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Abstract

We consider the task of reinforcement learn-
ing with linear value function approximation.
Temporal difference algorithms, and in par-
ticular the Least-Squares Temporal Differ-
ence (LSTD) algorithm, provide a method
for learning the parameters of the value func-
tion, but when the number of features is large
this algorithm can over-fit to the data and is
computationally expensive. In this paper, we
propose a regularization framework for the
LSTD algorithm that overcomes these diffi-
culties. In particular, we focus on the case
of l1 regularization, which is robust to irrele-
vant features and also serves as a method for
feature selection. Although the l1 regular-
ized LSTD solution cannot be expressed as a
convex optimization problem, we present an
algorithm similar to the Least Angle Regres-
sion (LARS) algorithm that can efficiently
compute the optimal solution. Finally, we
demonstrate the performance of the algo-
rithm experimentally.

1. Introduction

We consider the task of reinforcement learning (RL)
in large or infinite state spaces. In such domains it is
not feasible to represent the value function explicitly,
and instead a common strategy is to employ function
approximation to represent the value function using
some parametrized class of functions. In particular, we
consider linear value function approximation, where
the value function is represented as a linear combina-
tion of some set of basis functions. For this task, the
Temporal Difference (TD) family of algorithms (Sut-
ton, 1988), and more specifically the Least-Squares TD

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

(LSTD) algorithms (Bradtke & Barto, 1996; Boyan,
2002; Lagoudakis & Parr, 2003), provide a method for
learning the value function using only trajectories gen-
erated by the system. However, when the number of
features is large compared to the number of training
samples, these methods are prone to over-fitting and
are computationally expensive.

In this paper we propose a regularization framework
for the LSTD family of algorithms that allows us to
avoid these problems. We specifically focus on the
case of l1 regularization, which results in sparse so-
lutions and therefore serves as a method for feature
selection in value function approximation. Our frame-
work differs from typical applications of l1 regulariza-
tion in that solving the l1 regularized LSTD problem
cannot be formulated as a convex optimization prob-
lem; despite this, we show that a procedure similar to
the Least Angle Regression (LARS) algorithm (Efron
et al., 2004) is able to efficiently compute the optimal
solution.

The rest of this paper is organized as follows. In Sec-
tion 2 we present preliminaries and review the LSTD
algorithm. Section 3 contains the main contribution
of this paper: we present a regularized version of the
LSTD algorithm and give an efficient algorithm for
solving the l1 regularized case. In Section 4 we present
experimental results. Finally, in Section 5 we discuss
relevant related work and conclude the paper in Sec-
tion 6.

2. Background and Preliminaries

A Markov Decision Process (MDP) is a tuple
(S,A, P, d,R, γ), where S is a set of states; A is a set
of actions; P : S × A× S → [0, 1] is a state transition
probability function where P (s, a, s′) denotes the prob-
ability of transitioning to state s′ when taking action
a from state s; d is a distribution over initial states;
R : S → R is a reward function; and γ ∈ [0, 1] is a
discount factor. For simplicity of presentation, we will
assume that S and A are finite, though potentially very
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large; this merely permits us to use matrix rather than
operator notation, though the results here hold with
minor technicalities in infinite state spaces. A policy
is π : S → A is a mapping from states to actions.

The notion of a value function is of central impor-
tance in reinforcement learning; in our setting, for a
given policy π, the value of a state s is defined as the
expected discounted sum of rewards obtained when
starting in state s and following policy π: V π(s) =
E[

∑∞
t=0

γtR(st)|s0 = s, π]. It is well-known that the
value function must obey Bellman’s equation

V π(s) = R(s) + γ
∑

s′

P (s′|s, π(s))V π(s′)

or expressed in vector form

V π = R + γPπV π (1)

where V,R ∈ R
|S| are vectors containing the state val-

ues and rewards respectively, and Pπ ∈ R
|S|×|S| is

a matrix encoding the transitions probabilities of the
policy π, Pπ

i,j = P (s′ = j|s = i, π(s)). If both the re-
wards and transition probabilities are known, then we
can solve for the value function analytically by solving
the linear system V π = (I − γPπ)−1R.

