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Abstract

In this work, we extend the ellipsoid method,
which was originally designed for convex opti-
mization, for online learning. The key idea is
to approximate by an ellipsoid the classification
hypotheses that are consistent with all the train-
ing examples received so far. This is in con-
trast to most online learning algorithms where
only a single classifier is maintained at each iter-
ation. Efficient algorithms are presented for up-
dating both the centroid and the positive definite
matrix of ellipsoid given a misclassified exam-
ple. In addition to the classical ellipsoid method,
an improved version for online learning is also
presented. Mistake bounds for both ellipsoid
methods are derived. Evaluation with the USPS
dataset and three UCI data-sets shows encourag-
ing results when comparing the proposed online
learning algorithm to two state-of-the-art online
learners.

1. Introduction

Online learning aims to learn statistical models from se-
quentially received training examples. Compared to batch
model learing, one of the key requirement for online learn-
ing is that the statistical model has to be updated efficiently
given a new training example. In the past decades, a large
number of online learning algorithms have been proposed
and studied (Li & Long, 2002; Gentile, 2002; Crammer
& Singer, 2003; Crammer et al., 2006; Rosenblatt, 1958;
Kivinen & M.K.Warmuth, 1997; Littlestone, 1989; Gen-
tile & M.Warmuth, 1998; Kivinen et al., 2002). Most
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of them are additive, i.e., given a misclassified example
(xi, yi), the classification model, denoted by a weight vec-
tor w, is usually updated by shifting along the direction of
yixi, i.e.,w + αiyixi → w whereαi weights the misclas-
sified example. (Grove et al., 2001) generalized the ad-
ditive approaches by an quasi-additive framework which
unifies a number of seemingly different online learning al-
gorithms (e.g., Perception and Winnow). Several strategies
were proposed to extend online learning algorithms, which
were originally proposed for binary classification, to multi-
label learning (Fink et al., 2006; Crammer & Singer, 2003;
Crammer et al., 2006). (Herbster et al., 2005) extended
graph-based approaches for online learning, and (Shalev-
Shwartz & Singer, 2006; Amit et al., 2007) exploited the
dual formation of optimization for online learning.

One common feature shared by most online learning algo-
rithms is that they only maintain a single solution for the
classification model at any trials. We discuss the short-
coming of this feature from two different respective: (I)
Bayesian viewpoint. By only maintaining a single solu-
tion, these online learning approaches are similar to the
point estimation in statistics. This is insufficient from the
Bayesian viewpoint, which requires computing not only the
most likely solution but also the distribution of all possible
solutions. (II)Information viewpoint. These online learn-
ing approaches essentially summarize all the information
of training data into a single solution, and therefore is inef-
ficient in exploiting the training data.

To address the above problems, we propose ellipsoid meth-
ods for online learning. Instead of only maintaining a sin-
gle solution, we follow the Bayesian spirit and approximate
by an ellipsoid all the classification models that are consis-
tent with the training examples received so far. Since each
ellipsoid is described by two quantities, i.e., the centroid
of ellipsoid and the positive definite matrix that decides the
shape of ellipsoid, the ellipsoid methods are able to main-
tain more information of training data than most existing
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online learning algorithms.

2. Online Learning by Ellipsoid Methods

We first introduce the classical ellipsoid method for convex
programming, followed by two variants of ellipsoid method
for online learning.

2.1. Introduction to Ellipsoid Method for Convex
Programming

Ellipsoid method (Shor, 1977) is a first order method for
convex programming. Given an optimization problem
x∗ = arg min{f(x) : x ∈ G} wheref(x) is a convex
objective function andG ⊂ R

d is a convex solid, the el-
lipsoid method starts with a large ellipsoidE1 ⊇ G. Let
Ek = {x|(x − xk)>P−1

k (x − xk) ≤ 1} be the ellipsoid
available at thek iteration that includes the optimal solution
x∗. Herexk ∈ R

d is the center ofEk, andPk ∈ Sd×d
++ is

a positive definite matrix that defines the shape ofEk. The
key question of the ellipsoid method is how to update the
ellipsoid efficiently. To this end, it computes the gradient
of f(x) at xk, denoted byhk, and constructs a half-plane
Pk = {x|h>

k (x − xk) ≤ 0}. Using the convexity off(x),
it is easy to showx∗ ∈ Pk ∩ Ek. Hence, the new ellipsoid
Ek+1 = {x|(x−xk+1)P

