
Herding Dynamical Weights to Learn

Max Welling welling@ics.uci.edu

Donald Bren School of Information and Computer Science, University of California Irvine, CA 92697-3435, USA

Abstract

A new “herding” algorithm is proposed which
directly converts observed moments into a
sequence of pseudo-samples. The pseudo-
samples respect the moment constraints and
may be used to estimate (unobserved) quan-
tities of interest. The procedure allows us to
sidestep the usual approach of first learning
a joint model (which is intractable) and then
sampling from that model (which can easily
get stuck in a local mode). Moreover, the al-
gorithm is fully deterministic, avoiding ran-
dom number generation) and does not need
expensive operations such as exponentiation.

1. Introduction

Imagine we wish to invest our money in stocks. To
optimize our portfolio we are interested in the proba-
bility distribution P (k, N) of k companies defaulting
out of N companies in our portfolio (within a cer-
tain time horizon). However, we are only given the
pairwise probabilities of two companies defaulting to-
gether, Pij(xi, xj). How can we estimate P (k,N) effi-
ciently?

A popular approach is to formulate this as a “max-
imum entropy” problem (Jaynes, 1957), where the
pairwise marginal distributions Pij serve as the ob-
served moments while the remaining degrees of free-
dom are determined by maximizing the entropy of
the joint distribution P (x). The dual of this prob-
lem is given by the maximum likelihood problem of
a Markov random field model with indicator features
fij,kl(xi, xj) = I[xi = k, xj = l] (Lebanon & Lafferty,
2002). The weights wij,kl multiplying these features
serve as Lagrange multipliers in the primal problem.
Unfortunately, computing the optimal values for the
weights is very hard because it requires averages of

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

the features under the model. There have been many
attempts to approximate this learning problem which
have proven useful in a wide range of real world ap-
plications (Besag, 1977; Geman & Geman, 1984; Zhu
et al., 1997; Lafferty, 1999; Zhu & Liu, 2002; Hinton,
2002; Hyvarinen, 2005; Tieleman, 2008).

Once, the weights have been learned we have access
to the full joint (Gibbs) distribution P and we are
ready to estimate quantities of interest. This may be
achieved by first exhaustively sampling from the distri-
bution and then computing the quantity of interest by
averaging over these samples. However, at this stage
another problem may surface. The painstakingly esti-
mated Gibbs distribution may have many local modes
in which our Markov chain Monte Carlo procedure
may get stuck.

The question we ask ourselves in this paper is if there
is perhaps a shortcut that sidesteps the learning phase
and directly generates samples with only the moments
as input? While we will insist that our samples will
reproduce the observed moments we may relax the re-
quirement of maximum entropy (which acts as our in-
ductive bias for the purpose of generalization). There
is some indication in the literature that the two phase
learning→inference approach may be suboptimal. For
instance, the “unified propagation and scaling” algo-
rithm of (Teh & Welling, 2002) combines learning and
inference into one problem that avoids the two sep-
arate phases. This algorithm was further improved
recently by (Ganapathi et al., 2008). Unfortunately,
even these approximate methods cannot estimate a
global quantity such as P (k, N) because it depends
on all variables in the problem jointly.

Learning MRF models can also be formulated as a
problem in stochastic approximation theory (Younes,
1999; Yuille, 2004). It was first observed in (Neal,
1992) and later elaborated in (Tieleman, 2008) that
one can view learning in MRF models as running a
Markov chain that is periodically interrupted by a
small parameter update. It was then noted that as
long as this perturbation is small and the chain has suf-
ficient time to equilibrate between perturbations, and

Herding Dynamical Weights

in addition to this the stepsize is decreased according
to a certain schedule, one is guaranteed to eventually
converge on the maximum likelihood value of the pa-
rameters.

