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Abstract

Relational world models that can be learned
from experience in stochastic domains have
received significant attention recently. How-
ever, efficient planning using these mod-
els remains a major issue. We propose to
convert learned noisy probabilistic relational
rules into a structured dynamic Bayesian net-
work representation. Predicting the effects
of action sequences using approximate infer-
ence allows for planning in complex worlds.
We evaluate the effectiveness of our ap-
proach for online planning in a 3D simulated
blocksworld with an articulated manipulator
and realistic physics. Empirical results show
that our method can solve problems where
existing methods fail.

1. Introduction

Building systems that act in complex environments is
a central goal of Artificial Intelligence. Such systems
need to be able to reason about their world in order to
derive plans of actions and achieve their goals. Acting
in a complex environment requires knowledge repre-
sentations which can account for indeterministic action
effects and cope with noise. Furthermore, they have
to generalize to unencountered situations and objects
of similar types.

The field of statistical relational learning investigates
the combination of relational representations with
probabilistic frameworks and Machine Learning tech-
niques (Getoor & Taskar, 2007). Due to the general
nature of the proposed representations, however, it
is often unclear how to learn and represent complex
action dynamics in an efficient way. Action decision
making is often cast in a reinforcement learning (RL)
framework. Relational RL investigates the usage of
compact relational representations for state and ac-
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tion spaces (van Otterlo, 2009). Most work has been
on model-free approaches which compute value func-
tions and policies directly from experiences resulting
in reactive behaviors for fixed goals (also called habit-
based decision making). By contrast, model-based ap-
proaches use the experiences to learn world dynam-
ics and reward models. This enables goal-directed or
purposive decision making which allows an agent with
changing goals to plan for the goal at hand by internal
simulation (Botvinick & An, 2009).

Pasula et al. (2007) have recently introduced an ap-
pealing action model representation based on noisy in-
deterministic deictic (NID) rules which offer several
advantages: (i) a relational representation; (ii) inde-
terministic action outcomes in order to account for
stochastic domains; (iii) deictic references for actions
to reduce action space; (iv) noise outcomes to avoid ex-
plicit modeling of rare and overly complex outcomes;
and, (v) the existence of an effective learning algo-
rithm. They showed that NID rules are able to cap-
ture the complex dynamics in a realistically simulated
noisy version of the blocks world based on a three-
dimensional rigid-body dynamics simulator (ODE). A
severe limitation, however, is that there exists no effi-
cient method so far to plan with NID rules.

Promising solution techniques for known Markov de-
cision processes (MDPs) over relational domains have
been proposed: for example, Kersting et al. (2004)
present an exact value iteration algorithm and San-
ner and Boutilier (2007) propose approximate solution
techniques for factored first-order MDPs based on lin-
ear value approximation. Both require complete mod-
els, however, which NID rules do not provide due to
their noise outcomes, and it is not clear how to make
them deal with deictic references in the spirit of NID
rules. Croonenborghs et al. (2007) learn partial world
models online in form of sets of relational probability
trees for individual state properties which they exploit
immediately by means of Q-learning with look-ahead
trees. They do not model deictic references explicitly
so that their action space is much larger which heavily
affects planning time. We will see later that planning
with look-ahead trees is inefficient.
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In this paper, we introduce the PRADA algorithm
(probabilistic relational action-sampling in DBNs
planning algorithm), a model-based RL approach for
planning based on NID rules and probabilistic infer-
ence, making three contributions: (i) Following the
idea of framing planning as a probabilistic inference
problem (Toussaint & Storkey, 2006), we convert NID
rules into a dynamic Bayesian networks (DBNs) rep-
resentation. (ii) We derive an approximate inference
method to cope with the state complexity of a time-
slice of the resulting network. This enables us to effi-
ciently predict the effects of action sequences. While
Sanghai et al. (2005) propose particle filtering algo-
rithms for approximate inference in DBNs over rela-
tional domains, we can exploit different structural as-
sumption and develop an approximate inference tech-
nique based on the factored frontier algorithm (Mur-
phy & Weiss, 2001). (iii) To enable efficient sampling-
based planning, we propose a sampling distribution for
actions which takes predicted state distributions into
account. We evaluate our approach in a simulated
blocksworld with realistic physics, similarly as in Pa-
sula et al., but with an articulated humanoid manipu-
lating the blocks, showing the effectiveness of PRADA
for fast online planning.