−1
k+1(x−xk+1) ≤ 1} is constructed

to cover the interactionPk ∩ Ek, wherexk+1 andPk+1 are
computed as follows

xk+1 = xk −
Pkhk

(d + 1)
√

h>
k Pkhk

,

Pk+1 =
d2

d2 − 1

(
Pk −

2Pkhkh>
k Pk

(d + 1)h>
k Pkhk

)
(1)

2.2. The Classical Ellipsoid Method for Online
Learning (CELLIP)

In this section, we focus on binary classification problems,
and assume that there exists anγ-margin classifieru ∈ R

d

that classifies any instance(x, y) with a marginγ, i.e.,
yu>x ≥ γ, wherex ∈ R

d andy ∈ {−1,+1}. For the con-
venience of discussion, we assume|u|2 = 1 and|x|2 ≤ 1
for any instance. The extension of the ellipsoid method
to the inseparable case and multiple-label learning will be
discussed later.

To exploit the ellipsoid method, we convert an online learn-
ing problem into a feasibility problem, namely how to effi-
ciently find a solution that is close to theγ-margin classifier
u given the sequentially received training examples. In par-
ticular, at each trialt, we consider constructing the setAt

that is defined as follows:

At = {z ∈ R
d|yix

>
i z ≥ aγ, i = 1, . . . , t} (2)

According to the above definition,At includes all the clas-
sifiersz that are able to classify with marginaγ the training
examples received in the firstt iterations. Here0 ≤ a ≤ 1
is predefined constant. The following lemma shows an im-
portant property ofAt.

Lemma 1. LetB = {z||z−u|2 ≤ (1− a)γ} denote a ball
centering atu with radiusr = (1 − a)γ, whereu ∈ R

d

is a γ-margin classifier for all labeled instances. We have
At ⊇ B.

Proof. First, we haveu ∈ At becauseyix
>
i u ≥ γ ≥

aγ, i = 1, . . . , t. Hence, to showAt ⊇ B, it is sufficient to
show the distance betweenu and hyper-planeytx

>
t z = aγ

is upper bounded by(1 − a)γ, which can be verified eas-
ily.

Lemma 1 indicates that if there exists anγ-margin clas-
sifier u, the volume ofAt, denoted byvol(At), is lower
bounded byvol(B), which becomes the key to the proof of
mistake bound. To efficiently representAt, we construct
an ellipsoid

Et = {z ∈ R
d|(z − wt)

>P−1
t (z − wt) ≤ 1} (3)

such thatEt ⊇ At. SinceEt ⊇ At ⊇ B, our goal is to
efficiently reducevol(Et). Below we describe how to effi-
ciently update the ellipsoidEt given a misclassified exam-
ple.

Let xt ∈ R
d be an example that is misclassified bywt, i.e.,

ytw
>
t xi ≤ 0 whereyt ∈ {−1,+1} is the binary class label

assigned toxt. Let Ct = {z ∈ R
d|ytx

>
t z ≥ aγ} denote

the half plane generated by the misclassified example. Ev-
idently, we haveu ∈ Ct ∩ Et sinceytu

>xt ≥ γ. For the
convenience of discussion, we rewrite the setCt as follows

Ct = {z ∈ R
d|αt − g>t (z − wt) ≤ 0} (4)

whereαt andgt are defined as

αt =
aγ − ytw

>
t xt√

x>
t Ptxt

, gt =
ytxt√
x>

t Ptxt

(5)

