is on av-
erage 75 times faster than the NPKL with a standard SDP
solver. This makes the NPK learning techniques feasible to
large applications.
The rest of this paper is organized as follows. Section 2
reviews the basics of NPK learning. Section 3 presents our
proposed SimpleNPKL for the NPK learning. Implemen-
tation issues are discussed in Section 4. Section 5 gives
discussions with related work. Section 6 shows our experi-
mental results. Section 7 concludes this work.

2. Non-Parametric Kernel Learning
In the sequel, 0 and 1, respectively, denote the column vec-
tors with all zeros and all ones, and I denotes an identity
matrix. AÂ 0 (resp. Aº 0) means matrix A is symmet-
ric and positive definite (pd) (resp. positive semidefinite
(psd)). Moreover, > denotes the transpose of vector/matrix,
and tr(A) denotes the trace of matrix A.

2.1. Side/Label Information
Let U = {x1,x2, . . . ,xN} denote the entire data collec-
tion, where each data point xi ∈ X . Consider a set of
Nl labeled data examples, L = {(x1, y1) . . . , (xNl

, yNl
)},

one can use yiyj as the similarity measurement for any two
patterns xi and xj . Sometimes, it is possible that the class
label information is not readily available, while it is easier
to obtain some collection of similar (positive) pairwise con-
straints S (known as “must-links”, i.e., the data pairs share
the same class) and a collection of dissimilar (negative)
pairwise constraints D (known as “cannot-links”, i.e., the

data pairs have different classes), which is often referred to
as “side information”.

In general, kernel learning with labeled data can be viewed
as a special case of kernel learning with side informa-
tion (Kwok & Tsang, 2003; Kulis et al., 2006; Hoi et al.,
2007), i.e., one can construct the sets of pairwise con-
straints S and D from L. In the sequel, we focus on learn-
ing kernels from pairwise constraints.

Given S and D, we construct a similarity matrix T ∈
RN×N to represent the pairwise constraints, i.e.,

Ti,j =

+1 (xi,xj) ∈ S
−1 (xi,xj) ∈ D
0 otherwise.

(1)

An intuitive principle for kernel earning is that the kernel
entry Kij should be aligned with the side information Tij

as much as possible (Cristianini et al., 2001), i.e., the align-
ment TijKij of each kernel entry is maximized.

2.2. Locality Preserving

In addition to side/label information, preserving of the in-
trinsic geometric structure of the data can also be explored
to improve the performance of kernel learning. Typi-
cally, most existing kernel learning approaches (Kulis et al.,
2006; Hoi et al., 2007; Hoi & Jin, 2008) adopt the data
manifold (Sindhwani et al., 2005) for preserving the lo-
cality in kernel learning. Below reviews an approach for
exploring manifold in kernel learning (Hoi et al., 2007).

Let us denote by f(x,x′) a similarity function that mea-
sures the similarity between any two data points x and
x′, and S ∈ RN×N the similarity matrix where each el-
ement Si,j = f(xi,xj) ≥ 0. Note that f(·, ·) does not
have to be a kernel function that satisfies the Mercer’s con-
dition. Generally, a Non-Parametric Kernel (NPK) ma-
trix K with respect to N patterns can be expressed as
K = V >Vº 0,where V = [v1, . . . ,vN]> is the matrix of
the embedding of data points. The regularizer of the kernel
matrix K, which captures the local dependency between
the embedding of vi and vj , can be defined as:

Ω(V, S) =
N∑

i,j=1

Si,j

∥∥∥∥∥
vi√
di

− vj√
dj

∥∥∥∥∥

2

2

= tr(V LV >) = tr(LK), (2)

where L is the graph Laplacian matrix defined as:

L = I −D−1/2SD−1/2, (3)

where D = diag(d1, d2, . . . , dN) is a diagonal matrix with
the diagonal element defined as di =

∑N
j=1 Sij .

2.3. SDP Formulation of NPK Learning

Following (Hoi et al., 2007), taking into consideration of
both the side information in (1) and the regularizer in (2),

SimpleNPKL : Simple Non-Parametric Kernel Learning

the NPK learning can be formulated as follows:

min
Kº0

tr(LK) + C
∑

(i,j)∈(S∪D) `(Ti,jKi,j), (4)

which generally belongs to a semi-definite programming
(SDP) problem (Boyd & Vandenberghe, 2004). Here,
C > 0 is a tradeoff parameter to control the empirical
loss `(·) 1 of the alignment of the learned kernel and the
dependency among patterns w.r.t. the intrinsic data man-
ifold. The above optimization can be solved with global
optima by standard interior-point SDP solvers. However,
the time complexity of these SDP solvers can be as high as
O(N6.5), which prohibits the NPK learning technique for
real applications, even for medium-size problems.

