
Kernelized Value Function Approximation for Reinforcement Learning

Gavin Taylor GVTAYLOR@CS.DUKE.EDU
Ronald Parr PARR@CS.DUKE.EDU

Department of Computer Science, Duke University, Durham, NC 27708 USA

Abstract
A recent surge in research in kernelized ap-
proaches to reinforcement learning has sought to
bring the benefits of kernelized machine learning
techniques to reinforcement learning. Kernel-
ized reinforcement learning techniques are fairly
new and different authors have approached the
topic with different assumptions and goals. Nei-
ther a unifying view nor an understanding of
the pros and cons of different approaches has
yet emerged. In this paper, we offer a uni-
fying view of the different approaches to ker-
nelized value function approximation for rein-
forcement learning. We show that, except for
different approaches to regularization, Kernel-
ized LSTD (KLSTD) is equivalent to a model-
based approach that uses kernelized regression to
find an approximate reward and transition model,
and that Gaussian Process Temporal Difference
learning (GPTD) returns a mean value function
that is equivalent to these other approaches. We
also discuss the relationship between our model-
based approach and the earlier Gaussian Pro-
cesses in Reinforcement Learning (GPRL). Fi-
nally, we decompose the Bellman error into the
sum of transition error and reward error terms,
and demonstrate through experiments that this
decomposition can be helpful in choosing regu-
larization parameters.

1. Introduction
Kernelized reinforcement learning methods seek to bring
the benefits of kernelized machine learning techniques to
value function approximation in reinforcement learning
(RL). Several different approaches to kernelized RL (KRL)
have been proposed in recent years. Some of these ap-
proaches were motivated via Gaussian processes (Engel

Appearing in Proceedings of the 26th International Conference on
Machine Learning, Montreal, Canada, 2009. Copyright 2009 by
the author(s)/owner(s).

et al., 2005; Rasmussen & Kuss, 2004) and replacement of
the covariance function with an arbitrary kernel. It is also
possible to take a more direct approach by replacing the
dot product in a standard RL algorithm, such as LSTD (Xu
et al., 2005). Even though there is great similarity in the
motivation for these different approaches, the derivations
are quite different and the proposed algorithms are not ob-
viously equivalent.

In this paper we propose a unifying view of KRL. We
present a novel kernelized transition model and reward
function approximation that is derived from kernelized re-
gression. We then show that, except for regularization, the
value function obtained by solving the approximate model
is identical to that of Kernelized LSTD (KLSTD) (Xu et al.,
2005). For a particular choice of regularization param-
eters these solutions are also identical to the mean re-
turned by Gaussian Process Temporal Difference Learn-
ing (GPTD) (Engel et al., 2005). Moreover, the earlier,
model-based Gaussian Processes in Reinforcement Learn-
ing (GPRL) (Rasmussen & Kuss, 2004) is also equivalent
to these other methods, with minor differences resulting
from the choice of kernel and regularization parameters.

Even though these methods are all fundamentally alike,
they offer different viewpoints on the problem and it may
be advantageous to adopt different views in different situ-
ations. For example, GP based methods also provide co-
variances which may be useful to guide exploration. Our
novel model-based approach has the benefit of permitting
separate regularization terms for the transition model and
reward model. Following Parr et al. (2008), we provide a
decomposition of the Bellman error into a sum of reward
and transitions errors. This decomposition can be useful
for the model-based view because it can guide the selec-
tion of potentially different regularization parameters for
each component of the solution. We provide a simple ex-
periment to demonstrate this use of the Bellman error de-
composition.

The focus of this paper is value function approximation for
a fixed policy, and not policy improvement. Our results
apply to pure prediction problems, but also to the policy
evaluation step that occurs in the inner loop of policy it-

Kernelized Value Function Approximation for Reinforcement Learning

eration algorithms that use kernelized RL for policy eval-
uation (Xu et al., 2007; Rasmussen & Kuss, 2004). The
only place where our results are incompatible with policy
improvement may be in our suggestion to use the Bellman
error decomposition for parameter tuning. It is conceivable,
though unlikely in our opinion, that kernel and regulariza-
tion parameters that are good for one policy could be bad
for another. In this case, our approach could still be used,
but the kernel or regularization parameters might need to
be re-tuned for each policy.