The remainder of this paper is organized as follows.
The next section presents the theoretical background
of our work, namely NID rules and the planning algo-
rithm which was used with NID rules so far. We intro-
duce our DBN representation for NID rules in Sec. 3
and our approximate inference method in Sec. 4. In
Sec. 5, we present our planning procedure. Then, we
show our empirical results before we conclude.

2. Background

2.1. State and action representation

We use a relational representation to describe world
states and rules. In a concrete instantiation (situation)
we assume there is a finite set of objects O present and
we can form logical formulae ψ of predicates (relations)

Table 1. Example NID rule for a realistic blocksworld,
which models to try to grab a block X. The block Y is
implicitly defined as the one below X (deictic referencing).
X ends up in the robot’s hand with high probability, but
might also fall on the table. With a small probability some-
thing unpredictable happens.

grab(X) : on(X, Y ), block(Y ), table(Z)

→

(
0.7 : inhand(X), ¬on(X, Y )
0.2 : on(X, Z), ¬on(X, Y )
0.1 : noise

and functions over these objects. Generally, a formula
may use logical variables which represent any object,
independent of the concrete instantiation of objects O.
We will speak of grounding a formula ψ if we apply a
substitution σ that maps all of the variables appearing
in ψ to objects in O. We have a finite set P of predi-
cates and a finite set F of functions. The state of the
world is fully described by all ground predicates and
functions. Actions are represented by positive predi-
cates A. NID rules incorporate knowledge about state
transition dynamics and are described in the following.

2.2. Noisy indeterministic deictic (NID) rules

We want to learn a relational model of a stochastic
world and use it for planning. Pasula et al. (2007)
proposed NID rules for representing such a model and
an algorithm to learn them from data. Table 1 shows
an exemplary NID rule for the realistic blocksworld.
A NID rule r is given as

ar(X ) : Φr(X ) →


pr,1 : Ωr,1(X )

...
pr,mr : Ωr,mr (X )
pr,0 : Ωr,0

(1)

where X is a set of logic variables in the rule (which
represent a (sub-)set of abstract objects). In the rules
which define our world models all formula arguments
are logic variables. The rule r consists of precondi-
tions, namely that action ar is applied on X and that
the state context Φr is fulfilled, and mr + 1 differ-
ent outcomes with associated probabilities pr,i > 0,∑
i=0 pr,i = 1. Each outcome Ωr,i(X ) describes which

predicates and functions change when the rule is ap-
plied. The context Φr(X ) and outcomes Ωr,i(X ) are
conjunctions of literals constructed from the predicates
in P as well as equality statements comparing func-
tions from F to constant values. The so-called noise
outcome Ωr,0 subsumes all possible action outcomes
which are not explicitly specified by one of the other
Ωr,i. The arguments of the action a(Xa) may be a
true subset Xa ⊂ X of the variables X of the rule.
The remaining variables are called deictic references
DR = X \Xa and denote objects relative to the agent
or action being performed.

As above, let σ denote a substitution that maps vari-
ables to constant objects, σ : X → O. Applying σ
to an abstract rule r(X ) yields a ground rule r(σ(X )).
We say a ground rule r covers a state s and a ground
action a if s |= Φr and a = ar. Let Γ be a set of ground
NID rules. We define Γ(a) := {r | r ∈ Γ, ar =a} to be
the set of rules that provide predictions for action a.
If r is the only rule in Γ(a) to cover a and state s, we
call it the unique covering rule for a in s. For more
technical details, we refer the reader to Pasula et al.. If
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a pair (a, s) has a unique covering rule r, we calculate
P (s′ | a, s) using

P (s′|r, s)=
mr∑
i=1

pr,iP (s′|Ωr,i, s) +pr,0P (s′|Ωr,0, s), (2)

where, for i > 0, P (s′ |Ωr,i, s) is a deterministic dis-
tribution that is one for the unique state constructed
from s taking the changes of Ωr,i into account. The
distribution given the noise outcome, P (s′ |Ωr,0, s), is
unknown and needs to be estimated, e.g. by assigning
low probability to many successor states.