3. Simple Non-Parametric Kernel Learning
In this section, we present our fast algorithms to solving
the NPK learning problem. First of all, we introduce the
following important constraint:

tr(KK) ≤ B (5)

into the NPK learning problem (4) to control the capac-
ity of the kernel matrix K, where B > 0 is a con-
stant. Similar constraints were also adopted in previous
kernel learning studies (Kwok & Tsang, 2003; Lanckriet
et al., 2004). We refer to the modified NPK learning
problem with (5) as Simple NPK Learning (SimpleNPKL),
which can be solved efficiently without engaging any stan-
dard SDP solvers. Next we present two SimpleNPKL ap-
proaches using two types of loss functions.

3.1. SimpleNPKL with Linear Loss
Consider a linear loss function `(f) = −f , we can rewrite
the formulation of (4) as the SimpleNPKL form:

min
K

tr

(
L−C

∑

(i,j)∈(S∪D)

Ti,j

)
K

 : Kº 0, tr(KK)≤B, (6)

where Tij is the matrix of setting the (i, j)-th entry to Tij

and other entries to 0. To solve this problem, we first show
a proposition below.
Proposition 1. Given A is any symmetric matrix such that
A = Pdiag(Σ)P>, where P contains columns of or-
thonormal eigenvectors of A and Σ is a vector of the corre-
sponding eigenvalues, and B is any positive constant, the
optimal solution K∗ to the following SDP problem:

max
K

tr(AK) : Kº 0, tr(KK) ≤ B, (7)

can be expressed as the following closed-form solution:

K∗ = A+

√
B

tr(A+A+)
(8)

1The common choice of the loss function `(·) can be hinge
loss, square hinge loss or linear loss.

where A+ = Pdiag(Σ+)P>, and Σ+ is a vector with en-
tries equal to max(0, [Σ]i).

Proof. By introducing a dual variable λ ≥ 0 for the con-
straint tr(KK) ≤ B, and Z ∈ Sn

+(Sn
+ is self-dual) for the

constraint K º 0, we have the Lagrangian equation of (7):

L(K;λ,Z) = tr(AK) + λ(B − tr(KK)) + tr(KZ).

By the Karush-Kuhn-Tucker (KKT) conditions, we have:

∂L
∂K

= A− 2λK + Z = 0 and tr(KZ) = 0.

First, we show that tr(KZ) = 0 is equivalent to KZ =
ZK = 0. Since Kº 0, Zº 0, we have tr(KZ) =
tr(K

1
2 K

1
2 Z

1
2 Z

1
2) = ‖K 1

2 Z
1
2 ‖2F .Thus, tr(KZ) = 0 fol-

lows that K
1
2 Z

1
2 = 0. Pre-multiplying by K

1
2 and post-

multiplying by Z
1
2 yields KZ = 0, which in turn implies

KZ = 0 = (KZ)> = ZK. Hence, K and Z, or equiva-
lently A, can be simultaneously diagonalized by the same
set of orthonormal eigenvectors (Alizadeh et al., 1997).

Assume A = Pdiag(Σ)P>, where P contains columns
of orthonormal eigenvectors of A, and Σ is the vector of
the corresponding eigenvalues. Then, K = Pdiag(Λ)P>,
where Λ denotes the vector of the eigenvalues of K. There-
fore, tr(KK) = Λ>Λ ≤ B and tr(AK) = Λ>Σ ≤√

(Λ>Λ)(Σ>Σ) ≤
√

BΣ>Σ. The inequality is obtained
by Cauchy-Schwarz inequality. Together with diag(Λ)º 0,
we obtain the closed-form solution of K in (8).

Based on Proposition 1, we can easily solve the Sim-
pleNPKL problem. In particular, by setting A =
C

∑
(i,j)∈(S∪D) Ti,j − L, we can directly compute the

optimal K∗ to SimpleNPKL of (6) using sparse eigen-
decomposition as in (8). This apparently significantly re-
duces the time cost for the NPK learning tasks.

3.2. SimpleNPKL using Square Hinge Loss

Though the formulation with linear loss in (6) gives rise
to a closed-form solution for the NPK learning, the for-
mulation of the NPK learning using (square) hinge loss
`(f) = (max(0, 1−f))d/d sometimes can be more robust,
where d = 1(hinge loss) or 2(square hinge loss). Next, we
focus on the formulation with the square hinge loss, which
can be written into the following constrained optimization:

minK,εi,j tr(LK) +
C

2

∑

(i,j)∈(S∪D)

ε2i,j (9)

s.t. ∀(i, j)∈(S ∪ D), Ti,jKi,j≥1−εi,j , (10)
Kº 0, tr(KK) ≤ B.