However, in the setting that we consider in this paper,
the situation is significantly more challenging. First,
we consider a setting where the transition probability
matrix is not known, but where we only have access
to a trajectory, a sequence of states s0, s1, . . . where
s0 ∼ d and si+1 ∼ P (si, π(si)). Second, as mentioned
previously, we are explicitly interested in the setting
where the number of states is large enough that the
value function cannot be expressed explicitly, and so
instead we must resort to function approximation. We
focus on the case of linear function approximation, i.e.,

V π(s) ≈ wT φ(s)

where w ∈ R
k is a parameter vector and φ(s) ∈ R

k is
a feature vector corresponding to the state s. Again
adopting vector notation, this can be written V π ≈ Φw
where Φ ∈ R

|S|×k is a matrix whose rows contains the
feature vectors for every state. Unfortunately, when
approximating V π in this manner, there is usually no
way to satisfy the Bellman equation (1) exactly, be-
cause the vector R + γPπΦw may lie outside the span
of the bases Φ.

2.1. Review of Least-Squares Temporal
Difference Methods

The Least-Squares Temporal Difference (LSTD) algo-
rithm presents a method for finding the parameters w
such that the resulting value function “approximately”

satisfies the Bellman equation. Although R + γPπΦw
may not lie in the span of the bases, we can find the
closest approximation to this vector that does lie in the
span of the bases by solving the least-squares problem,

min
u∈Rk

‖Φu− (R + γPπΦw)‖2D (2)

where D is a non-negative diagonal matrix indicating a
distribution over states.1 The TD family of algorithms
in general, including LSTD, attempt to find a fixed
point of the above operation; that is, they attempt to
find w such that

w = f(w) = arg min
u∈Rk

‖Φu− (R + γPπΦw)‖2D. (3)

We now briefly review the LSTD algorithm. We first
note that since Pπ is unknown, and since the full Φ
matrices are too large to form anyway, we cannot solve
(3) exactly. Instead, given a trajectory consisting of
states, actions, and next-states, (si, ai, s

′
i), i = 1 . . . m

collected from the MDP of interest, we define the sam-
ple matrices

Φ̃ ≡







φ(s1)
T

...
φ(sm)T






, Φ̃′ ≡







φ(s′1)
T

...
φ(s′m)T






, R̃ ≡







r1

...
rm






.

(4)
Given these samples, LSTD finds a fixed point of the
approximation

w = f̃(w) = arg min
u∈Rk

‖Φ̃u− (R̃ + γΦ̃′w)‖2. (5)

It is straightforward to show that with probability one,
as the number of samples m → ∞, the fixed point of
the approximation (5) equals the fixed point of the true
equation (3), where the diagonal entries of D are equal
to the distribution over samples (Bradtke & Barto,
1996).

In addition, since the minimization in (5) contains only
a Euclidean norm, the optimal u can be computed
analytically as

f̃(w) = u⋆ = (Φ̃T Φ̃)−1Φ̃T (R̃ + γΦ̃′w).

Now we can find the fixed point w = f̃(w) by simply
solving a linear system

w = (Φ̃T Φ̃)−1Φ̃T (R̃ + γΦ̃′w)

=
(

Φ̃T (Φ̃− γΦ̃′)
)−1

Φ̃T R̃ = Ã−1b̃

1The squared norm ‖ · ‖2D is defined as ‖x‖2D = xT Dx.
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where we define Ã ∈ R
k×k and b̃ ∈ R

k as

Ã ≡ Φ̃T (Φ̃− γΦ̃′) =
m

∑

i=1

φ(si) (φ(si)− γφ(s′i))
T

b̃ ≡ Φ̃T R̃ =

m
∑

i=1

φ(si)ri.

(6)

Given a collection of samples, the LSTD algorithm
forms the Ã and b̃ matrices using above formula, then
solves the k×k linear system w = Ã−1b̃. When k is rel-
atively small solving this linear system is very fast, so
if there are a sufficiently large number of samples to es-
timate these matrices, the algorithm can perform very
well. In particular LSTD has been demonstrated to
make more efficient use of samples than the standard
TD algorithm, and it requires no tuning of a learn-
ing rate or initial guess of w (Bradtke & Barto, 1996;
Boyan, 2002).

Despite its advantages, LSTD also has several draw-
backs. First, if the number of basis functions is very
large, then LSTD will require a prohibitively large
number of samples in order to obtain a good estimate
of the parameters w; if there is too little data available,
then it can over-fit significantly or fail entirely — for
example, if m < k, then the matrix Ã will not be full
rank. Furthermore, since LSTD requires storing and
inverting a k × k matrix, the method is not feasible if
k is large (there exist extensions to LSTD that allevi-
ate this problem slightly from a run-time perspective
(Geramifard et al., 2006), but the methods still require
a prohibitively large amount of storage).