Note thatαt ≥ 0 sinceytw
>
t xt ≤ 0 andg>t Ptgt = 1. The

following theorem shows a family of updating equations
for wt andPt that ensuresEt+1 ⊇ Et ∩ Ct.
Theorem 1. Given a misclassified instance(xt, yt), the
following updating equations forwt+1 andPt+1 will guar-
antee that the resulting new ellipsoidEt+1 covers the inter-
sectionEt ∩ Ct:

wt+1 = wt + (αt + ρ)Ptgt (6)

Pt+1 = µ2Pt + ([1− αt − ρ]2 − µ2)Ptgtg
>
t Pt (7)



Online Learning by Ellipsoid Method

Algorithm 1 The classical ellipsoid method (CELLIP) for
online learning
1: INPUT:

• γ ≥ 0: the desired classification margin
• a ∈ [0, 1]: a tradeoff parameter

2: INITIALIZE: w1 = 0 andP1 = (1 + (1− a)γ)Id

3: for t = 1, 2, . . . , T do
4: receive an instancext

5: predict its class label:̂yt = sign(w>
t xt)

6: receive correct class labelyt

7: if yt 6= ŷt then
8: computewt+1 andPt+1 using (10) and (11)
9: else

10: wt+1 ← wt andPt+1 ← Pt

11: end if
12: end for

if parameterρ > 0 and µ > 0 satisfy the following con-
straint

1− α2
t

µ2
+

ρ2

(1− αt − ρ)2
≤ 1 (8)

The proof can be found in the Appendix A of the supple-
mentary materials. The following corollary shows the vol-
ume reduction after the update.

Corollary 2. Using the updating equations in (6) and (7),
we have

vol(Et+1)

vol(Et)
= µd−1(1− αt − ρ) (9)

For the convenience of discussion, we chooseρ = 0 and
µ =

√
1− α2

t . The corresponding updating equations for
wt andPt become

wt+1 = wt + αtPtgt (10)

Pt+1 = (1− α2
t )Pt − 2αt(1− α)Ptgtg

>
t Pt (11)

The volume reduction under the above updating equation is

vol(Et+1)

vol(Et)
= (1− α2

t )
(d−1)/2(1− αt) (12)

Algorithm 1 summarizes the classical ellipsoid method for
online learning. Note that in Algorithm 1, we initialize
P1 = (1 + (1 − a)γ)I to ensureB = {z||z − u|2 ≤
(1 − a)γ} ⊆ E1 . We refer to it asClassical Ellipsoid
Method for Online Learning, or CELLIP for short. The
following theorem shows the mistake bound for CELLIP.

Theorem 3. Let D = {(xi, yi), i = 1, 2, . . . , T} be the
set of training examples. Assume all the examples are nor-
malized, i.e.,‖xi‖2 ≤ 1. We assume that there exists an
classifieru ∈ R

d with ‖u‖22 = 1 that is able to classified

all the training examples inD with a margin0 ≤ γ ≤ 1,
i.e., yiu

>xi ≥ γ for any (xi, yi) in D. We then have the
mistake made by the classical ellipsoid method when learn-
ing fromD (Algorithm 1), denoted byM , upper bounded
by

M ≤ 2 log(1− a) + 2 log γ − log(1 + (1− a)γ)

log (1− a2γ2/(1 + (1− a)γ)2)
(13)

The proof of the above theorem can be found in Appendix
B of the supplementary materials.

2.3. Improved Ellipsoid Method for Online Learning

One major problem with the above classical ellipsoid
method for online learning is that it is theoretically inca-
pable of handling the inseparable case. In this subsection,
we present an improved ellipsoid method for online learn-
ing that is able to address the inseparable case.