Note that we ignore the constraints εij ≥ 0 since they can
be satisfied automatically. However, (9) is not in form of
(7), and so, there is no longer a closed-form solution for K.

SimpleNPKL : Simple Non-Parametric Kernel Learning

3.2.1. SADDLE-POINT MINIMAX PROBLEM
By introducing dual variables αij’s (αij ≥ 0) for the con-
straints in (10), we can derive a partial Lagrangian:

tr(LK)+
C

2

∑

(i,j)

ε2i,j −
∑

(i,j)

αij(Ti,jKi,j − 1+ εi,j). (11)

For simplicity, we use
∑

(i,j) to replace
∑

(i,j)∈(S∪D) in
the sequel. By setting the derivatives of (11) w.r.t. the
primal variables εij’s to zeros, we have ∀(i, j) ∈ (S ∪
D), Cεij = αij ≥ 0, and substituting them back into (11),
we arrive at the following saddle-point minimax problem
J (K, α):

maxαij minK tr

(
L−

∑

(i,j)

αijTi,j

)
K

− 1

2C

∑

(i,j)

α2
ij +

∑

(i,j)

αij (12)

s.t. Kº 0, tr(KK)≤B, ∀(i, j)∈S∪D, αij≥0,

where α = [aij] is the vector of dual variables αij’s.
This problem is similar to the optimization problem of
DIFFRAC (Bach & Harchaoui, 2008), in which K and α
can be solved by an iterative manner.

3.2.2. ITERATIVE ALGORITHM

Based on Proposition 1, for fixed αij’s, we can let A =∑
(i,j) αijTi,j − L, and find the optimal K to (12) by a

closed-formed solution as in (8). On the other hand, with a
fixed K, we have the following optimization problem:

maxαij≥0

∑

(i,j)

αij(1− Ti,jKij)− 1
2C

∑

(i,j)

α2
ij , (13)

which is a quadratic programming (QP) problem. It is not
difficult to show that the optimal α∗ of (13) is given by:

α∗ij = C max(0, 1− TijKij). (14)

Let J (K, α) denote the objective function in (12), for the
best Kt at the t-th step, we have

JKt = min
K
J (K, αt−1) ≤ min

K
max

α
J (K, α) = J ∗

where minK and maxα commute due to the strong duality.
On the other hand, we also have

Jαt = max
α
J (Kt, α) ≥ max

α
min

K
J (K, α) = J ∗.

Thus, at each step, we have JKt ≤ J (K∗, α∗) ≤ Jαt .
However, there is no guarantee that Kt and αt would al-
ways make progress toward the optimal solution (K∗,α∗),
i.e., it may occur that Jαt+1 > Jαt or JKt+1 < JKt . This
can be explained by a zero-sum game between two play-
ers, K and α in the saddle-point minimax problem (Taskar
et al., 2006). In each iteration, each player makes its best-
response improvement without considering the effect of the
change from the opponent’s strategy. This usually leads to
fluctuation on J and makes slow progress for convergence.

To alleviate this problem, we follow the similar update
strategy in (Boyd & Xiao, 2005): 1) Compute the closed-
form solution Kt using (8) for a fixed αt−1; 2) Update
αt using αt

ij =
(
αt−1

ij + ηt

(
∂J

∂αij

))
+

; 3) Step 1) and 2)

are iterated until convergence. Note that ηt > 0 is a step-
size parameter. When the ηt is small enough or a univer-
sal choice of ηt = O(1/t) is used, the whole optimization
problem is guaranteed to converge (Boyd & Xiao, 2005).
In our approach, we initialize α0 as 1, the corresponding
K1 is the solution of SimpleNPKL with linear loss. The
whole algorithm is summarized in Algorithm 1.

Algorithm 1 SimpleNPKL with (square) hinge loss.
Input: Pairwise constraint matrix T , parameters C and B;
Output: α and K.

1: Construct graph Laplacian L.
2: Initialize α0

ij .
3: Set A =

∑
(i,j) αt

ijTi,j − L.
4: Compute the closed-form solution of Kt using (8).
5: Update αt

ij using αt
ij =

(
αt−1

ij + ηt

(
∂J

∂αij

))
+

.

6: Repeat Steps 3-5 until convergence.