If a pair (a, s) does not have a unique covering rule r
(e.g. two rules cover (a, s) providing conflicting predic-
tions), one can predict the effects of a by means of a
noisy default rule rν which explains all effects as noise:
P (s′|rν , s) = P (s′ |Ωrν ,0, s). This is not very mean-
ingful and thus disadvantageous for planning. For this
reason, the concept of unique covering rules is crucial
in planning with NID rules.

NID rules can be learned from experience triples
(s, a, s′) by means of a batch algorithm that trades
off the likelihood of these triples with the complexity
of the learned rule-set.

2.3. Sparse sampling trees for MDP planning

To plan with NID rules, one can treat the domain de-
scribed by the relational logic vocabulary as a Markov
decision process (MDP). NID rules encapsulate the
transition probabilities in a compact way exploiting
the relational structure, as described in Eq. (2). As
the MDP model created from NID rules is incomplete
due to the noise outcome and exact solution meth-
ods are hard to come by in relational domains, Pasula
et al. use the sparse sampling tree (SST) algorithm
(Kearns et al., 2002) for MDP planning. Given a plan-
ning horizon d and a branching factor b, SST builds
a look-ahead tree of states starting with the current
state. In each tree node (representing a state), (i)
SST takes all possible actions into account, and (ii)
for each action it takes b samples from the successor
state distribution using a transition model (in our case
the NID rules). Values are computed for each node of
the tree using the Bellman equation, and finally the
action with the highest value is chosen. SST is inde-
pendent of the number of states, but exponential in
the time horizon taken into account.

When sampling the noise outcome while planning with
SST, Pasula et al. approximate the obtained value by
assuming to stay in the same state and discounting the
estimated value. (We refer to this adaptation when we
speak of SST planning in the remainder of the paper.)
If an action does not have a unique covering rule and is
modelled by the noisy default rule rν , it is thus always

better to perform a doNothing action instead. Hence,
in SST planning one can discard all actions for a given
state which do not have unique covering rules.

While SST is near-optimal, in practice it is only feasi-
ble for very small b and d. Let the number of actions
be a. Then the number of nodes at time horizon d
is (ba)d. (This number can be reduced if the same
outcome of a rule is sampled multiple times.) While
smaller choices of b lead to faster planning, they result
in a significant accuracy loss in realistic domains. As
Kearns et al. note SST is only useful if no special struc-
ture that permits compact representation is available.
Therefore, we now introduce an alternative planning
approach that exploits the structure of NID rules.

3. Graphical models for NID rules

Decision theoretic problems where agents need to
choose appropriate actions can be represented by
means of Markov chains and DBNs. In the follow-
ing, we discuss how to convert NID rules to DBNs
which the PRADA algorithm will use to plan by prob-
abilistic inference as described in Sec. 5. We denote
random variables by upper case letters (e.g. S), their
values by the corresponding lower case letters (e.g.,
s ∈ dom(S)), variable vectors by bold upper case let-
ters (e.g. S = (S1, S2, S3)) and value vectors by bold
lower case letters (e.g. s = (s1, s2, s3)). We also use
column notation, e.g. s2:4 = (s2, s3, s4).

A naive way to convert NID rules to DBNs is shown
in Fig. 1(a). States are represented by a vector S =
(S1, . . . , SN ) where for each ground predicate in P
there is a binary Si and for each ground function in
F there is an Si with range according to the repre-
sented function. (In this paper, we restrict ourselves
to functions which range over a finite subset of the in-
tegers.) Actions are represented by an integer variable
A which indicates the action out of a vector of ground
action predicates in A. The reward gained in a state is
represented by U and may depend only on a subset of
the state variables. It is possible to express arbitrary
reward expectations P (U |S) with binary U (Dayan &
Hinton, 1997). Using NID rules to define the transi-
tion dynamics leads to very complex dependencies as
one needs to account for the uniqueness of covering
rules. This may result in conditional probability func-
tions comprising huge subsets of S which makes this
representation unfeasible for planning.