Our goal in this work is to provide a unifying view that en-
compasses many uses of kernels in reinforcement learning,
but some methods do not fit neatly into this framework.
Extremely recent work by Farahmand et al. (2008) intro-
duces a regularized, kernelized version of LSTD. This has
many similarities with the techniques discussed herein, but
uses a larger kernel matrix which includes kernel values
between pairs of next states, making it not directly com-
parable to earlier methods. This work focuses on the use
of kernels in value function approximation, but kernelized
machine learning techniques have also been used to rep-
resent policies in policy search methods, e.g., Lagoudakis
and Parr (2003), or Bagnell and Schneider (2003).

2. Formal Framework and Notation
This work concerns uncontrolled Markov processes, re-
ferred to as Markov reward processes (MRP): M =
(S, P, R, γ). Given a state si ∈ S, the probability of a tran-
sition to a state sj is given by Pij and results in an expected
reward of ri. If the policy for a Markov Decision Process
(MDP) is treated as a constant, then the MDP induces an
MRP. The task of computing the value function for the re-
sulting MRP is sometimes referred to as policy evaluation.

We are concerned with finding value functions V that map
each state si to the expected total γ-discounted reward for
the process. In particular, we would like to find or closely
approximate the solution to the Bellman equation:

V∗ = R + γPV∗.

For any matrix, A, we use AT to indicate the transpose of
A. Additionally, we use r to represent a vector of sampled
rewards.

3. Kernel-Based Value Function
Approximators

We begin by defining kernels and kernelized regression. A
kernel is a symmetric function between two points, denoted
k(xi, xj) = k(xj, xi). A kernel matrix, K, stores kernel
values for all pairs in a dataset with Kij = Kji = k(xi, xj),
If this K is positive semi-definite, Mercer’s theorem states

that the kernel function can be interpreted as a dot prod-
uct between the two points in a higher-dimensional space.
The use of this property to increase the expressiveness of
the feature space without explicitly adding more features
is known as the kernel trick. Kernel-based methods can
be viewed as means of easing the machine learning practi-
tioner’s feature engineering burden. However, the expres-
siveness of kernels comes with a risk of overfitting and a
potential for heavy computation despite the efficiency of
the kernel trick.

If regularized least-squares regression is re-derived using
the kernel trick, we arrive at the dual (kernelized) form of
linear least-squares regression (Bishop, 2006),

y(x) = k(x)T (K + Σ)−1 t, (1)

where t represents the target values of the sampled points,
and k(x) is a column vector with elements ki(x) =
k(xi, x). Σ is a generic regularization term. Frequently
Σ = λI, but as in general Tikhonov regression, non-zero
off-diagonal terms are possible. The choice of the variable
Σ to represent the regularization term is no coincidence.
As in ordinary Tikhonov regression, the regularizer plays
an equivalent role to a noise covariance in Bayesian re-
gression. This connection between the regularizer and the
noise covariance in the Bayesian solution carries over to
the Gaussian Process (GP) regression case where the mean
of the GP solution is identical to Equation 1.

Kernelized regression techniques (and kernelized value
function approximation techniques) require inverting a ma-
trix that is as large as the kernel matrix itself, with a number
of entries that is quadratic in the training set size. This has
led numerous authors to propose sparsification techniques
in general, e.g. Engel et al. (2002), and for RL algorithms,
e.g. Engel et al. (2005). We view sparsification as a gen-
eral technique for approximating the result that would have
been obtained if the original K had been used, so our the-
oretical results compare only the original versions of algo-
rithms without sparsification.

4. Kernelized Value Function Approximation
In this section of the paper, we review two approaches to
direct, kernelized value function approximation. These al-
gorithms are direct in the sense that they do not explicitly
construct a model, though we will later show in section 5
that the solutions they produce are equivalent to those pro-
duced by model-based approaches.