3. Temporal Difference with

Regularized Fixed Points

In this section we present a regularization framework
that allows us to overcome the difficulties discussed in
the previous section. While the general idea of ap-
plying regularization for feature selection and to avoid
over-fitting is of course a common theme in machine
learning and statistics, applying it to the LSTD algo-
rithm is challenging due to the fact that this algorithm
is based on finding a fixed-point rather than optimiz-
ing some convex objective.

We begin by augmenting the fixed point function of the
LSTD algorithm (5) to include a regularization term

f̃(w) = arg min
u∈Rk

1

2
‖Φ̃u− (R̃ + γΦ̃′w)‖2 + βν(u) (7)

where β ∈ [0,∞) is a regularization parameter and
ν : R

k → R+ is a regularization penalty function — in
this work, we specifically consider l2 and l1 regulariza-
tion corresponding to ν(u) = 1

2
‖u‖22 and ν(u) = ‖u‖1

respectively (or possibly a combination of the two).
With this modification, it is no longer immediately
clear if there exist fixed points w = f̃(w) for all β, and
it is also unclear how we may go about finding this
fixed point, if it exists.

3.1. l2 Regularization

The case of l2 regularization is fairly straightforward,
but we include it here for completeness. When ν(u) =
1

2
‖u‖22, the optimal u can again be solved for in closed

form, as in standard LSTD. In particular, it is straight-
forward to show that

f̃(w) = (Φ̃T Φ̃ + βI)−1Φ̃T (R̃ + γΦ̃′w)

so the fixed point w = f̃(w) can be found by

w =
(

Φ̃T (Φ̃− γΦ̃′) + βI
)−1

Φ̃T R̃ = (Ã + βI)−1b̃.

Clearly, such a fixed point exists with probability 1,
since A + βI is invertible unless one of the eigenvalues
of A is equal to −β, which constitutes a set of mea-
sure zero. Indeed, many practical implementations of
LSTD already implement some regularization of this
type to avoid the possibility of singular Ã. However,
this type of regularization does not address the con-
cerns from the previous section: we still need to form
and invert the entire k×k matrix, and as we will show
in the next section, this method still performs poorly
when the number of samples is small compared to the
number of features.

3.2. l1 Regularization

We now come to the primary algorithmic contribution
of the paper, a method for finding the fixed point of
(7) when using l1 regularization, ν(u) = ‖u‖1. Since l1
regularization is known to produce sparse solutions, it
can both allow for more efficient implementation and
be effective in the context of feature selection — many
experimental and theoretical results confirm this asser-
tion in the context of supervised learning (Tibshirani,
1996; Ng, 2004). To give a brief overview of the main
ideas in this section, it will turn out that finding the l1
regularized fixed point cannot be expressed as a con-
vex optimization problem. Nonetheless, it is possible
to adapt an algorithm known as Least Angle Regres-
sion (LARS) (Efron et al., 2004) to this task.

Space constrains preclude a full discussion, but briefly,
the the LARS algorithm is a method for solving l1
regularized problem least-squares problems

min
w
‖Aw − b‖2 + β‖w‖1.

Although the l1 objective here is non-differentiable,
ruling out an analytical solution like the l2 regular-
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ized case, it turns out that the optimal solution w can
be built incrementally, updating one element of w at
a time, until we reach the exact solution of the opti-
mization problem. This is the basic idea behind the
LARS algorithm, and in the remainder of this section,
we will show how this same intuition can be applied
to find l1 regularized fixed points of the TD equation.

To begin, we transform the l1 optimization problem (7)
into a set of optimality conditions, following e.g. Kim
et al. (2007) — these optimality conditions can be de-
rived from sub-differentials, but the precise derivation
is unimportant

−β ≤ (Φ̃T ((R̃ + γΦ̃′w)− Φ̃u))i ≤ β ∀i

(Φ̃T ((R̃ + γΦ̃′w)− Φ̃u))i = β ⇒ ui ≥ 0

(Φ̃T ((R̃ + γΦ̃′w)− Φ̃u))i = −β ⇒ ui ≤ 0

−β < (Φ̃T ((R̃ + γΦ̃′w)− Φu))i < β ⇒ ui = 0.

(8)

Since the optimization problem (7) is convex, these
conditions are both necessary and sufficient for the
global optimality of a solution u — i.e., if we can find
some u satisfying these conditions, then it is a solution
to the optimization problem. Therefore, in order for
a point w to be a fixed point of the equation (7) with
l1 regularization, it is necessary and sufficient that the
above equations hold for u = w — i.e., the following
optimality conditions must hold

−β ≤ (Φ̃T R̃− Φ̃T (Φ̃− γΦ̃′)w)i ≤ β ∀i

(Φ̃T R̃− Φ̃T (Φ̃− γΦ̃′)w)i = β ⇒ wi ≥ 0

(Φ̃T R̃− Φ̃T (Φ̃− γΦ̃′)w)i = −β ⇒ wi ≤ 0

−β < (Φ̃T R̃− Φ̃T (Φ̃− γΦ̃′)w)i < β ⇒ wi = 0.