Therefore, we exploit the structure of NID rules to
model a state transition with the graphical model
shown in Fig. 1(b) representing the joint distribution

P (u′, s′, o, r,φ | a, s) (3)
= P (u′ | s′) P (s′ | o, r, s) P (o | r) P (r | a,φ) P (φ | s) ,
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(a) (b)

Figure 1. (a) Naive DBN; (b) DBN exploiting NID factor-
ization

which we will explain in detail in the following. As-
sume we are given a set of fully abstract NID rules.
We compute all groundings of these rules w.r.t. the
objects of the domain and get the set Γ of K different
ground NID rules. In addition to S, S′, A, U and U ′

as above, we use a binary random variable Φi for each
rule to model the event that its context holds, which
is the case if all required literals hold:

P (φ | s)=
K∏
i=1

P (φi|sπ(Φi))=
K∏
i=1

I

 ∧
j∈π(Φi)

Sj=sri,j

. (4)

We use
∧
i ρi to express a logical conjunction ρ1∧ · · · ∧

ρn. The function π(Φ) yields the set of indices of the
state variables in s, on which Φ depends. sri denotes
the configuration of the state variables corresponding
to the literals in the context of ri. We use an integer-
valued variable R ranging over K+1 possible values
to identify the rule which predicts the effects of the
action. This is the unique covering rule for the current
state-action pair, i.e., the only rule modeling action a
whose context holds:

P (R=r|a,φ)=I

r∈Γ(a)∧Φr=1∧
∧

r′∈Γ(a)\{r}

Φr′=0

. (5)

If no unique covering rule exists, we predict no changes
as indicated by the special value R = 0 (assuming not
to execute the action, similarly as SST does):

P (R=0 | a,φ) =
∧

r∈Γ(a)

¬I

Φr=1 ∧
∧

r′∈Γ(a)\{r}

Φr′=0

 (6)

The integer-valued variable O represents the outcome
of the action as predicted by the rule. It ranges over
M possible values where M is the maximum number
of outcomes all rules in Γ have. (To ensure a sound

semantics, we introduce empty dummy outcomes with
zero-probability for those rules whose number of out-
comes is less than M .) The probability of an outcome
is defined as in the corresponding rule:

P (O=o | r) = pr,o . (7)

We define the probability of the successor state as

P (s′ | o, r, s) =
∏
i

P (s′i | o, r, si) , (8)

which is one for the unique state that is constructed
from s taking the changes according to Ωr,o into ac-
count. The probability of the reward is given by

P (U ′=1 | s′) = I

 ∧
j∈π(U ′)

S′j=τj

 . (9)

The function π(U ′) yields the set of indices of the state
variables in s′, on which U ′ depends. The configura-
tion of these variables that corresponds to our plan-
ning goal is denoted by τ . We renounce on specifying
a prior P (s0), since the initial state s0 will always be
given. Our choice for the distribution P (a) used for
sampling actions will be described in Sec. 5.

Exact inference is intractable in our graphical model.
When constructing a junction tree, we will get cliques
that comprise whole Markov slices (all variables rep-
resenting the state at a certain time-step). Also, ap-
proximate inference by means of loopy belief propaga-
tion is unfeasible due to the deterministic dependencies
in small cycles which inhibit convergence. Therefore,
we propose a different approximate inference scheme
which we present next.