We believe that this procedure is still unnecessarily
inefficient if one is only interested in estimating quan-
tities such as P (k, N). More precisely, one can refrain
from annealing the stepsize and let the parameters
“dance around” instead. It is then not hard to see
that averages over the samples from the periodically
interrupted Markov chain will reproduce the moment
constraints. Hence, we may be wasting resources if
we are trying to nail down precise estimates for the
parameters by annealing step-sizes. Parameters are
now more like auxiliary variables necessary to define a
sampling procedure. The system acts like a filter that
transforms data (observed moments) directly into sam-
ples without first estimating parameter values. It is in
this sense that one can think of it as a nonparametric
approach to estimation.

As was also observed by (Tieleman, 2008), the se-
quence of samples from this periodically interrupted
Markov chain tend to rapidly mix between different
modes1. The reason is that the perturbations of the
weights from the learning updates push the sampler
away from regions that are over-explored. Therefore,
also in this sense it is much more efficient to simply
collect samples while running the “learning” updates
with a fixed stepsize than to run a separate Markov
chain after a point estimate has been found. The only
downside of this shortcut is that we are no longer guar-
anteed to obtain samples from a maximum entropy dis-
tribution. Thus, although the moment constraints are
still satisfied we implicitly put a different prior on the
remaining degrees of freedom. Empirically, we have
observed that the impact of this is small, and may in
some cases even improve the estimates of interest.

As a final twist, we have discovered that there is in
fact no need to run a periodically perturbed Markov
chain at all. By taking the zero temperature limit of
the corresponding maximum likelihood problem, we
can replace sampling by maximization, resulting in a
fully deterministic dynamical system. Perhaps surpris-
ingly, pseudo-samples collected from the trajectories
of this dynamical system are also guaranteed to sat-
isfy the moment constraints. In addition they exhibit
a high degree of “pseudo randomness” (and hence en-
tropy) which is caused by the complexity of the under-
lying nonlinear dynamics (for an example see Figure

1Loosely speaking, these modes would be similar to the
modes of the distribution obtained after the parameters
have converged.

1). Converting to this deterministic system of equa-
tions has additional computational advantages in that
we avoid exponentiation and random number gener-
ation. As such, the proposed system may be more
suitable for hardware implementation.

The analysis of the proposed herding dynamics re-
quires tools from nonlinear dynamical systems theory.
For instance, an arbitrarily initialized set of parame-
ters seems to converge consistently to an attractor set
with a dimensionality that was numerically estimated
to be fractal 2. We can show that the parameters will
never run away to infinity, but the issue whether there
exists a unique invariant measure is still open. It is
not even clear if the dynamical system is chaotic or
not. All Lyapunov exponents are 0 but one can show
that information will be lost at a very slow (polyno-
mial) rate. On the other hand, by slowly decreasing
the temperature to zero, we have observed bifurcation
sequences which are indicative of chaos. We believe
that the system operates “on the edge of chaos”, but
this needs to be further investigated.

Perhaps the most exciting perspective that this work
has to offer is that by linking the theory of learning to
that of complex nonlinear dynamical systems a whole
new field may open up for further exploration.

Figure 1. Top half: Sequence of 300 pseudo-samples gener-
ated from a herding algorithm for the “Newsgroup” dataset
(section 6). White dots indicate the presence of certain
word-types in documents (represented as columns). Bot-
tom half: Newsgroup data (in random order). Data and
pseudo-samples have the same first and second order statis-
tics.

2Note that in this sense the algorithm is not dependent
on its initial conditions.

Herding Dynamical Weights

2. Maximum Entropy and Maximum
Likelihood

Define {xi} to be a set of D random variables over a
discrete alphabet, xi ∈ {1..Ki}. Groups of variables
will be indexed using Greek indices, e.g. xα. We define
features over groups of variables by gα(xα) while the
expected value of gα over data is denoted by ḡα.