4.1. KLSTD

Kernel-based least-squares temporal difference learning
(KLSTD) (Xu et al., 2005) begins with the general
LSTD(λ) (Boyan, 1999) algorithm and uses the kernel trick

Kernelized Value Function Approximation for Reinforcement Learning

to derive a kernelized version of LSTD. For brevity, we fo-
cus on the λ = 0 case, for which the approximate value
function solution is

V̂(s) = k(s)T (KHK)−1 Kr, (2)

where

H =

1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 0 . . . 1 −γ
0 0 . . . 0 1

 .

KLSTD was presented without any form of regulariza-
tion, but the authors did use sparsification which may have
helped regularize their solution somewhat and may have
also helped improve the conditioning of K in their experi-
mental results.

4.2. GPTD

Gaussian Process Temporal Difference Learning
(GPTD) (Engel et al., 2005) takes a GP approach to
direct value function approximation solution. They begin
by modeling the residual:

R(s) = V(s)− γV(s′) + N(s, s′).

N is modeled with a Gaussian process, N(s, s′) ∼
N (0, Σ). This formulation results in the approximate value
function represented as a Gaussian distribution. The mean
of this distribution is

V̂(s) = k(s)THT
(

HKHT + Σ
)−1

r, (3)

where H is defines as in KLSTD.1 As with KLSTD, they
propose a sparsification technique that approximates the
above solution with less computation.

5. Kernel-Based Models
This section presents two approaches to kernelized rein-
forcement learning that first produce kernelized approx-
imations of the transition and reward models, and then
solve for the value function of the approximate transition
and reward models. The first approach is Rassmussen
and Kuss’s Gaussian processes in reinforcement learning
(GPRL) (2004). The second is a novel method based di-
rectly upon kernelized regression.

1GPTD actually defined H without the last row of KLSTD’s
H. The last row corresponds to the assumption that the trajectory
ends with a transition to an absorbing state, an assumption we
preserve for our version of GPTD for the convenience of having a
square H.

5.1. GPRL

In GPRL, transitions and value functions are modeled with
a Gaussian process. Additionally, kernels are assumed to
be the sum of a Gaussian kernel and a weighted delta func-
tion; the resulting kernel matrix is denoted Kv. Rewards
are assumed to be noiseless. This construction makes the
value function

V̂(s) = R(s) + γ
∫

Psi ,s′ V̂(s′)ds′

difficult to calculate in closed form, as Psi ,s′ and V̂(s′) are
both Gaussian. Using a result from Girard et al. (2003),
GPRL approximates

∫
Psi ,s′V(s′)ds′ with WiK−1

v V, re-
placing the integral over the entire state space with a prod-
uct of Wi, which is the expected next kernel values given
state si, and the kernelized representation of the value func-
tion, K−1

v V. The final result is a Gaussian distribution for
the value of all sampled points with mean

V̂ =
(

I− γWK−1
v

)−1
r,

where W is a matrix of expected next kernel values with
Wij = E

[
k(s′i, sj)

]
. Because the kernel function consists

of a sum, Kv can be decomposed such that Kv = K + σ2∆,
where K is the kernel matrix resulting from the Gaussian
kernel, and ∆ij = δ(i, j), producing the value function

V̂ =
(

I− γW(K + σ2∆)−1
)−1

r. (4)

5.2. A General Kernelized Model-Based Solution

We now present a general, kernelized approach to model-
based RL built upon kernelized regression. Using equation
1 with Σ = 0, we can formulate our unregularized approx-
imate reward model for state s as

R̂(s) = k(s)TK−1R, (5)

and the regularized version:

R̂(s) = k(s)T (K + ΣR)−1 R. (6)

The approximate transition model is similar. Our approach
differs from GPRL in one important way: GPRL learns an
approximate model that predicts next state variables given
current state variables. Our approximate model does not
seek to predict base features, but seeks to predict kernel val-
ues, i.e, k(s′) given k(s)2. This defines the relationship of
our predicted next state to our sampled points in the space
implicitly defined by the kernel function. We first define

2This approach is similar to the one taken by Parr et al.(2008),
where an approximate model was used to predict next feature
value given current feature values.