3.2.3. ESTIMATING THE RANK OF K

According to Proposition 1, we need to locate the posi-
tive spectrums of A, which can be achieved by full eigen-
decomposition of A. However, this can be computationally
prohibitive for large scale data sets. Moreover, the compu-
tation on the negative eigen-vectors of A should be avoided.
The following proposition (Pataki, 1995) bounds the rank
of matrix K in a general SDP setting.

Proposition 2. The rank r of K in the SDP problem:
maxKº0 tr(A0K) with m linear constraints on K, follows

the bound
(

r + 1
2

)
≤ m.

Moreover, from the empirical study in (Alizadeh et al.,
1997), the rank r is usually much smaller than this bound.
This implies that the full decomposition of matrix A0 is
not required. Our formulation (9) has an additional con-
straint: tr(KK) ≤ B. This condition equivalently con-
straints tr(K), which is a common assumption in SDP
problems (Kartik Krishnan, 2006). To show this, we have
B ≥ tr(KK) = 1

N

∑
i Λ2

i N ≥ 1
N (

∑
i Λi · 1)2 = 1

N tr(K),
where the second inequality is resulted from the Cauchy in-
equality. Hence, we have tr(K) ≤ √

BN . Therefore, we
make use of the r estimated from Proposition (2) to esti-
mate the rank of K.

3.2.4. ACTIVE CONSTRAINT SELECTION

We notice that the computation cost of the update proce-
dure as shown in Algorithm 1 heavily depends on the num-
ber of pairwise constraints. However, some less informa-

SimpleNPKL : Simple Non-Parametric Kernel Learning

tive constraints often do not contribute much to the learn-
ing of K, and some noisy constraints may lead to the poor
generalization. Moreover, as discussed in Section 3.2.3,
the rank of K is lower when there are fewer active con-
straints in (10). Therefore, selecting pairwise constraints
for SimpleNPKL may improve both the efficiency and the
generalization of the NPK learning.

To speed up the eigen-decomposition process, instead of
engaging all pairwise constraints, one can sample a sub-
set of Tij’s for SimpleNPKL. Recently, Hoi and Jin (2008)
have proposed a min-max active kernel learning framework
(for acquiring class label information). Here, we consider
another simple active constraint selection scheme. Recall
that a general principle in active learning is to request the
label of the data points that are most uncertain for their
predictions. Following this idea, we adopt the margin crite-
rion to measure the uncertainty of data point. In particular,
given a data point xi, assume that we have the prediction
function in the form: f(xi) =

∑
j yjK(xi,xj), we can use

|yif(xi)| to measure the uncertainty, where yi ∈ {−1,+1}
is the class label of data point xi. As a result, for a data
point xi, we choose the constraints involving point i:

i∗=argmin
i

∣∣∣∣∣
1

li

∑
j

yiyjK(xi,xj)

∣∣∣∣∣=argmin
i

∣∣∣∣∣∣
1

li

∑

j,Tij6=0

TijK(xi,xj)

∣∣∣∣∣∣
,

where we deem Tij as an entry of yy′, and li = |{j :
(i, j) ∈ S ∪ D}, Tij 6= 0}| is used as a normalization of
the margin value. Based on the above formula, we choose a
subset of k data points Sk that are most uncertain according
to the margin measure. Then, we choose all the Tij’s that
involve any point i ∈ Sk as pairwise constraints to form a
new set of constraints. Finally, we run SimpleNPKL based
on this new set of constraints.

4. Implementation Issues
4.1. Building a Sparse Graph Laplacian

The graph Laplacian L in (3) is often sparse, which can be
computed by finding k-nearest neighbors for the purpose of
constructing the similarity matrix S. Specifically, an entry
S(i, j) = 1 iff i and j are among each other’s k-nearest
neighbors; otherwise, it is set to 0. So, there are at most k
nonzero entries on each row of L. Moreover, the number of
pairwise constraints is usually small due to expensive cost
of human labels. Thus, L−∑

(i,j) αijTij is also sparse.

A naive implementation of finding k-nearest neighbors of-
ten takes O(N2 log N) time. When the data set is large,
the construction of L becomes non-trivial. To address this
challenge, we suggest to first construct the cover tree struc-
ture (Beygelzimer et al., 2006), which takes O(N log N)
time. With the aid of this data structure, the batch query
of finding k-nearest neighbors on the whole data set can be
done within O(N) time. Hence, the graph Laplacian L can

be constructed efficiently for large-scale problems.