In a maximum entropy problem one is seeking a joint
distribution P that satisfies a number of pre-specified
expectation constraints (a.k.a. moments) while the
remaining degrees of freedom are determined by re-
quiring the distribution to have maximal entropy. We
will include a temperature in the maximum entropy
problem,

P = arg max
P

TH(P) s.t. E[gα]P = ḡα, ∀α (1)

The dual of this formulation is in fact the well
known maximum likelihood problem for Markov ran-
dom fields without hidden variables (Lebanon & Laf-
ferty, 2002). Here, one maximizes the following objec-
tive over w which are now interpreted as the Lagrange
multipliers of the primal problem,

`T (w) = wαḡα − T log
∑
x

exp(
1
T

∑
α

wαgα(xα)) (2)

To learn the optimal values for the weights, we can take
the gradients of the log-likelihood and apply gradient
descent updates,

wα,t+1 = wαt + η(ḡα − E[gα]P) (3)

This update is unfortunately intractable due to the
fact that we can generally not compute the quantity
E[gα]P efficiently. Assuming for a moment that we
have the optimal weight values, then the following
Gibbs distribution is guaranteed to have the correct
moments and maximum entropy on the remaining de-
grees of freedom,

P (x) =
1

Z(w)
exp

[∑
α

wαgα(xα)

]
(4)

Quantities of interest can now be formulated as av-
erages over this distribution. To compute those, we
can draw samples from this distribution using Markov
chain Monte Carlo techniques.

A fundamental question is whether we actually need
to compute the gradient in Eqn.3 with high precision?
Assume we only have very noisy estimates of the gra-
dient, how could we use these to estimate quantities
of interest? One answer is to run a Markov chain con-
tinuously which we periodically interrupt to update

the weights using Eqn.3 (Younes, 1999; Neal, 1992;
Tieleman, 2008). The samples are used to approxi-
mate the term E[gα]P in Eqn.3. Importantly, in or-
der to converge to point estimates for the parame-
ters, the stepsize η needs to be decreased using some
suitable annealing schedule. But let’s assume for a
moment we don’t do that. We can then still collect
the samples produced by this “periodically interrupted
Markov chain”. Interestingly, averaging the features
over these samples will satisfy the moment constraints,
as the following theorem proves.

Proposition 1: If ∀α limτ→∞ 1
τ wατ = 0, then

∀α limτ→∞ 1
τ

∑τ
t=1 gα(sαt) → ḡα.

Proof:

δwαt/η = ḡα − gα(sαt) (5)

with δwαt , wαt−wα,t−1. Next, average left and right
hand sides over t,

1
τ

τ∑
t=1

δwαt/η =
1
τ

(wατ −wα0)/η = ḡα − 1
τ

τ∑
t=1

gα(sαt)

(6)
Using the premise that the weights grow slower than
linearly we see that the left hand term vanishes in the
limit τ →∞ which proves the result.

What this says is that under the very general assump-
tion that the weights don’t grow out to infinity lin-
early (not that due to the finite stepsize they can now
grow faster than linear), the moment constraints will
be satisfied by the samples collected from the com-
bined learning/sampling procedure. For many appli-
cations, these samples are all we need, and so it is a
waste of resources to try to nail down a single point es-
timate for the weights by decreasing the stepsize. But
we actually killed two birds with one stone. Sampling
from P after convergence can easily get stuck in lo-
cal modes. As observed before by (Tieleman, 2008),
the weight updates actually help with mixing because
they bias the chain away from over-explored regions of
state space.

What is not clear is whether we also produce samples
with high entropy which (presumably) generalize well.
We conjecture this is the case, albeit that the entropy
may not be maximal.

3. Tipi Functions and The Zero
Temperature Limit

We now ask the question whether it was necessary to
run the Markov chain in the first place? To answer
that question we will take the zero temperature limit

Herding Dynamical Weights

of 2,

`0(w) =
∑
α

wαḡα −max
s

[∑
α

wαgα(sα)

]
(7)

This function has a number of interesting properties
that justify the name “Tipi function”(see Figure 2)
which we discuss below3

−5

0

−5−4−3−2−1012345

Figure 2. Two-dimensional Tipi-function for herding with
features f(x) = sin(x) and g(x) = cos(x), x = [−π,−π +
1, .., 2.86] and a uniform distribution P (x) to compute f̄
and ḡ. Small dots represent weights sampled during herd-
ing.