4. Approximate inference

We follow the idea of the factored frontier (FF) algo-
rithm (Murphy & Weiss, 2001) and approximate the
belief with a product of marginals:

P (st |a0:t−1) ≈
∏
i

P (sti |a0:t−1) . (10)

We define

α(sti) := P (sti |a0:t−1) and (11)

α(st) := P (st |a0:t−1) ≈
N∏
i=1

α(sti) (12)

and derive the following FF filter for the model in
Fig. 1(b). We are interested in inferring the state dis-
tribution at time t+ 1 given an action sequence a0:t:

α(st+1
i ) = P (st+1

i |a0:t) (13)

=
∑
rt

P (st+1
i | rt,a0:t−1) P (rt |a0:t) . (14)
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We compute the first term in (14) as

P (st+1
i | rt,a0:t−1) =

∑
sti

P (st+1
i | rt, sti) P (sti | rt,a0:t−1)

≈
∑
sti

P (st+1
i | rt, sti) α(sti) . (15)

This approximation assumes that sti is conditionally
independent of rt. To improve on this approximation
one could examine whether sti is part of the context of
rt or whether st+1

i is specified in its outcomes: if this
is the case, we can infer the state of sti from knowing
rt. However, we found our approximation be sufficient.
We calculate the successor state distribution as

P (st+1
i | rt, sti) =

∑
o

P (st+1
i | o, rt, sti) P (o | rt) , (16)

which shows us how to update the belief over St+1
i if

we predict with rule rt. For the computation of the
second term in (14), we start with

P (Rt=r |a0:t) =
∑
φt

P (Rt=r |φt,a0:t) P (φt |a0:t)

= I(r∈Γ(at)) P

Φtr=1,
∧

r′∈Γ(at)\{r}

Φtr′=0 |a0:t−1


= I(r∈Γ(at)) P (Φtr=1 |a0:t−1)

· P

 ∧
r′∈Γ(at)\{r}

Φtr′=0 |Φtr=1,a0:t−1

 . (17)

To simplify the summation over φt, we used that r
models the state transition if and only if it uniquely
covers (at, st). We calculate the second term in (17):

P (Φtr=1 |a0:t−1) =
∑
st

P (Φtr=1 | st) α(st)

≈
∑
st

P (Φtr=1 | st)
∏
j

α(stj) (18)

=
∏

j∈π(Φtr)

α(Stj=sr,j) . (19)

The approximation in (18) is the FF assumption. In
(19), sr denotes the configuration of the state variables
according to the context of r like in (4). Thus, the
terms α(Stj = sr,j) correspond to the probabilities of
the literals in r’s context. We calculate the third term
in (17) as

P

 ∧
r′∈Γ(at)\{r}

Φtr′=0 |Φtr=1,a0:t−1


≈

∏
r′∈Γ(at)\{r}

P (Φtr′=0 |Φtr=1,a0:t−1) (20)

with

P (Φtr′=0 |Φtr=1,a0:t−1) (21)

=
∑
st

P (Φtr′=0 | st) P (st |Φtr=1,a0:t−1)

≈

 1.0 if Φr∧Φr′ → ⊥
1.0−

∏
i∈π(Φt

r′ ),

i 6∈π(Φtr)

α(Sti =sr′,i) otherwise ,

where the if-condition expresses a logical contradiction
of the contexts of r and r′. Finally, we compute the
reward probability straightforwardly as

P (U t=1 |a0:t−1) =
∑
st

P (U t=1 | st)P (st |a0:t−1, s0)

≈
∏

i∈π(Ut)

α(Sti =τi) , (22)

where τ denotes the configuration of state variables
corresponding to the planning goal as in (9).

The computational costs of propagating the effects of
an action are quadratic in the number of rules for this
action and linear in the maximum numbers of context
literals and manipulated state properties of those rules.

Our inference framework requires an approximation
for the distribution P (s′ |Ωr,0, s) (cf. Eq. (2)) to cope
with the noise outcome of NID rules. From the train-
ing data used to learn rules, we estimate which predi-
cates and functions change value over time as follows:
let Sc ⊂ S contain the corresponding variables. We
estimate for each rule r the average number Nr of
changed state properties when the noise outcome ap-
plies. We approximate the probability that Si ∈ Sc
changes in r’s noise outcome by Nr

|SC | . In case of
change, all changed values of Si have equal probability.