4.2. Fast Eigendecomposition by Lanczos Algorithm

Among various existing SDP approaches (Boyd & Vanden-
berghe, 2004), the interior-point method is often deemed
as the most efficient one. However, the sparse structure
of the scalar matrix α ◦ T − L is not exploited in such
general algorithms. According to Proposition (1), the time
cost of each iteration in Algorithm 1 is dominated by eigen-
decomposition. Moreover, from Proposition 2, the rank r
of the kernel matrix K is upper bounded by the number
of active constraints. Therefore, we can estimate the rank
for sparse eigen-decomposition, which can be solved effi-
ciently using the so-called Implicitly Restarted Lanczos Al-
gorithm (IRLA)(Lehoucq et al., 1998). Its computational
cost is dominated by matrix-vector multiplication. When
the input matrix A is sparse, IRLA can be very efficient.

5. Discussions with Related Work
Our work is related to some studies of distance metric
learning (DML) (Weinberger & Saul, 2008). Similarly,
SimpleNPKL also learns an effective data representation
from pairwise constraints. However, the similarity between
points xi and xj defined in DML is in some parametric
form of x>i Mxj where Mº 0, the dimension of M is d×d
and d is the input dimension. Due to the iterative manner,
the update procedure in (Weinberger & Saul, 2008) is anal-
ogous to Algorithm 1. In contrast to Weinberger and Saul
(2008), the update of K in SimpleNPKL can be computed
in closed-form with (8), while Weinberger and Saul (2008)
formulated DML as an unconstrained optimization prob-
lem, which first used gradient descent to update M in the
primal, and then adopted a projection method to enforce M
satisfying the psd constraint. Moreover, the projection of
M is expensive when the input dimension d is high. Also,
the procedure in (Weinberger & Saul, 2008) cannot exploit
the sparse structure of graph Laplacian for further speedup.

Unlike the non-convex gradient descent procedure used
in the low-rank SDP (Kulis et al., 2007), SimpleNPKL
uses convex optimization procedures and thus global opti-
mum is guaranteed. Moreover, SimpleNPKL employs sev-
eral different loss functions. In particular, the update in
SimpleNPKL with linear loss can be computed in closed-
form with (8), which can be obtained using sparse eigen-
decomposition without any iterative process.

6. Experiments
6.1. Experimental Setup

We examine both efficacy and efficiency of the proposed
SimpleNPKL for clustering. As shown in (Hoi et al., 2007),

SimpleNPKL : Simple Non-Parametric Kernel Learning

the Non-Parametric Kernel Learning (NPKL) outperforms
other kernel learning methods. For simplicity, we only
compare our proposed SimpleNPKL with NPKL. The re-
sults of k-means clustering is also reported as the baseline
method. The abbreviations of different approaches are de-
scribed as follows: 1) k-means: k-means clustering; 2)
SimpleNPKL+LL: The proposed SimpleNPKL with lin-
ear loss defined in (6); 3) SimpleNPKL+SHL: The pro-
posed SimpleNPKL with squared hinge loss defined in
(9); 4) NPKL+LL: NPKL in (4) using linear loss; 5)
NPKL+HL: NPKL in (4) using hinge loss. To construct
the graph Laplacian matrix L in NPKL, we adopt the cover
tree data structure2. The sparse eigen-decomposition used
in SimpleNPKL is implemented by the popular Arpack
toolkit3. We also adopt the standard SDP solver, SeDuMi4

for the NPKL. The pair-wise constraint is assigned for ran-
domly generated pairs of points according to their labels.
The number of constraints is controlled by the resulted
amount of connected components as defined in (Xing et al.,
2002). Note that typically the larger the number of con-
straints, the smaller the number of connected components.

Several parameters are involved in NPKL and Sim-
pleNPKL. Their notation and settings are given as follows:
1) k : The number of nearest neighbors for constructing
the graph Laplacian matrix L, we set it to 5 for small data
sets in Table 1, and 50 for Adult database in Table 3; 2)
r : The ratio of the number of connected components com-
pared with the data set size N . In our experiments, we
set r = 70%N which follows the setting of (Hoi et al.,
2007); 3) B : The parameter that controls the capacity of
the learned kernel in (5). We fix B = N for the adult
data sets and fix B = 1 for the data sets in Table (1) and; 4)
C : The regularization parameter for the loss term in NPKL
and SimpleNPKL. We fix C = 1 for the adult data sets and
several constant values in the range (0, 1] for the data sets
in Table (1). In our experiments, all clustering results are
obtained by averaging the results from 20 different repeti-
tions. All experiments were conducted on a Windows PC
with 3.4GHz 32bit CPU and 3GB RAM.