Clearly, for the inseparable cases, we have to drop the idea
of casting online learning as a feasibility problem since no
classifier can classify all the instances correctly. Instead,
we treatwt andPt, i.e., the center and the positive defi-
nite matrix of ellipsoid, as a summarization of information
from the received training examples. Sincewt+1 is a linear
combination of the training examples received in the firstt
trials, it can be viewed as a kind of first order statistics for
training examples. To understand the relationship between
Pt and received training examples, we derive the updating
equation forP−1

t using (11)

P−1
t+1 =

1

1− α2
t

P−1
t +

2αt

(1− αt)2(1− αt)
gtg

>
t

The above expression follows directly from the matrix in-
verse lemma. Using the above expression, it is not difficult
to show

P−1
t+1 = θ0P

−1
1 +

t∑

i=1

θigig
>
i ∝ θ0P1 +

t∑

i=1

ξixix
>
i (14)

whereθi andξi are functions of{αj}tj=i. The expression
in (14) indicates thatP−1

t can be viewed as a weighted
covariance matrix that stores the second order information
of training examples. The above observation motivates the
development of an improved ellipsoid method for online
learning.

We keep the updating equation (10) forwt, and modify the
updating equation forPt as follows

Pt+1 =
1

1− ct
(Pt − ctPtgtg

>
t Pt) (15)

wherect ∈ [0, 1]. We setct = cbt−1 where0 ≤ c, b ≤ 1
are two constants that are set manually. The exponential
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Algorithm 2 The improved ellipsoid method (IELLIP) for
online learning

INPUT:
• γ ≥ 0: the desired classification margin
• 0 ≤ c, b ≤ 1: parameters controlling the memory

of online learning
INITIALIZE: w1 = 0 andP1 = Id

for t = 1, 2, . . . , T do
receive an instancext

predict its class label:̂yt = sign(w>
t xt)

receive correct class labelyt

if yt 6= ŷt then
computewt+1 andPt+1 using (10) and (15)

else
wt+1 ← wt andPt+1 ← Pt

end if
end for

form for ct is important for the proof of mistake bound as
revealed in the supplementary materials. It is not difficult
to verify the inductive relationship forP−1

t , i.e.,

P−1
t+1 = (1− ct)P

−1
t + ctgtg

>
t

As indicated above,P−1
t+1 can be viewed as a mixture of ma-

tricesP−1
t andgtg

>
t . Givenct = cbt−1, it is not difficult to

see thatPt+1 is a weighted sum ofxixi where the weight
for xixi decays exponentially int. By varying constantc
andb, we are able to adjust “memory” ofPt. In particu-
lar, the smallerb is, the shorter the memory is. The effect
of b will be further revealed in our empirical study. Algo-
rithm 2 summarizes the improved ellipsoid method for on-
line learning. We refer to it asImproved Ellipsoid Method
for Online Learning, or IELLIP for short.

Before we present the mistake bound for the improved el-
lipsoid method, like many online learning algorithms, we
introduce the following quantity for measuring the progress
of online learning

qt = (u− wt)
>P−1

t (u− wt) (16)

whereu is some optimal classifier. Note that compared to
the conventional approaches for analysis of online learning
algorithms, we introduceP−1

t in (20) for measuring the
distance betweenu andwt. The following lemma shows
an important inductive property forqt, which is key to the
proof of mistake bound

Lemma 2.

qt+1 ≤ (1− ct)qt + γ2
t + ct(u

>gt)
2 − 2γtu

>gt(17)

whereγt = γ/
√

xtPtxt.

It is straightforward to verify the result in Lemma 2. We
now state the mistake bound for the improved ellipsoid for
online learning.

Theorem 4. LetD = {(xi, yi), i = 1, 2, . . . , T} be the set
of training examples. Letu be the optimal classifier with
norm |u|22 = 1. Assume all the examples are normalized,
i.e., ‖xi‖2 ≤ 1. If parameterc, and b satisfy conditions
c+b < 1, we have the number of mistakes made by running
Algorithm 2 upper bounded by the following expression

M ≤ 1

γ2
+

2

γ

1− b

1− b− c

T∑

i=1

li(u) (18)

whereli(u) = max(0, γ − u>xi).

The proof of Theorem 4 can be found in Appendix C of the
supplementary materials. Note that whenc = 0, the mis-
take bound is reduced to1/γ2 +

∑T
i=1 li(u)/γ, a common

mistake bound for online learning.