5. Action-sampling planning

PRADA plans in stochastic relational domains by pre-
dicting the effects of action sequences using the graph-
ical model in Fig. 1(b) and the approximate inference
method described in the last section. We sample se-
quences of actions a0:T−1 of length T . For 0<t ≤ T ,
we compute the posteriors over states P (st |a0:t−1, s0)
and rewards P (ut |a0:t−1, s0) (in the sense of filtering
or state monitoring) and calculate the value of an ac-
tion sequence with a discount factor 0<γ<1 as

Q(a0:T−1, s0) :=
T∑
t=1

γtP (U t=1 |a0:t−1, s0) . (23)

We choose the first action of the best sequence a∗ =
argmaxa0:T−1Q(a0:T−1, s0), if its value exceeds a cer-
tain threshold ζ (e.g., ζ = 0). Otherwise, we continue
sampling until either an action is found or sampling is
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given up. We aim for a strategy to sample good action
sequences with high probability. We propose to choose
with equal probability among the actions that have a
unique covering rule for the current state and thereby
avoid the use of the noisy default rule. For the action
at time t, PRADA samples from the distribution

P tsample(a) ∝
∑
r∈Γ(a)

P

φtr=1,
∧

r′∈Γ(a)\{r}

φtr′=0 |a0:t−1

, (24)

taking the current state distribution into account.
Thereby, the probability to sample an action sequence
a predicting the state sequence s0, . . . , sT depends on
the likelihood of the state sequence given a: the more
likely the required outcomes are, the more likely the
next actions will be sampled. PRADA does not miss
actions which SST explores:

Theorem 1: The set of action sequences PRADA
samples with non-zero probability is a super-set of the
one of SST.

A proof of this theorem can be found on
http://cs.tu-berlin.de/∼lang/prada/. Besides
the difference in handling the noise outcome, PRADA
and SST follow opposite approaches: PRADA samples
actions and calculates the transitions approximately,
while SST considers all actions (and is thus exact in
its action search) and samples transitions. This im-
plies an important difference – both algorithms are
faced with the problem that the search space of action
sequences is exponential in the planning horizon. To
calculate the value of a given action sequence, however,
SST still needs exponential time due to its outcome
sampling. In contrast, PRADA propagates the state
transitions forward and is thus linear in the horizon.

5.1. An extension: Adaptive PRADA

We can exploit the fact that PRADA returns a se-
quence of actions to increase planning accuracy – in
contrast to SST where the actions taken at t > 0 de-
pend on the sampled outcomes. Adaptive PRADA
(A-PRADA) examines the best found action sequence
of PRADA and decides by simulation whether some
action can be deleted such that the expected re-
ward is increased – e.g., by deleting actions that
do not have significant effects on achieving our goal.
We refer the reader for more technical details to
http://cs.tu-berlin.de/∼lang/prada/.

6. Results

6.1. Setup

We test SST and (A-)PRADA in an extended simu-
lated blocks world where a robot manipulates blocks
scattered on a table (Fig. 2). We use a 3D rigid-body

Figure 2. A simulated robot plays with cubes of different
sizes scattered on a table. Blocks that have fallen off the
table cannot be manipulated anymore.

dynamics simulator (ODE) that enables a realistic be-
havior of the blocks. For instance, piles of blocks may
topple over or blocks may even fall off table (in which
case they become out of reach for the robot). The
robot can grab blocks and put them on top of other
blocks or on the table. Its actions are affected by noise
so that resulting block piles are not straight-lined. We
assume full observability of triples (s, a, s′) that specify
how the world changed when an action was executed in
a certain state. We represent the data with predicates
on(X,Y ), block(X), table(X), out(X), inhand(X),
upright(X) and function size(X) for state descrip-
tions and puton(X), grab(X) and doNothing() for ac-
tions. If there are o objects and f different object
sizes, the action space contains 2o+ 1 actions while
the state space is huge with fo2o

2+6o different states
(not excluding states one would classify as ”impossi-
ble” given some intuition about real world physics).