Kernelized Value Function Approximation for Reinforcement Learning

the matrix K′ = PK, in which K′ij = E
[
k(x′i , xj)

]
. Here,

K′ can be thought of as target data consisting of the vectors
k(s′). To approximate the transition model, we again use
kernelized regression:

k̂(s′) = k(s)TK−1K′. (7)

As with the reward model, we can construct a regularized
version of the approximate transition model,

k̂(s′) = k(s)T (K + ΣP)−1 K′ (8)

We can use the models expressed in equations 5 and 7 to
construct an unregularized approximate value function.

V̂(s) =k(s)TK−1R + γ k(s)TK−1K′︸ ︷︷ ︸
k̂(s′)T

K−1R

︸ ︷︷ ︸
R̂(s′)

+

γ2k(s)T
(

K−1K′
)2

K−1R + . . .

=k(s)T
∞

∑
i=0

[
γi
(

K−1K′
)i
]

K−1R

=k(s)T
(

I− γK−1K′
)−1

K−1R

Distributing K−1, we arrive at our final value function,

V(s) = k(s)T (K− γK′
)−1 R. (9)

It is also possible to perform this derivation using the reg-
ularized reward and model approximations from equations
6 and 8, resulting in the following value function:

V̂(s) = k(s)T
[
(K + ΣR)− γ (K + ΣR) (K + ΣP)−1 K′

]−1
R

(10)

Regularization is often necessary, as real RL problems ex-
hibit noise and the high expressiveness of the kernel matrix
can result in overfitting. Also, there is no guarantee the ker-
nel matrix K will be invertible and regularization tends to
improve the conditioning of the matrix inversion problem.
A benefit of the model-based solution presented here is that
it offers the ability to regularize reward and transition ap-
proximations separately.

So far, our derivation has assumed that K′ could be com-
puted and represented explicitly for the entire state space.
In practice one would typically apply kernel-based approx-
imation algorithms to large or continuous state spaces. In
these cases, it is impossible to create a kernel matrix K rep-
resenting the kernel functions between every state. Instead,

we sample (s, r, s′) triples from the state space, and con-
struct a sampled K, K′, and r. In this case, k(si, sj) is the
kernel between the starting states in the ith and jth triple
in the data set, and K′ij contains kernel values between the

ith next state and the jth starting state in the data set. In
the special case where the samples are drawn from trajec-
tories, s′i = si+1, and k(s′i, sj) = k(si+1, sj). Therefore,
K′ = GK, where

G =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 .

Additionally, H = I− γG.

6. Equivalence
With the model-based value functions defined, we are
ready to state our equivalence theorems.

Theorem 6.1 Given the same trajectories and same ker-
nels, the KLSTD value function is equivalent to the unreg-
ularized model-based value function.

Proof Our first step is to show that KHK = KK− γKK′,
using H = I− γG and K′ = GK:

KHK =K (I− γG) K
=KK− γKGK

=KK− γKK′.

Starting from the solution to KLSTD in equation 2,

V(s) =k(s)T (KHK)−1 Kr

=k(s)T (KK− γKK′
)−1 Kr

=k(s)T
(

K−1KK− γK−1KK′
)−1

r

=k(s)T (K− γK′
)−1 r,

which is equal to our unregularized approximate model-
based value function in equation 9.

The implication of this theorem is that we can view KL-
STD as implicitly approximating the underlying transition
and reward functions of the system. We can prove a simi-
lar theorem about the relationship of GPTD to the model-
based approximation.

Theorem 6.2 Given the same trajectories and same ker-
nels, the mean value function returned by GPTD is equiv-
alent to the regularized model-based value function with
ΣR = ΣP = Σ(HT)−1.

Kernelized Value Function Approximation for Reinforcement Learning

Proof We begin with the GPTD mean approximate value
function introduced in equation 3, and show it is equivalent
to equation 10:

V̂(s) =k(s)THT
(

HKHT + Σ
)−1

r

=k(s)T
(

HK + Σ(HT)−1
)−1

r

=k(s)T
(

K− γK′ + Σ(HT)−1
)−1

r

=k(s)T
[
(K + ΣR)− γ (K + ΣR) (K + ΣP)−1 K′

]−1
r,

when ΣR = ΣP = Σ(HT)−1.