1. `0 is continuous piecewise linear (C0 but not C1).
It is clearly linear in w as long as the maximizing
state s∗ doesn’t change. However, changing w
may in fact change the maximizing state in which
case the gradient changes discontinuously.

2. `0 is a concave, non-positive function of w with a
maximum at `0(0) = 0. This is true because the
first term represents the average E[

∑
α wαgα]P

over some distribution P , while the second term
is its maximum. Therefore, `0 5 0. If we further-
more assume that P > 0 everywhere then `0 < 0
and the maximum at w = 0 is unique. Concav-
ity follows because the first term is linear and the
second maximization term is convex.

3. `0 is scale free. This follows because `0(βw) =
β`0(w) as can be easily checked. This means that
the function has exactly the same structure at any
scale of w.

3These properties warrant the name “Tipi function” be-
cause in two dimensions it looks like a, possible crooked,
native Indian Tipi dwelling.

We notice that in this limit optimization becomes a
futile exercise: the maximum is at w = 0 and there
is no need to search for it. However, the procedure
proposed in the previous section still makes sense. We
can perform gradient ascent on this surface with a fixed
(non decreasing) stepsize. The fixed stepsize will result
in a perpetual overshooting of the maximum at w = 0.
Every flat face of the Tipi function is associated with a
state and the state sequence obtained by following this
gradient ascent procedure still has the property that
its averages over features will reproduce the observed
average feature values (the proof is identical to the one
presented in the previous section).

Moreover, we notice that changing the stepsize will
only change the scale at which the weights operate.
However, because `0 is scale free, it has no effect on
the actual state sequence. Hence, we can simply set
η = 1.

Taken together, we now formulate our herding dynam-
ics,

s∗t = arg max
s

∑
α

wαtgα(sα) (8)

wα,t+1 = wα,t + ḡα − gα(s∗αt) (9)

f∗β(yβ) ←
(

t− 1
t

)
f∗β(yβ) +

(
1
t

)
fβ(s∗αt)I[yα = s∗αt]

(10)

Note that this represents a collection of deterministic
nonlinear update equations. In particular it is not a
Markov chain Monte Carlo procedure and it does not
require random number generation. In fact, it doesn’t
even require exponentiation which is computationally
expensive relative to maximization.

The first update determines the state s necessary to
compute the gradient of the Tipi function, i.e. it deter-
mines the locally flat region of the function on which
we are currently located. Given this, the second up-
date takes a gradient step upwards on 7. This process
is repeated and while we sample states st we compute
online averages for quantities of interest using the third
update.

The herding updates represent two phases of a mini-
max problem with s minimizing the objective `0 and
w maximizing it. The maximization over s can still
be a very hard problem. In practice we perform a lo-
cal coordinate ascent version of it and our empirical
results show that this still works well. In fact, propo-
sition 1 tells us that we simply have to monitor the
L2-norms of the weights and make sure that they do
not grow to infinity linearly. If they don’t, proposi-
tion 1 guarantees that the moments will be correct.

Herding Dynamical Weights

Conversely, if the moments will not be reproduced, for
example because we specified inconsistent moments or
because local optimization is stuck in some corner of
state space, the weights will grow away to infinity lin-
early. Hence, the weight norms act as detectors for
the algorithm going astray. One can imagine an adap-
tive version of the algorithm that spends more time on
maximization over s if the weight norms become too
large.

4. Recurrence

The premise to proposition 1 is that the norm of the
weights do not grow to infinity. We will now prove that
for the herding algorithm defined in the previous sec-
tion this does not happen. The proof depends on our
ability to identify the true maximizing state s∗ which
may not be satisfied in many applications. However,
as we will discuss at the end of this section, the result
may still be useful when we replace full maximization
with local maximization.

In the following we will assume that ḡα = E[gα]P with
P (x) > 0, ∀x implying `0(w) < 0 everywhere ex-
cept at the origin. We will also need the result that
the gradient in the direction of wα is always nega-
tive:

∑
α wα∇wα`0(w) < 0 everywhere except on the

boundaries between the piecewise linear faces where
the derivative is not defined. This result follows from
concavity of `0, but can also be understood by observ-
ing that

∑
α wα∇wα`0(w) = `0(w).