6.2. Experiments

We use the rule learning algorithm of Pasula et al.
(2007) with the same parameter settings to learn three
different sets of fully abstract NID rules from inde-
pendent training sets of 500 experience triples each.
Training data to learn rules are generated in a world
of six cubic blocks of three different sizes by perform-
ing random actions with a slight bias to build high
towers. The resulting rule-sets contain 12, 9 and 13
rules respectively. We perform three experiments with
planning goals of increasing difficulty. If a planning al-
gorithm does not find a suitable action in a given situ-
ation, we restart the planning procedure: SST builds a
new tree and (A-)PRADA takes new action-sequence
samples. If after 10 planning runs for a given situa-
tion a suitable action still is not found, the trial fails.
In each experiment, we test the planners in worlds
with varying numbers of blocks of three different sizes.
Thus, we transfer the knowledge gained in the training
world to different, but similar worlds by using abstract
NID rules. In each experiment, we create five start sit-
uations with different blocks for each blocks number.
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Table 2. Average height problem. Obj. denotes the number
of objects (blocks and table) and Reward the discounted to-
tal reward. The reward for performing no actions is 8.03.

Obj. Planner Reward Trial time (s)

6+1 SST (b=3) 10.04±1.23 69.02±14.62
6+1 SST (b=4) 9.83±1.20 179.99±41.71
6+1 PRADA 11.01±1.41 9.31±0.34
6+1 A-PRADA 10.64±1.59 10.64±1.59
8+1 SST (b=3) 9.66±0.88 307.62±74.77
8+1 SST (b=4) 9.87±0.95 796.38±153.16
8+1 PRADA 10.29±1.14 30.81±2.12
8+1 A-PRADA 9.86±1.20 32.94±2.32
10+1 SST (b=3) 9.72±0.69 1213.76± 511.20
10+1 SST (b=4) 9.71±0.80 3061.37±1112.13
10+1 PRADA 9.69±0.68 77.24±6.74
10+1 A-PRADA 9.96±0.77 84.47±7.07
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Figure 3. Average height problem

Per rule-set and start situation, we perform three in-
dependent runs with different random seeds. Thus, all
our reported results are averages over 45 trials (3 rule-
sets, 5 start situations, 3 runs). All experiments are
run on a 2 Ghz. dual-core PC.

6.2.1. Average height

First, we repeat the experiment of Pasula et al. which
uses the average height of blocks as the reward func-
tion. This constitutes an easy planning problem as
many different actions may increase the reward (block
identities do not matter) and a small planning horizon
d is sufficient. We set SST to d = 4 and branching
factor b= 3 and b= 4 (the latter was Pasula’s choice)
and (A-)PRADA to horizon d = 6. Initial states do
not contain already stacked blocks. In all our exper-
iments we found that as long as d is not too small,
its exact choice does not have significant effects on
(A-)PRADA’s planning quality. As Table 2 and Fig. 3
show, PRADA and A-PRADA achieve rewards compa-
rable to SST, while their running-time is significantly
smaller by an order of magnitude (although affording
a longer planning horizon).

6.2.2. Tower of specific blocks

We investigate a slightly more difficult problem: the
goal is to stack three specific blocks. Start situations
are chosen such that the goal can be achieved by means
of four actions. We set horizon d=4 optimal for SST –
although in principle d, which heavily affects planning

Table 3. Tower of three specific blocks problem. Suc. de-
notes the success rate, Actions the number of executed
actions in case of success and Act. time the planning time
for single actions – in contrast to the trial time in Fig. 4.

Obj. Planner Suc. Actions Act. time (s)

6+1 SST (b=1) 0.36 6.38±2.31 0.26±0.06
6+1 SST (b=2) 0.60 5.96±1.37 1.47±0.31
6+1 SST (b=3) 0.78 5.54±2.13 5.80±1.18
6+1 SST (b=4) 0.80 5.11±1.35 14.91±2.78
6+1 PRADA 0.73 5.58±2.15 0.55±0.08
6+1 A-PRADA 0.84 4.82±1.09 0.76±0.14
8+1 SST (b=1) 0.29 5.54±1.98 1.45±0.61
8+1 SST (b=2) 0.47 5.86±1.49 6.47±1.48
8+1 SST (b=3) 0.64 5.14±1.41 24.36±4.78
8+1 SST (b=4) 0.69 4.81±1.08 65.73±15.14
8+1 PRADA 0.73 6.73±3.47 1.41±0.32
8+1 A-PRADA 0.84 5.63±1.63 2.12±0.58
10+1 SST (b=1) 0.36 7.62±3.38 5.74±3.87
10+1 SST (b=2) 0.62 6.14±1.92 29.21±15.74
10+1 SST (b=3) 0.67 5.60±1.69 115.83±67.45
10+1 SST (b=4) 0.84 5.42±1.27 293.93±18.13
10+1 PRADA 0.76 7.53±3.55 4.21±1.94
10+1 A-PRADA 0.78 5.77±1.83 5.28±2.09
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Figure 4. Tower of three specific blocks problem