6.2. Comparisons on Benchmark Data Sets

To evaluate the clustering performance, we adopt
the clustering accuracy used in (Hoi et al., 2007):
ClusterAccuracy =

∑
i>j

1{ci=cj}=1{ĉi=ĉj}
0.5n(n−1) .This metric

measures the percentage of data pairs that are correctly
clustered together. We compare the proposed SimpleNPKL
with NPKL on the nine UCI repository data sets5 (summa-
rized in Table 1), which are also used in (Hoi et al., 2007).

2http://hunch.net/ jl/projects/cover tree/cover tree.html
3http://www.caam.rice.edu/software/ARPACK/
4http://sedumi.ie.lehigh.edu/
5The data sets are available at: http://archive.ics.uci.edu/ml/.

Table 1. The statistics of the data sets used in our experiments.

Data Set #Classes #Instances #Features

Chessboard 2 100 2
Glass 6 214 9
Heart 2 270 13
Iris 3 150 4
Protein 6 116 20
Sonar 2 208 60
Soybean 4 47 35
Wine 3 178 12
Double-Spiral 2 100 3

Table 3. The statistics of the Adult database.

Data Set† a1a a2a a3a a4a a5a
#Instances 1,605 2,265 3,185 4,781 6,414

†: #Classes=2, #Features=123

 1420

 1430

 1440

 1450

 1460

 1470

 1480

 2 4 6 8 10 12 14 16 18 20

O
bj

ec
tiv

e
V

al
ue

#Iterations

 1860

 1880

 1900

 1920

 1940

 1960

 1980

 2000

 2 4 6 8 10 12 14 16 18 20

O
bj

ec
tiv

e
V

al
ue

#Iterations

(a) a1a (b) a2a

Figure 1. Convergence of SimpleNPKL using square hinge loss
on a1a and a2a. The parameters are C = 1, B = N .

The clustering accuracy and CPU time (the time for clus-
tering is excluded) of different NPKL methods are reported
in Table 2. As can be seen from Table 2, SimpleNPKL us-
ing square hinge loss produces very competitive clustering
performance to the results of NPKL with hinge loss (re-
ported in (Hoi et al., 2007)). All NPKL methods outper-
form k-means clustering. SimpleNPKL with square hinge
loss and NPKL with hinge loss often perform better than
the NPK learning methods using linear loss. While the
CPU time for SimpleNPKL and NPKL using linear loss are
usually lower than that of their counterparts with (square)
hinge loss.Regarding the efficiency, our SimpleNPKL us-
ing squared hinge loss is consistently 10 times faster than
NPKL using a standard SDP solver. For the case of linear
loss, SimpleNPKL can be even 100 times faster.

6.3. Scalability Study on Adult Data Set

In this section, we evaluate our SimpleNPKL on another
larger dataset to examine the efficiency and scalability
of SimpleNKPL. We adopt the Adult database, which is
available at the website of LibSVM6. The database has

6http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.

SimpleNPKL : Simple Non-Parametric Kernel Learning

Table 2. Clustering accuracy and CPU time of SimpleNPKL, compared with the results of NPKL in (4) using a standard SDP solver, and
k-means. (The best results are in bold and the last “Speedup” column is listed only for the linear loss case.)

Data Set
Accuracy(%) CPU Time(s)

k-means NPKL SimpleNPKL NPKL SimpleNPKL Speedup
LL HL LL SHL LL HL LL SHL LL

Iris 84.5±6.5 96.0± 6.1 97.4± 0.0 97.4± 0.0 97.4± 0.0 3.39 29.73 0.07 3.35 48.4
Sonar 50.2±0.1 76.8± 0.3 64.5± 6.8 70.2± 10 78.0± 0.0 10.62 30.30 0.10 2.78 106.2
Chboard 49.8±0.2 61.1± 6.9 56.3± 6.1 58.1± 7.2 58.8± 0.8 2.44 4.87 0.05 0.12 48.8
Glass 69.7±1.9 74.4± 3.7 79.1± 4.9 74.3± 2.4 73.5± 2.9 9.25 32.09 0.11 2.95 84.1
Heart 51.5±0.1 86.0± 0.3 86.2± 0.0 86.8± 0.0 89.4± 0.1 22.33 65.15 0.17 12.87 131.4
Protein 76.2±2.0 78.2± 3.2 86.4± 3.8 81.8± 1.8 75.9± 2.0 1.96 7.58 0.05 0.48 39.2
Soybean 82.1±6.1 90.2± 7.7 100.0± 0.0 95.3± 5.1 95.4± 4.9 0.95 2.52 0.01 0.27 95.0
Wine 71.2±1.2 78.1± 1.7 85.5± 5.3 83.7± 4.8 85.0± 2.6 6.07 28.85 0.08 4.41 75.9
Spriral 50.1±0.6 86.5± 0.0 94.1± 0.0 92.2± 0.0 94.1± 0.0 2.30 4.40 0.05 1.81 46.0

Table 4. Clustering accuracy and CPU time of SimpleNPKL on
Adult data set. (The best results are in bold.)