2.4. Ellipsoid Methods for Multiple-Label Online
Learning

We now follow the framework by Crammer et al. (Cram-
mer & Singer, 2002) and extend the ellipsoid method to
multi-label learning. LetK be the total number of classes.
We denote bywi ∈ R

d, i = 1, . . . ,K as the weight vec-
tors for theK classes. Given an examplex assigned to
a subset of classesY , we define the classification margin
with respect to a classifierw asη(W ;x, Y ) = min

z∈Y
w>

z x−
max
z/∈Y

w>
z x. We then define the loss functionl(W ;x, Y ) as

l(W ;x, Y ) = max(0, γ−η(W ;x, Y )) whereγ is a prede-
fined margin.

To extend the ellipsoid method for multi-label learning, we
construct vectorv = (w1, . . . , wK). For a misclassified
example(xi, Yi), i.e., η(W ;xi, Yi) ≤ 0, we define two
class indicesai andbi as

ai = max
y/∈Yi

w>
y xi, bi = min

y∈Yi

w>
y xi

We the construct a big vectorzi ∈ R
K×d that includes

information fromxi andY , i.e.,

zj
i =





xk
i j = (bi − 1)d + k
−xk

i j = (ai − 1)d + k
0 otherwise

Similar to the previous discussion, we construct a half
planePt for each misclassified examplezt

Pt = {v ∈ R
K×d|αt − (v − vt)

>gt ≤ 0}
whereαt andgt are identical the expressions in (5) except
thatytxt is replaced byzt. Using the definition of classi-
fier v, misclassified examplezi, αt andgt, we can directly
extend the two ellipsoid methods described in Algorithm 1
and 2 to multi-label learning. Similar mistake bounds can
be derived for multi-label learning. Since the proof is liter-
ally a word-by-word copy of the proof for binary classifi-
cation, we omit them completely.
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3. Evaluation

We focus on the evaluation of the improved ellipsoid
method for online learning. This is because the classical
ellipsoid method for online learning is theoretically unable
to handle the inseparable cases as pointed out before. This
is further confirmed by our empirical study, which showed
the classical ellipsoid method is usually outperformed by
the improved version. We thus omit the discussion for the
classical ellipsoid method due to the space limitation.

For IELLIP, we initializeP1 to be an identity matrix at the
scale of0.1; the vectorw is randomly initialized around the
origin. We setb = 0.3 for all experiments except for the
experiment that is devoted to examining the role ofb in the
proposed online learning algorithm. Note that since only
the relatively scale betweenP1 andc is useful, by setting
the scale ofP , we don’t have to setc in the implementation
of IELLIP.

3.1. Datasets

The experiments are conducted on the USPS data-
set of handwritten digits and three UCI multiclass
data-sets (http://archive.ics.uci.edu/ml/
data-sets.html ). The data information is summa-
rized in Table 1. For the UCI Isolet and Letter datasets, we
select80% from each class to form the training data-set,
and use the rest as testing data. For the USPS and UCI
Shuttle dataset, we adopt the splitting between training and
testing as provided in the original data packages.

3.2. Baseline Methods and Evaluation Metrics

To demonstrate the efficiency and efficacy of IELLIP
for multi-class learning, we compare it to two baseline
algorithms. The first baseline is theOnline Passive-
Aggressive algorithm (PA)(Crammer et al., 2006). We
implement the PA algorithm, by using the aggressiveness
parameter corresponding to the best performance evalu-
ated in (Crammer et al., 2006). As indicated in (Cram-
mer, 2004), PA in general performs better than the gener-
alized Perceptron algorithms because of the aggressiveness
(i.e. large margins). The second baseline algorithm is the
Margin Infused Relaxed Algorithm (MIRA)(Crammer &
Singer, 2003), an online learning algorithm for multiclass
large margin classifiers with good generalization perfor-
mance. We use in our experiment the implementation of
MIRA downloaded fromhttp://www.cis.upenn.
edu/ ˜ crammer/code-index.html . For fair com-
parison, all methods are restricted to use linear classifiers.
To this end, for MIRA, we set the polynomial degree to
be1. The margin parameter was set to be0.1 for all algo-
rithms and for all datasets. Test error (Crammer & Singer,
2003) is used as the main evaluation metric in our study.