In the noiseless case when Σ = 0, GPTD is equivalent to
the unregularized model-based value function, equation 9.

This theorem assumes that (HT)−1 exists, but this is en-
sured by the structure of H. As with KLSTD, we see that
GPTD can be viewed as implicitly approximating the un-
derlying transition and reward models of the system. It is
not surprising that GPTD’s Σ appears in both the transition
model and reward regularization since GPTD does not have
separate noise terms for the reward and transition. The ap-
pearance of (HT)−1 may be somewhat surprising. Loosely
speaking, we can say that it propagates the regularizer Σ
through the transition model since:

(HT)−1 = (I − γPT)−1 =
∞

∑
i=1

γi(PT)i,

but we believe that empirical study of the role of (HT)−1

is warranted.

In contrast, GPRL explicitly models the transition model
of the system, but using a very different starting point from
our model-based approximation. However, we can show
the final results are still closely related.

Theorem 6.3 Using the same sample data and same ker-
nel functions, the mean value function returned by GPRL
is equivalent to the regularized model-based value function
with ΣR = ΣP = σ2∆.

Proof Recall that Wij = E
[
k(x′i , xj)

]
. GPRL’s regular-

ization term is part of the definition of the kernel, but GPRL
uses a trick to ensure that regularization is applied only to
the training data and not to test data: the regularizer is mul-
tiplied by a delta function which ensures that it is applied
only to on-diagonal entries in K. Since GPRL assumes that
data are drawn from a Gaussian, P(δ(x′i , xj) > 0) = 0,
and σ2 is not expected to appear in K′. We therefore as-
sume Wij = K′ij. Beginning with the GPRL value function

in equation 4:

V̂ =
(

I− γW(K + σ2∆)−1
)−1

r

=
(

I− γK′(K + σ2∆)−1
)−1

r

=(K + σ2∆)
(
(K + σ2∆)− γK′(K + σ2∆)−1(K + σ2∆)

)−1
r

=(K + σ2∆)
(

K + σ2∆− γK′
)−1

r.

To change this value function from one that defines ap-
proximate values over all experienced points to one that
defines a value function on an arbitrary point s, we replace
K + σ2∆ with the kernel evaluated at s:

V̂(s) =
(

k(s)T + σ2δ(s)T
) (

K + σ2∆− γK′
)−1

r,

where δ(s) is a column vector with elements δi(s) =
δ(si, s). For an arbitrary point in a continuous space, δ(s)
will be the zero vector, so

V̂(s) =k(s)
(

K + σ2∆− γK′
)−1

r

=k(s)T
[
(K + ΣR)− γ (K + ΣR) (K + ΣP)−1 K′

]−1
r,

when ΣR = ΣP = σ2∆.

When σ2 = 0, this is equivalent to the unregularized
model-based value function in equation 9.

In summary, KLSTD, GPTD, GPRL, and our novel model-
based value function differ only in their approaches to regu-
larization and their assumptions about the manner in which
the samples are drawn. Even though these algorithms are
basically identical, it can nevertheless be useful to consider
different approaches to regularization to get insight into
parameter selection since overfitting with kernel methods
is a genuine concern. This section also shows that even
seemingly direct approaches to kernelized value function
approximation have a model-based interpretation. In sub-
sequent sections, we show that the model-based interpreta-
tion lends itself to a useful error decomposition.

7. Analysis of Error
One can analyze the error of a value function V̂ in terms of
the one-step lookahead error, or Bellman error:

BE(V̂) = R + γPV̂ − V̂.

The Bellman error captures how well an approximation
predicts the value of the next state given the value of the
current state, and bounds the actual error of the approxima-
tion:

‖ V∗ − V̂ ‖∞≤
‖ BE(V̂) ‖∞

1− γ
.