Data Accuracy(%) CPU Time(s)

Set #Cons. k-means SimpleNPKL SimpleNPKL
LL SHL LL SHL

a1a 4,104 56.4±3.5 61.4±1.7 60.7±2.7 8.5 322.9
a2a 5,443 57.3±3.6 61.1±1.3 61.4±1.2 15.3 637.2
a3a 7,773 57.8±3.5 61.1±1.7 61.5±2.0 28.8 1,160.8
a4a 12,465 58.8±1.6 61.6±1.3 61.4±1.5 66.3 2,341.3
a5a 16,161 57.7±3.1 60.8±3.1 61.9±1.7 79.6 3,692.1

a series of partitions: a1a, a2a, · · · , a5a (see Table 3).
Since the training time complexity of NPKL using stan-
dard SDP solvers is O(N6.5), which cannot be applied on
this database for comparison. We only report the results of
k-means clustering as the baseline comparison.

Table 4 shows the clustering performance and CPU time
cost (the time for clustering is excluded) of SimpleNPKL
on the Adult database. From the results, we have several
observations. First of all, we can see that by learning better
kernels from pairwise constraints, both SimpleNPKL algo-
rithms produce better clustering performance than that of
simple k-means clustering. Further, comparing the two al-
gorithms themselves, in terms of clustering accuracy, they
perform comparably, in which SimpleNPKL+SHL outper-
forms slightly. However, in terms of CPU time cost, Sim-
pleNPKL+LL with linear loss is considerably lower than
SimpleNPKL+SHL using square hinge loss.

We also plot the objective value J (K,α) of SimpleNPKL
on two data sets a1a and a2a in Figure 1. We observe
that SimpleNPKL with square hinge loss often converges
within 10 iterations. Similar results can be observed from
other data sets.

6.4. Comparisons on Constraint Selection

In this section, we study the active constraint scheme for
SimpleNPKL. Figure 2 shows the clustering performance
of active constraint selection using the simple approach
described in Section 3.2.4. Several observations can be
drawn: 1) Comparing with the original approach using
all constraints, the computation time is reduced by choos-
ing a small amount of pairwise constraints. This is be-
cause the Lanczos algorithm can perform the sparse eigen-
decomposition faster on a matrix with fewer nonzero en-
tries; 2) Though the active constraint selection costs more
time than random selection, the former usually achieves
better clustering performance than the latter with the same
amount of constraints; 3) Using the proposed active con-
straint selection method to choose about 1/2 of the pairwise
constraints for SimpleNPKL can often produce compara-
ble or even better clustering performance than that using
all constraints.

7. Conclusion
In this paper, we investigate fast algorithms for the NPK
learning from pairwise constraints. We demonstrate that
our proposed SimpleNPKL using linear loss for the pair-
wise constraints enjoys a closed-form solution, which can
be computed efficiently by sparse eigen-decomposition,
such as Lanczos algorithm. Moreover, our SimpleNPKL
using square hinge loss can be transformed into a saddle-
point minimax optimization problem, which is solved by
an efficient iterative procedure also only involving sparse
eigen-decomposition. In contrast to the previous SDP so-
lution, empirical results show that our approach achieved
the same accuracy, but is significantly more efficient and
scalable for large-scale data sets. We also explore an
active constraint selection scheme to reduce the pairwise
constraints in SimpleNPKL. Both computational efficiency
and clustering performance could be further improved. In

SimpleNPKL : Simple Non-Parametric Kernel Learning

the future, we will extend our algorithm for other SDP re-
lated machine learning problems.

 59

 59.5

 60

 60.5

 61

 61.5

 62

 10 15 20 25 30 35

C
lu

st
er

in
g

A
cc

ur
ac

y
(%

)

#Constraints(K)

Active Selection
Random Selection

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35
C

P
U

 T
im

e
(S

)
#Constraints(K)

Active Selection
Random Selection

(a) Clustering Accuracy (b) CPU Time

Figure 2. Comparisons of clustering accuracy and CPU time by
active constraint selection and random selection (constraint selec-
tion time is included) on a1a with parameters: B = N, C =
1, k = 20, r = 0.6. Using all 3.9K constraints directly, the ac-
curacy is 60.8± 2.9 and the CPU time is 81.6 seconds.