It is defined as the number of prediction mistakes made on
a given sequence of examples normalized by the length of
the sequence. The traditional concept of “epoch” is adopted
as an ordering (random permutations) of all the examples
in the training set. For example, in our experiments of
three epoches, we cycle through all the training examples
three times, with a different random permutation for each
epoch, before calling the online learner. We report the re-
sults averaged over three random permutations for all the
four datasets.

3.3. Results of Multiclass Classification

Fig 1 shows the classification results of the three online
learning algorithms for datasets USPS, UCI Letter, UCI
Isolet, and UCI Shuttle: the first row shows the test errors,
and the second row shows the number of updates; the three
columns, from left to right, correspond to the results of the
first, second, and third epoch, respectively.

First, as indicated in the first row of Fig 1, we observe that
the test error of IELLIP is either comparable to or better
than the best performance between PA and MIRA. The sec-
ond row of Fig 1 reveals that in general, a smaller number
of updates are required by IELLIP to achieve a test error
that is either comparable to or better than that of PA and
MIRA. For instance, for dataset UCI Shuttle, we found
that both PA and IEELIP achieve similar test errors across
three epoches. But, the number of updates made by IEL-
LIP is significantly smaller than that of PA. One excep-
tion is dataset UCI Letter, in which the number of updates
made by IELLIP and PA are significantly larger than that
of MIRA for the second and third epoch. However, it is
also important to note that the test error of IELLIP and PA
are significantly lower than that of MIRA for both epoches.
When we compare IELLIP with PA on dataset UCI Let-
ter, we still observe a noticeable reduction in the number
of updates by IELLIP. Therefore, we conclude that the pro-
posed online learning algorithm is more efficient than the
two baselines. Furthermore, since the number of updates
is closely related to the number of examples used to con-
struct the classifier, the above analysis indicates that the
proposed approach tends to favor a sparse solution than PA
and MIRA, a desirable property to have.

3.4. The Role of Parameterb: Tradeoff Between
Accuracy and Sparseness

As indicated in the previous analysis, parameterb controls
the “memory” of the proposed algorithm. In order to exam-
ine the role of parameterb, we follow (Crammer & Singer,
2003), in which a natural tradeoff between accuracy and
sparseness of solutions was revealed for a family of addi-
tive online learners. Fig 2 shows the number of updates vs.
test errors of IELLIP for all four datasets at the 3rd epoch
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Table 1.Data-sets used in the online learning experiments

NAME NO. OF TRAINING EG.S NO. OF TESTING EG.S NO. OF CLASSES NO. OF ATTRIBUTES

USPS1 7,291 2,007 10 256
UCI LETTER2 15,998 4,002 26 16
UCI ISOLET 800 200 10 200

UCI SHUTTLE 43,500 14,500 7 9
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Figure 1.Experimental results for datasets USPS, UCI Letter,
UCI Isolet, and UCI Shuttle. The first row shows the test errors,
and the second row shows the number of updates.
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Figure 2.Experimental results for IELLIP using differentb. X-
axis and Y-axis represent the number of updates and test errors
that are normalized by the corresponding quantities of MIRA.

when we varyb from 0.1 to 0.3, 0.6, and0.9. For the con-
venience of comparison, both X-axis and Y-axis, which re-
spond to the number of updates and test errors respectively,
are normalized by the quantities of MIRA. Note that since
the sparsity of solutions is closely related to the number of
updates, the plots in Fig 2 essentially reveal the tradeoff
between accuracy and sparseness of solutions that are con-
trolled by the parameterb. We clearly see a overall trend
between accuracy and sparseness across all four datasets.
In particular, a largerb usually leads to a higher sparseness
(i.e., a smaller number of updates) and a lower accuracy
(i.e., a higher test error). This can be understood as fol-
lows: when we keep a longer history of training examples
in P matrix (i.e., a largeb), the learning algorithm is less
likely to be updated, and as a consequence, those impor-
tant examples may not be assigned enough weights, which
could lead to a lower classification accuracy. Hence, by
settingb a modest value (e.g.,0.3), we able to achieve a

balance between accuracy and sparseness of solutions, as
revealed by the previous study.