Kernelized Value Function Approximation for Reinforcement Learning

In the linear approximation case that the Bellman error can
be broken down into components that express the approxi-
mation’s error in estimating the process’s reward and tran-
sition functions (Parr et al., 2008). Similarly, in kernel-
based cases, the Bellman error can be decomposed into re-
ward error and transition error. Reward error expresses
how well the approximation represents the reward function,
while transition error expresses how well the approxima-
tion represents the transition function of the system. As
was the case in the linear approximation domain, this view
can provide insight into the performance of the approxima-
tion algorithm.

To be precise about the error over the entire state space,
we must distinguish between the states that have been sam-
pled, and the rest of the states. We learn a value function
for the entire state space containing |S| states using n sam-
pled points, where n � |S|. Thus, r is an n-vector, and P̂
and K are n× n matrices, where P̂ is our estimation of P.
Let K be a |S| × n matrix, where Kij is equal to k(si, sj),
where si is any element of S, and sj is a sampled point. The
approximate reward values for the entire of the state space
follow from equation 5:

R̂ = K(K + ΣR)−1r. (11)

We can also introduce reward error in the kernel context as
a vector indicating the difference between the actual reward
values, and our approximation R̂.

∆R = R− R̂ (12)

Similarly, we introduce transition error3. In the kernel con-
text, this is a measure of our error in predicting k(s′) given
arbitrary s ∈ S:

∆K′ = PK−K(K + ΣP)−1P̂K (13)

For convenience, we define

w =
(

I − γ(K + ΣP)−1P̂K
)−1

(K + ΣR)−1r,

which is extracted from our value function defined in Equa-
tion 9.

Theorem 7.1 The Bellman error of a KRL value function
approximation is a linear combination of reward and tran-
sition errors.

Proof For brevity, we show only the unregularized case
with ΣP = ΣR = 0; the regularized derivation parallels

3We thank Sridhar Mahadevan for pointing out that Bertsekas
and Castanon (1989) introduce a similar concept in a somewhat
different context.

this one. For any MRP M and kernel matrix K, the ap-
proximate value function over the entire state space is Kw.
Starting with the definition of Bellman error:

BE(Kw)
= R + γPKw−Kw

= ∆R + R̂ + γ
(

∆K′ +KK−1P̂K
)

w−Kw

= ∆R + R̂ + γ∆K′w + γKK−1P̂Kw−Kw

= ∆R + R̂ + γ∆K′w +K
(

γK−1P̂K− I
)

w

= ∆R + R̂ + γ∆K′w +KK−1 (γP̂K−K
)

w

= ∆R + R̂ + γ∆K′w−KK−1 (K− γP̂K
)

w

= ∆R + R̂ + γ∆K′w−KK−1 (K− γP̂K
) (

K− γP̂K
)−1 r

= ∆R + R̂ + γ∆K′w−KK−1r

= ∆R + R̂ + γ∆K′w− R̂

At this point, we arrive at our result,

BE(Kw) = ∆R + γ∆K′w. (14)

This result means that when using kernel-based methods
we can view the Bellman error as having two direct sources
of error, the reward error and the transition error. This is
useful because the reward error and transition error can be
estimated easily from a testing or cross validation set; this
makes the process of selecting kernels or kernel parame-
ters fairly transparent since model and reward fitting are
straightforward (kernelized) regression problems. In con-
trast, tuning value function approximators based upon an
approximate value function is a notoriously opaque process
that requires expertise in MDPs.

8. Experimental Results
We have shown several kernel-based value function ap-
proximators to be equivalent, except for their treatment of
regularization. The Bellman error decomposition provides
insight into the behavior of regularization and can facilitate
the selection of regularizing parameters.

To demonstrate this use of the Bellman error decomposi-
tion, we consider a continuous, two-room maze naviga-
tion problem similar to problems explored by Mahadevan
and Maggioni(2006) and Engel et al.(2005). A vertical
wall separates the state space into equal-sized left and right
rooms. A small opening in the middle of this wall acts as a
passage between the rooms. An agent can be at any empty
point. The actions are 1-unit long steps in one of the 4
cardinal directions, with added two-dimensional Gaussian
noise with covariance 0.5I. The agent cannot travel through
walls, so movements that would cross walls are truncated
at the point of intersection. When the agent reaches a 1-
unit-wide goal region along the entire right wall of the right
room, it deterministically receives a reward of 1. In our

Kernelized Value Function Approximation for Reinforcement Learning

version of the problem, the agent can loiter in the reward
region, making the maximum achievable value 1/(1− γ).
We used γ = 0.9.