Lemma 1: If |gα(sα)| < ∞, ∀s, α, then ∃ B such that
||∇`0||2 < B.

Proof: ∇wα`0(w) = ḡα−gα(s∗α) with s∗ the maximiz-
ing state. Since all gα(sα) are finite for any value of
sα the norm of the gradient must be bounded as well.

We now prove that there will be some radius R such
that the herding algorithm will always decrease the
norm ||w||2.
Proposition 2: ∃ R such that a herding update per-
formed outside this radius, will always decrease the
norm ||w||2.
Proof: Write the herding update as w′α = wα+∇wα`0.
Take the inner product with w′α leading to, ||w′||22 =
||w||22 + 2

∑
α wα∇wα`0 + ||∇wα`0||22, which leads to

δ||w||22 < 2`0 + B2. We now use the fact that 1) `0 <
0 outside the origin, 2) B is constant (i.e. doesn’t
scale with w) and 3) the scaling property `0(βw) =
β`0(w) to argue that there is always some radius R
for which δ||w||2 < 0, ∀||w||2 > R (if not, increase β
by a sufficient amount).

Corollary: ∃ R′ such that a herding algorithm initial-
ized inside a ball with that radius will never generate
weights w with norm ||w||2 > R′.
This follows because in the worst case we could still
take one step radially outward starting somewhere on
the surface of the ball at radiusR. Since the gradient is
bounded in magnitude by B we have that R′ 5 R+B.

These results may help to improve the versions of herd-
ing based on local optimization. For instance, we
could derive a conservative radius R′′ > R′ beyond
which one does not allow the norm ||w||2 to grow fur-
ther. One can adapt the amount of effort spent at the
maximization step of the herding algorithm (Eqn.8)
to achieve this. The above results help identify the ra-
dius beyond which one can guarantee that there exists
a state for which this is possible. Also, note that the
result of proposition 1 still holds for such an adaptive
herding variant.

5. Herding in Hopfield Networks

Hopfield networks (Hopfield, 1982) are recurrent neu-
ral networks defined by an energy function of the
form, E(s) = −(

∑
ij wijsisj +

∑
i θisi). Denote with

sit ∈ {0, 1} the state of neuron i at time t. We will
interpret s = 1 as a firing event. Groups of neurons
will be labeled with α and their joint state denoted as
sαt. The synaptic strength between neurons i and j
at time t is denoted with wijt ∈ R, while the bias for
each neuron i is denoted with θit ∈ R.

We assume to have observed target frequencies pi, pij

for neuron i to be in state 1 and neurons i, j to be
in state (1, 1) jointly. Note that these two quantities
are sufficient to determine the complete 2× 2 table of
joint probabilities for each pair of neurons. We usually
(but not always) compute target frequencies from out-
side data sources which we denote with xin. One can
interpret this as the n’th measurement for neuron i.
From this we then compute, pi = 1

N

∑N
n=1 I[xin = 1]

and pij = 1
N

∑N
n=1 I[xin = 1, xjn = 1] where I[·] is the

indicator function.

In terms of these quantities we can now state the herd-
ing algorithm for the Hopfield network. We first ini-
tialize all weights w and states s arbitrarily. We then
iterate the following equations:

sit = I[θit +
∑

j∈N (i)

wijtsj,t−1 > 0] (until conv.) (11)

wij,t+1 = wijt + pij − I[sit = 1, sjt = 1] (12)
θi,t+1 = θi,t + pi − I[sit = 1] (13)

where N (i) denotes the set of all neighbors of i.

Herding Dynamical Weights

Update 11, si,t+1 = I[θ′it+
∑

j∈N (i) w′ijtsjt > 0], should
be interpreted as a firing event if the argument eval-
uates to “true”. Computationally, it maximizes the
function

∑
(ij) wijsisj +

∑
i θisi through local coordi-

nate ascent.