4. Conclusion

We present novel methods for online learning method (EL-
LIP) by exploiting the ellipsoid method for convex pro-
gramming. Unlike the conventional approaches for online
learning that only maintain a single classifier, the proposed
method is able to capture all the classifiers that are consis-
tent with training examples via an ellipsoid. In addition, the
shape of the ellipsoid, represented by a positive definite ma-
trix, allows us to store more information of training exam-
ples, and provide additional controls for online updating.
We also present an analysis of mistake bound and a gen-
eralization to multi-label learning for the ellipsoid method.
Empirically studies demonstrates the effectiveness of the
proposed method, compared with two state-of-the-art on-
line learners. In the future, we plan to examine other vari-
ants of ellipsoid methods for online learning.
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Appendix A: Proof of Theorem 1

We definev = P
−1/2
t (z − wt), and a unit ball and a half

plane for v as Ẽ = {v||v|2 ≤ 1} and C̃t = {v|αt −
g>t P

1/2
t v ≤ 0. We then rewriteEt andCt asEt = {z =

wt + P
1/2
t v|v ∈ Ẽ} andCt = {z = wt + P

1/2
t v|v ∈ C̃t}.

We thus have

vol(Et ∩ C) = |Pt|1/2vol(Ẽ ∩ C̃t)

Figure 3 shows an example of the intersection between the
unit ball Ẽ and the hyper-planeαt − g>t P

1/2
t v ≤ 0. Note

thatP 1/2
t gt is an unit vector because[P 1/2

t gt]
>P

1/2
t gt =

g>t Ptgt = 1. Using the symmetry argument, the new
ellipsoid in the transformed space, denoted byẼt+1 =
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{v|(v − v0)
>Q−1(v − v0) ≤ 1}, should have its center

v0 move along the direction ofP 1/2
t gt. We denote byρ the

distance between the center ofẼt+1 and the hyper-planẽCt.
As shown in Figure 3, the centerv0 is written as

v0 = (αt + ρ)P
1/2
t gt (19)

Furthermore, based on the argument of symmetry, the ma-
trix Q of ellipsoid Ẽt+1 should be isometric along almost
all the directions except forP 1/2

t gt, and therefore can be
written as

Q = µ2I + ((1− αt − ρ)2 − µ2)P
1/2
t gtg

>
t P

1/2
t (20)

where 1 − αt − ρ is the length for axleP 1/2
t gt and

µ > 0 is the length of other axles. Using the transform
z = wt + P

1/2
t v, we haveEt+1 expressed in terms of

both v0 andQ, which further leads to the updating equa-
tions in Theorem 1. To ensureEt+1 ⊇ Et ∩ Ct, we en-
force the pointe in Figure 3, i.e., an intersection point
betweenẼ and C̃t, to be on the surface of the new ellip-
soid Ẽt+1. Note, if we use the center of̃Et+1 as the origin
and its axles as bases, the coordinates of pointe becomes
(ρ,
√

(1− α2
t )/(d− 1), . . . ,

√
(1− α2

t )/(d− 1)). Since
e ∈ Ẽt+1, we have

ρ2

(1− αt − ρ)2
+ (d− 1)

(1− α2
t )/(d− 1)

µ2
≤ 1,

Figure 3.Illustration of updating ellipsoids

Appendix B: Proof of Theorem 3

We will first show the properties ofαt andPt that are useful
for our proof of mistake bound.