Our training set consisted of 3750 random (s, r, s′) sam-
ples drawn uniformly from the space. The action used at
each state was from an optimal policy for this problem. We
used a Gaussian kernel with a diagonal covariance matrix
3I, and varied the ΣP regularization term to demonstrate
the effects on the value function and Bellman error decom-
position. Figures 1(a), 1(b), 1(c), and 1(d) show the ap-
proximate value function and absolute value of the error
components at the grid points resulting for ΣR = ΣP = 0.
We used SVD to handle the ill-conditioned matrix inver-
sion problems that resulted in this case. Note that the scale
of the error plots is different from the scale of the value
function plot. The large errors edges of the space are due
to our sampling strategy, which provided fewer neighbor-
ing points at the edges and corners. More interestingly,
however, the value function is extremely uneven and in-
consistent throughout the space. It is difficult to identify
why by looking only at the Bellman error in figure 1(b).
However, it is clear from examining 1(c) that the Bellman
error is dominated by the transition error component and
that there is overfitting across much of the domain. How-
ever, the reward error in figure 1(d) is much less uneven,
indicating that, the reward approximation is not overfitting.
This is not surprising since the reward is deterministic for
this problem. Overall, these results are consistent with a
need for greater regularization in the approximate transi-
tion function. This is precisely what one would expect with
priori knowledge of a noisy transition function and deter-
ministic rewards; in practice, however, we would not have
a priori knowledge of the noise sources in the model.

Figures 1(e) and 1(f) show the value function and transi-
tion error resulting from the same approximation, but with
ΣP = 0.1I. Reward error is not shown as it remained un-
changed. As we expected, the value function is smoother.
Figure 1(f) shows the transition error of the regularized ap-
proximation. Note again that the scale of the error plot is
different from the scale of the value function plot. There
are still areas of high error, as the large amount of noise
relative to the number of samples still makes an approxima-
tion difficult. However, the transition error is much better
controlled, demonstrating the regularization has performed
as we might expect. Overall, the value function has a far
more reasonable shape and the remaining problems with
the value function are primarily attributable to a scarcity of
samples in the corners.

In this particular example, the Bellman error decomposi-
tion is less useful for revealing an excess of regulariza-
tion. Under the optimal policy for this problem, the agent
does not bump into any walls, except in cases where it is

caused by noise. The transition function is therefore a fairly
smooth function and excessive regularization has the effect
of making the approximation too flat. This has a global ef-
fect of squashing the value function, but, in contrast with
the case of too little regularization, the effect is not partic-
ularly salient from a graph of the transition error alone.

This simple example demonstrates both the advantage of
separate reward and transition regularizers, and the insight
offered by the Bellman error decomposition. From a wider
perspective, the model-based viewpoint decouples the tran-
sition and reward approximation aspects of the problem,
and the Bellman error decomposition provides a window
into understanding the behavior of otherwise opaque ap-
proximation schemes.

9. Conclusions
In this work, we first demonstrated that several “model-
free” kernelized value function approximators can be
viewed as special cases of a novel, model-based value func-
tion approximator. These conclusions showed that direct
value-function approximators were still approximating the
model, an insight that can allow kernelized value-function
approximation to be reduced to two straightforward kernel-
ized regression problems, one for the transition model and
one for the reward model.

Additionally, we demonstrated that the Bellman error re-
sulting from a kernelized approximator can be viewed as
a linear combination of errors in the approximation of the
reward function and errors in approximation of the transi-
tion function. This can be leveraged to understand the pre-
viously opaque behavior of kernelized value function ap-
proximators and help tune kernel parameters.