The update equations for the weights (and biases)
can be interpreted as follows. At every iteration the
weights “recover” by an amount pij . But by the time
the weight has grown large it becomes increasingly
likely that the neurons on both sides of the weight fire,
after which the weight “depresses” by an amount equal
to 14. There is an intriguing similarity between herd-
ing and dynamical weights as described in e.g. (Maass
& Zador, 1998; Pantic et al., 2002; Levina et al., 2007).
There, synaptic efficacy is depressed after a firing event
in the presynaptic neuron. It is argued that the fast
depression/recovery dynamics of the synapses drives
the system to self criticality which in turn is useful for
information processing.

6. Experiments

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

P(
k)

Empirical
H.XXX
H.XX
PL
MARG

Figure 3. Estimates of P (k) for the Bowling dataset. Each
group of 5 bars represent the estimates for 1) ground truth,
2) herding with triples, 3) herding with pairs, 4) pseudo-
likelihood, 5) marginals.

In the following experiments we will determine the
ability of herding to convert information about average
sufficient statistics into estimates of some quantities of
interest. In particular the input to herding will be joint
probabilities of pairs of variables (denoted H.XX) and
sometimes triples of variables (denoted H.XXX) where
all variables will be binary valued (which is easily re-
laxed).

4This is somewhat similar to an piston engine where the
piston is pushed down after the fuel has combusted.

In experiment I we will consider the quantity P (k) =
E[I[

∑
i Xi = k − 1]] which is the distribution of the

total number of 1’s across all attributes. This quan-
tity involves all variables in the problem and cannot
be directly estimated from the input which consists
of pairwise information only. This experiment mea-
sures the ability of herding to generalize from local
information to global quantities of interest. In to-
tal 100K pseudo-samples were generated and used to
estimate P (k). The results were compared with the
following two alternatives: 1) sampling 100K samples
from the single variable marginals and using them to
estimate P (k) (denoted “MARG”), 2) learning a fully
connected, fully visible Boltzman machine using the
pseudo-likelihood method5 (denoted PL), then sam-
pling 200K samples from that model and using the
last 100K to estimate P (k).

In experiment II we will estimate a discriminant func-
tion for classifying one attribute (the label) given the
values of other attributes. Our approach was sim-
ply to perform online learning of a logistic regres-
sion function after each pseudo-sample collected from
herding. Again, local pairwise information is turned
into a global discriminant function which is then com-
pared with some standard classifiers learned directly
from the data. In particular, we compared against
Naive Bayes, 5-nearest neighbors, logistic regression
and a fully observed, fully connected Boltzman ma-
chine learned with pseudo likelihood on the joint space
of attributes and labels. The learned model’s con-
ditional distribution of label given the remaining at-
tributes was subsequently used for prediction.

We have used the following datasets in our experi-
ments.

A) The “Bowling Data” set6. Each binary attribute
represents whether a pin has fallen during two sub-
sequent bowls. There are 10 pins and 298 games in
total. This data was generated by P. Cotton to make
a point about the modeling of company default de-
pendency. Random splits of 150 train and 148 test
instances were used for the classification experiments.

B) Abalone dataset 7. We converted the dataset into
binary values by subtracting the mean from all (8) at-
tributes and labels and setting all obtained values to
0 if smaller than 0 and 1 otherwise. For the classifi-
cation task we used random subsets of 2000 examples
for training and the remaining 2177 for testing.

5This method is close to optimal for this type of problem
(Parise & Welling, 2005).

6Downloadable from:
http://www.financialmathematics.com/wiki/Code:tenpin/data

7Downloadable from UCI repository.

Herding Dynamical Weights

Table 1. Abelone/Digits/NewsGroups: KL diver-
gence between true (data) distribution and the estimates
from 1) herding algorithm using all triplets, 2) herding with
all pairs, 3) samples from pseudo-likelihood model and 4)
samples from single marginals.

Dataset H.XXX H.XX PL MARG

Bowling 5E-3 4.1E-2 1.2E-1 4.3E-1
Abelone 8E-4 2.5E-3 2.2E-2 1.8E0
Digits – 6.2E-2 3.3E-2 4E-1
News – 2.5E-2 1.9E-2 5E-1

C) “Newsgroups-small”8 prepared by S. Roweis. It
has 100 binary attributes and 16,242 instances and is
highly sparse (4% of the values is 1). Random splits
of 10,000 train and 6,242 test instances were used for
the classification experiments.