Acknowledgments
This research was in part supported by Singapore MOE
AcRF Tier-1 Research Grant (RG15/08) and Research
Grant (RG67/07).

References
Alizadeh, F., Haeberly, J.-P. A., & Overton, M. L. (1997).

Complementarity and nondegeneracy in semidefinite
programming. Math. Program., 77, 111–128.

Bach, F., & Harchaoui, Z. (2008). Diffrac: a discriminative
and flexible framework for clustering. Neural Informa-
tion Processing Systems (pp. 49–56).

Beygelzimer, A., Kakade, S., & Langford, J. (2006). Cover
trees for nearest neighbor. International Conference on
Machine Learning (pp. 97–104).

Boyd, S., & Vandenberghe, L. (2004). Convex optimiza-
tion. Cambridge University Press.

Boyd, S., & Xiao, L. (2005). Least-squaures covariance
matrix adjustment. SIAM Journal of Matrix Anal. Appl.,
27, 532–546.

Chapelle, O., Weston, J., & Schölkopf, B. (2002). Cluster
kernels for semi-supervised learning. Neural Informa-
tion Processing Systems (pp. 585–592).

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola,
J. S. (2001). On kernel-target alignment. Neural Infor-
mation Processing Systems (pp. 367–373).

Hoi, S. C. H., & Jin, R. (2008). Active kernel learning. In-
ternational Conference on Machine Learning (pp. 400–
407).

Hoi, S. C. H., Jin, R., & Lyu, M. R. (2007). Learning non-
parametric kernel matrices from pairwise constraints. In-
ternational Conference on Machine Learning (pp. 361–
368).

Hoi, S. C. H., Lyu, M. R., & Chang, E. Y. (2006). Learning
the unified kernel machines for classification. Knowl-
edge Discovery and Data Mining (pp. 187–196).

Kartik Krishnan, J. E. M. (2006). A unifying framework for
several cutting plane methods for semidefinite program-
ming. Optimization Methods and Software, 21, 57–74.

Kondor, R. I., & Lafferty, J. D. (2002). Diffusion kernels
on graphs and other discrete input spaces. International
Conference on Machine Learning (pp. 315–322).

Kulis, B., Surendran, A., & Platt, J. (2007). Fast low-rank
semidefinite programming for embedding and cluster-
ing. International Conference on Artificial Intelligence
and Statistics.

Kulis, B., Sustik, M., & Dhillon, I. S. (2006). Learning
low-rank kernel matrices. International Conference on
Machine Learning (pp. 505–512).

Kwok, J., & Tsang, I. (2003). Learning with idealized
kernels. International Conference on Machine Learning
(pp. 400–407).

Lanckriet, G. R. G., Cristianini, N., Bartlett, P. L., Ghaoui,
L. E., & Jordan, M. I. (2004). Learning the kernel ma-
trix with semidefinite programming. Journal of Machine
Learning Research, 5, 27–72.

Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998).
Arpack users guide: Solution of large scale eigen-
value problems with implicitly restarted arnoldi methods
(Technical Report).

Pataki, G. (1995). On the rank of extreme matrices in
semidefinite programs and the multiplicity of optimal
eigenvalues (Technical Report MSRR-604). Carnegie
Mellon University.

Sindhwani, V., Niyogi, P., & Belkin, M. (2005). Beyond the
point cloud: from transductive to semi-supervised learn-
ing. International Conference on Machine Learning (pp.
824–831).

Taskar, B., Lacoste-Julien, S., & Jordan, M. I. (2006).
Structured prediction, dual extragradient and bregman
projections. Journal of Machine Learning Research, 7,
1627–1653.

Weinberger, K. Q., & Saul, L. K. (2008). Fast solvers
and efficient implementations for distance metric learn-
ing. International Conference on Machine Learning (pp.
1160–1167).

Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2002).
Distance metric learning with application to clustering
with side-information. Neural Information Processing
Systems (pp.505–512).

Zhang, T., & Ando, R. K. (2005). Analysis of spectral
kernel design based semi-supervised learning. Neural
Information Processing Systems.

Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-
supervised learning using gaussian fields and harmonic
functions. International Conference on Machine Learn-
ing (pp. 912–919).

Zhu, X., Kandola, J. S., Ghahramani, Z., & Lafferty, J. D.
(2004). Nonparametric transforms of graph kernels for
semi-supervised learning. Neural Information Process-
ing Systems.