By presenting a unified view of kernelized RL and reduc-
ing the kernelized RL problem to two more manageable
kernelized regression problems, we hope to make it eas-
ier for practitioners to understand, implement, and achieve
success with kernelized RL.

Acknowledgments
This work was supported in part by DARPA CSSG
HR0011-06-1-0027, and by NSF IIS-0713435. Any opin-
ions, findings, conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the sponsors.

References
Bagnell, J. A. D., & Schneider, J. (2003). Policy Search

in Reproducing Kernel Hilbert Space (Technical Report
CMU-RI-TR-03-45). Robotics Institute, Pittsburgh, PA.

Kernelized Value Function Approximation for Reinforcement Learning

0

10

20

30

40

50

0
10

20
30

40
50

0

5

10

15

(a) Value function with ΣP = 0
0

10

20

30

40

50

0
10

20
30

40
50

0

0.5

1

1.5

2

(b) Bellman error with ΣP = 0
0

10

20

30

40

50

0
10

20
30

40
50

0

0.5

1

1.5

2

(c) Transition error with ΣP = 0

0

10

20

30

40

50

0
10

20
30

40
50

0

0.5

1

1.5

2

(d) Reward error with ΣP = 0

0

10

20

30

40

50

0
10

20
30

40
50

0

5

10

15

(e) Value function with ΣP = 0.1I

0

10

20

30

40

50

0
10

20
30

40
50

0

0.5

1

1.5

2

(f) Transition error with ΣP = 0.1I

Figure 1. Bellman error decomposition for the continuous two-room problem, with two different values for the transition regularization
matrix Σp. Note that the scale on the value function plots is different from the scale on the error plots.

Bertsekas, D. P., & Castanon, D. A. (1989). Adaptive Ag-
gregation Methods for Infinite Horizon Dynamic Pro-
gramming. IEEE Transactions on Automatic Control
(pp. 589–598).

Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer.

Boyan, J. A. (1999). Least-Squares Temporal Difference
Learning. In Proceedings of the Sixteenth International
Conference on Machine Learning (pp. 49–56). Morgan
Kaufmann.

Engel, Y., Mannor, S., & Meir, R. (2002). Sparse Online
Greedy Support Vector Regression. 13th European Con-
ference on Machine Learning (pp. 84–96).

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement
Learning with Gaussian Processes. Machine Learning-
International Workshop then Conference (pp. 201–208).

Farahmand, A. M., Ghavamzadeh, M., Szepesvari, C., &
Mannor, S. (2008). Regularized Policy Iteration. Ad-
vances in Neural Information Processing Systems (pp.
441–448).

Girard, A., Rasmussen, C. E., Candela, J. Q., & Murray-
Smith, R. (2003). Gaussian Process Priors with Un-
certain Inputs-Application to Multiple-Step Ahead Time
Series Forecasting. Advances in Neural Information Pro-
cessing Systems (pp. 545–552).

Lagoudakis, M. G., & Parr, R. (2003). Reinforcement
Learning as Classification: Leveraging Modern Classi-
fiers. Proceedings of the Twentieth International Con-
ference on Machine Learning (pp. 424–431).

Mahadevan, S., & Maggioni, M. (2006). Proto-value Func-
tions: A Laplacian Framework for Learning Representa-
tion and Control in Markov Decision Processes (Techni-
cal Report). University of Massachusetts.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., &
Littman, M. (2008). An Analysis of Linear Models, Lin-
ear Value-Function Approximation, and Feature Selec-
tion for Reinforcement Learning. International Confer-
ence of Machine Learning (pp. 752–759).

Rasmussen, C. E., & Kuss, M. (2004). Gaussian Processes
in Reinforcement Learning. Advances in Neural Infor-
mation Processing Systems (pp. 751–759).

Xu, X., Hu, D., & Lu, X. (2007). Kernel-Based Least
Squares Policy Iteration for Reinforcement Learning.
IEEE Transactions on Neural Networks (pp. 973–992).

Xu, X., Xie, T., Hu, D., & Lu, X. (2005). Kernel Least-
Squares Temporal Difference Learning. International
Journal of Information Technology (pp. 54–63).