D) Digits: 8×8 binarized handwritten digits. We used
1100 examples from the digit classes 3 and 5 respec-
tively (a total of 2200 instances). The dataset contains
30% 1’s. This dataset was split randomly in 1600 train
and 600 test instances.

The results for experiment I are shown in table 1 and
figure 3. Note that the herding algorithms are de-
terministic and repetition would have resulted in the
same values.

We observe that herding is successful in turning local
average statistics into estimates of global quantities.
Providing more information such as joint probabilities
over triplets does significantly improve the result (the
triplet results for Digits and News took too long to run
due to the large number of triplets involved). Also of
interest is the fact that for the low dimensional data
H.XX outperformed PL but for the high-D datasets
the opposite was true while both methods seem to
leverage the same second order statistics (even though
PL needs the actual data to learn its model).

The results for the classification experiment are shown
in table 2. On all tasks the online learning of a linear
logistic regression classifier did just as well as running
logistic regression on the original data directly. This
implies that the herding algorithm generates the infor-
mation necessary for classification and that the deci-
sion boundary can be learned online during herding.
Interestingly, the PL procedure significantly outper-
formed all standard classifiers as well as herding on
the Newsgroup data. This implies that a more sophis-
ticated decision boundary is warranted for this data.

8Downloaded from:
http://www.cs.toronto.edu/ roweis/data.html

Table 2. Average classification results averaged over 5 runs.

Data H.XXY PL 5NN NB LR

Abel. 0.24± 0.24± 0.33± 0.27± 0.24±
0.004 0.004 0.1 0.006 0.004

Bowl. 0.23± 0.28± 0.32± 0.23± 0.23±
0.03 0.06 0.05 0.03 0.03

Digit 0.05± 0.06± 0.05± 0.09± 0.06±
0.01 0.01 0.01 0.01 0.02

News 0.11± 0.04± 0.13± 0.12± 0.11±
0.005 0.001 0.006 0.003 0.004

To see if the herding sequence contained the informa-
tion necessary to estimate such a decision boundary
we reran PL on the first 10,000 pseudo-samples gener-
ated by herding resulting in an error of 0.04, answering
the question in the affirmative. A plot of the herding
pseudo-samples as compared to the original data was
shown in Figure 1.

7. Outlook

We have studied a new herding algorithm that converts
average sufficient statistics into a sequence of pseudo-
samples from which statistics of interest can be esti-
mated. The setup is similar to the maximum entropy
principle. However, herding bypasses the model fit-
ting procedure completely resulting in a more efficient
algorithm that is better suited for hardware implemen-
tation. Besides these computational considerations it
may also shed some light on how to compute with dy-
namic synapses for which some empirical evidence ex-
ists in the neuroscience literature.

We emphasize that to the best of our knowledge, the
sequence of weights generated through herding is not
even approximately a sample from some meaningful
Bayesian posterior distribution. Recall that by chang-
ing the stepsize we can change the size of the weights
to any desirable scale, which can therefore not repre-
sent posterior uncertainty. In addition, Bayesian in-
ference in undirected graphical models is even harder
than maximum likelihood learning (Murray & Ghahra-
mani, 2004; Welling & Parise, 2006) while we argue
that herding is simpler computationally.

We only considered problems where variables received
direct input from data. The logical next step is to
consider “hidden units”, or variables that only receive
input indirectly through other variables. Another nat-
ural extension is a herding algorithm for highly struc-
tured conditional random fields.

Many questions remain open and require additional

Herding Dynamical Weights

study. For instance, I: Can we modify herding to han-
dle inconsistent or noisy constraints? II: Can we for-
mulate a neurally more plausible “directed” version of
herding where signals flow in one direction only. III:
Can we prove the existence of an invariant distribution
for herding and gain insight from studying its proper-
ties? IV: Is the herding dynamics chaotic? Does the
attractor set of the weight sequence {wt}, t = 1 : ∞
have fractal dimension (i.e. is it a strange attractor)?