time, cannot be known a-priori. By contrast, we set
d=16 for (A-)PRADA (using the heuristic to set d to
twice the average number of blocks which we found to
perform well in similar experiments not reported here).
A trial is limited by a maximum number of 20 actions.
If the goal is not achieved then or if one of the three
blocks to be stacked falls off the table, it fails. Table
3 and Fig. 4 show that SST is either extremely slow
(for large b) or its performance is bad (for small b).
PRADA planning times scale well, as shown in worlds
of 8 and 10 blocks, while maintaining a high planning
quality. PRADA planning quality is significantly bet-
ter than that for SST with small b and comparable to
SST with large b – while the latter is more than 10-20
times slower. A-PRADA strongly improves planning
quality of PRADA and is significantly better than SST
with large b= 3, for it avoids senseless actions which
may cause blocks to fall off the table.

6.2.3. Reverse tower

To explore its limits, we want PRADA to reverse a
tower of b blocks which requires at least 2b actions
(each block needs to be moved at least once). Apart
from the long planning horizon, this is difficult due to
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the noise in the simulated world: towers can become
unstable and topple over with blocks falling of the ta-
ble. To decrease this noise slightly to obtain more
reliable results, we forbid the robot to grab objects
that are not clear (i.e., below other objects). We set a
limit of 50 actions on each trial. Table 4 presents our
results. We cannot get SST to solve this problem even
for five blocks (with optimal d = 10). Although the
space of possible actions is reduced due to the men-
tioned restriction, SST has enormous runtimes. With
b=1, SST doesn’t find suitable actions (no leaves with
the goal state) in several starting situations even when
building ten trees (taking about two hours) – the in-
creased planning horizon leads to a high probability
of sampling at least one bad outcome for a required
action. For b ≥ 2, a single tree traversal takes more
than a day. In contrast, PRADA and A-PRADA often
succeed in satisfactory times (with planning horizons
d = 20 for 5 blocks and d = 30 for 6 and 7 blocks).
When they fail this is mainly due to blocks falling of
the table and not because actions cannot be found any-
more. A-PRADA can reverse a tower of 7 blocks with
a success rate > 1

2 and trial time about 5 1
2 minutes.

7. Conclusions and Outlook

We have introduced an efficient planning method for
the probabilistic relational rules proposed by Pasula
et al. (2007) based on approximate inference in DBNs.
This enables us to learn the dynamics of a complex
stochastic world and quickly derive appropriate ac-
tions for varying goals. Results in a 3D simulated
blocksworld with an articulated manipulator and re-
alistic physics show that our method outperforms ex-
isting approaches. Our approach relies on working
in the full ground representation. To apply it in do-
mains with very many objects, it needs to be combined
with methods that reduce the state and action space
complexity in relational domains, see e.g. Gardiol and
Kaelbling (2007). Learning rule-sets online and ex-
ploiting them immediately by our planning method is
another direction of future research as well as exten-
sions that manipulate sampled action sequences.
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5+1 SST (b=1) 0.0 - -
5+1 SST (b=2) 0.0 >1 day -
5+1 PRADA 0.84 79.9±26.5 12.6±2.9
5+1 A-PRADA 0.78 66.3±15.6 10.6±1.4
6+1 PRADA 0.42 184.9±51.9 14.6±2.5
6+1 A-PRADA 0.49 190.4±49.8 12.8±1.7
7+1 PRADA 0.47 415.9±186.3 18.1±5.1
7+1 A-PRADA 0.56 331.6±118.3 14.8±1.8