Lemma 3. We have the following properties forPt.

g>t Ptgt = 1 (21)

xtPtxt ≤
t−1∏

i=1

(1− αt)
2x>

t P1xt (22)

P−1
t+1 = (1− α2

t )P
−1
t +

2αt

(1− αt)(1− α2
t )

gtg
>
t (23)

Proof. The property in (21) can be easily verified by using
the expressions forgt andPt. The property in (22) follows

from the fact

Pt ≺ (1− α2
t−1)Pt−1 ≺

t−1∏

i=1

(1− α2
i )P1

The property in (23) follows from the fact
(

Pt −
2αt(1− αt)

1− α2
t

Ptgtg
>
t Pt

)−1

= P
−1/2
t

(
I +

2αt

1− αt
P

1/2
t gtg

>
t P

1/2
t

)
P

−1/2
t

= P−1
t +

2αt

1− αt
gtg

>
t

Lemma 4. We have the following properties forαt

aγ√
λmax(P1)

t−1∏

i=1

(1− α2
i )

−1/2 ≤ αt ≤ 1 (24)

Proof. Since there exists an classifieru that classifies any
labeled example with marginγ, we will haveu ∈ Et ∩
{z|αt − g>t (z − wt) ≤ 0}. Therefore, we have

αt ≤ g>t (u− wt) = (P
1/2
t gt)

>(P
−1/2
t (u− wt))

≤ |P 1/2
t gt||P−1/2

t (u− wt)| = 1,

which proves the the upper bound forαt. The lower bound
follows from the fact

αt+1 =
aγ − ytw

>
t xt√

x>
t Ptxt

≥ aγ√
x>

t Ptxt

,

the property ofPt in (22) and the factmax
|x|2≤1

x>P1x ≤
λmax(P1).

Using the results in the above lemmas, we now show how to
prove the mistake bound stated in Theorem 3. After receiv-
ing T misclassified examples, the volume of the ellipsoid,
denoted byvol(ET ) is reduced to

vol(ET−1) = |P1|1/2
T−1∏

t=1

(1− α2
t )

(d−1)/2(1− αt)

≥ |P1|1/2

(
1− aγ√

λmax(P1)

)d(T−1)/2

=

(
(1 + (1− a)γ)

(
1− aγ√

1 + (1− a)γ

)T−1)d/2

SinceET ⊇ B, we have
(

(1 + (1− a)γ)

(
1− aγ√

1 + (1− a)γ

)T−1)d/2

≥ (1− a)dγd
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Thus,T is upper bounded by

T ≤ 2 log(1− a) + 2 log γ − log(1 + (1− a)γ)

log

(
1− aγ√

1+(1−a)γ

) + 1

Appendix C: Proof of Theorem 4

We first simplified the inequality in Lemma 2 of the sub-
mitted draft

qt+1 ≤ (1− ct)qt + γ2
t + ct(u

>gt)
2 − 2γtu

>gt

≤ (1− ct)qt + γ2
t + ct(u

>gt)
2 − 2

γ(γ − lt(u))

x>
t Ptxt

= (1− ct)qt −
γ2 − ct|u>xt|2

x>
t Ptxt

+ 2
γlt(u)

x>
t Ptxt

≤ (1− ct)qt −
γ2(1− ct)

x>
t Ptxt

+ 2
γlt(u)

x>
t Ptxt

≤ (1− ct)qt − γ2
t∏

i=1

(1− ci) + 2γlt(u)

The last step in the above derivation follows from the fact
Pt � P1 and

x>
t Ptxt ≤ x>

t P1xt

t−1∏

i=1

1

1− ci
≤

t−1∏

i=1

1

1− ci

We then put inequalities of all iterations together as

qt+1 ≤
∏t

i=1(1− ci)− tγ2
∏t

i=1(1− ci)

+2γ
∑t

i=1 li(u)
∏t

j=i+1(1− cj)

tγ2 ≤ 1 + 2γ
t∑

i=1

li(u)
∏i

j=1(1− cj)

≤ 1 + 2γ
1− b

1− b− c

t∑

i=1

li(u)

We have the number of misclassified examples after train-
ing with T examples, denoted byM , is upper bounded

M ≤ 1

γ2
+

2

γ

1− b

1− b− c

T∑

i=1

li(u)
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