Acknowledgements

This material is based upon work supported in part by
the National Science Foundation under Award Num-
ber IIS-0447903 and IIS-0535278 and by ONR-MURI
under Grant No. 00014-06-1-073. We thank N. LeR-
oux, Y. Bengio and R. Palais for feedback.

References

Besag, J. (1977). Efficiency of pseudo-likelihood esti-
mation for simple Gaussian fields. Biometrika, 64,
616–618.

Ganapathi, V., Vickrey, D., Duchi, J., & Koller, D.
(2008). Constrained approximate maximum entropy
learning. Proceedings of the Twenty-fourth Confer-
ence on Uncertainty in AI (pp. 196–203).

Geman, S., & Geman, D. (1984). Stochastic relax-
ation, Gibbs distributions, and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 6, 721–741.

Hinton, G. (2002). Training products of experts by
minimizing contrastive divergence. Neural Compu-
tation, 14, 1771–1800.

Hopfield, J. (1982). Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sci-
ences, 79, 2554–2558.

Hyvarinen, A. (2005). Estimation of non-normalized
statistical models using score matching. Journal of
Machine Learning Research, 6, 695–709.

Jaynes, E. (1957). Information theory and statistical
mechanics. Physical Review, 106, 620–630.

Lafferty, J. (1999). Additive models, boosting, and in-
ference for generalized divergences. COLT: Proceed-
ings of the Workshop on Computational Learning
Theory (pp. 125–133).

Lebanon, G., & Lafferty, J. (2002). Boosting and max-
imum likelihood for exponential models. Neural In-
formation Processing Systems (pp. 447–454).

Levina, A., Herrmann, J., & Geisel, T. (2007). Dy-
namical synapses causing self-organized criticality in
neural networks. Nature Physics, 3, 857 – 860.

Maass, W., & Zador, A. M. (1998). Dynamic stochas-
tic synapses as computational units. Advances in
Neural Information Processing Systems (pp. 903–
917). MIT Press.

Murray, I., & Ghahramani, Z. (2004). Bayesian learn-
ing in undirected graphical models: approximate
MCMC algorithms. Proceedings of the 14th Annual
Conference on Uncertainty in AI (pp. 392–399).

Neal, R. (1992). Connectionist learning of belief net-
works. Articial Intelligence, 56, 71–113.

Pantic, L., Torres, J., Kappen, H., & Gielen, C. (2002).
Associative memory with dynamic synapses. Neural
Computation, 14, 2903–2923.

Parise, S., & Welling, M. (2005). Learning in markov
random fields: An empirical study. Proc. of the Joint
Statistical Meeting.

Teh, Y., & Welling, M. (2002). The unified propa-
gation and scaling algorithm. Neural Information
Processing Systems (pp. 953–960).

Tieleman, T. (2008). Training restricted boltzmann
machines using approximations to the likelihood
gradient. Proceedings of the International Confer-
ence on Machine Learning (pp. 1064–1071).

Welling, M., & Parise, S. (2006). Bayesian random
fields: The Bethe-Laplace approximation. Proc. of
the Conf. on Uncertainty in Artificial Intelligence
(pp. 512–519).

Younes, L. (1999). On the convergence of Markovian
stochastic algorithms with rapidly decreasing ergod-
icity rates. Stochastics An International Journal of
Probability and Stochastic Processes, 65, 177–228.

Yuille, A. (2004). The convergence of contrastive diver-
gences. Advances in Neural Information Processing
Systems (pp. 1593–1600).

Zhu, S., & Liu, X. (2002). Learning in Gibbsian fields:
How accurate and how fast can it be? IEEE Trans.
on Pattern Analysis and Machine Intelligence, 24,
1001–1006.

Zhu, S., Wu, Z., & Mumford, D. (1997). Minimax en-
tropy principle and its application to texture mod-
eling. Neural Computation, 9, 1627–1660.