(9)

It is also important to understand that the substi-
tutions performed here are not the same as solving
the optimization problem (7) with the additional con-
straint that u = w; rather, we first find the optimality
conditions of the optimization problem and then sub-
stitute u = w. Indeed, because Φ̃T (Φ̃ − γΦ̃′) is not
symmetric, the optimality conditions (9) do not corre-
spond to any optimization problem, let alone a convex
one. Nonetheless, as we will show, we are still able to
find solutions to this optimization problem. The re-
sulting algorithm is very efficient, since we form only
those rows and columns of the Ã matrix corresponding
to non-zero coefficients in w, which is typically sparse.

We call our algorithm LARS-TD to highlight the con-
nection to LARS and give pseudo-code for the algo-
rithm in Figure 1.2 The algorithm maintains an active

2Here and in the text min+ denotes the minimum taken
only over non-negative elements. In addition {x, i} ← min
indicates that x should take the value of the minimum el-
ement, while i takes the value of the corresponding index.

Algorithm LARS-TD({si, ri, s
′
i}, φ, β, γ)

Parameters:
{si, ri, s

′
i}, i = 1, . . . ,m: state transition and

reward samples
φ : S → R

k value function basis
β ∈ R+: regularization parameter
γ ∈ [0, 1]: discount factor

Initialization:
1. Set w ← 0 and initialize the correlation vector

c←
∑m

i=1
φ(si)ri.

2. Let {β̄, i} ← maxj{|cj |} and initialize the
active set I ← {i}.

While (β̄ > β):
1. Find update direction ∆wI :

∆wI ← Ã−1
I,Isign(cI)

ÃI,I ≡
∑m

i=1
φI(si) (φI(si)− γφI(s′i))

T

2. Find step size to add element to the active set:

{α1, i1} ← min+

j /∈I

{

cj−β̄
dj−1

,
cj+β̄
dj+1

}

d ≡
∑m

i=1
φ(si) (φI(si)− γφI(s′i))

T
∆wI

3. Find step size to reach zero coefficient:

{α2, i2} ← min+
j∈I

{

−
wj

∆wj

}

4. Update weights, β̄, and correlation vector:
wI ← wI + α∆wI , β̄ ← β̄ − α, c← c− αd
where α = min{α1, α2, β̄ − β}.

5. Add i1 or remove i2 from active set:

If (α1 < α2), I ← I
⋃

{i1}
else, I ← I − {i2}.

Return w.

Figure 1. The LARS-TD algorithm for l1 regularized
LSTD. See text for description and notation.

set I = {i1, . . . , i|I|}, corresponding to the non-zero
coefficients w. At each step, the algorithm obtains
a solution to the optimality conditions (9) for some
β̄ ≥ β, and continually reduces this bound until it is
equal to β.

We describe the algorithm inductively. Suppose that
at some point during execution, we have the index set
I and corresponding coefficients wI which satisfy the
optimality conditions (9) for some β̄ > β — note that
the vector w = 0 is guaranteed to satisfy this condition
for some β̄. We define the “correlation coefficients” (or
just “correlations”) c ∈ R

k as

c ≡ Φ̃T R̃− Φ̃T (Φ̃− γΦ̃′)w = Φ̃T R̃− Φ̃T (Φ̃I − γΦ̃′
I)w

where for a vector or matrix xI denotes the rows of x
corresponding to the indices in I.

By the optimality conditions, we know that cI = ±β̄
and that |ci| < β̄ for all i /∈ I. Therefore, when updat-
ing w we must ensure that all the cI terms are adjusted
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equally, or the optimality conditions will be violated.
This leads to the update direction

∆w =
(

Φ̃T
I (Φ̃I − γΦ̃′

I)
)−1

sign(cI)

where sign(cI) denotes the vector of {−1,+1} entries
corresponding to the signs of cI . Given this update
direction for w, we take as large a step in this direction
as possible until some ci for i /∈ I also reaches the
bound. This step size can be found analytically as

α1 = min
i/∈I

+

{

ci − β̄

di − 1
,
ci + β̄

di + 1

}

,

where
d ≡ Φ̃T (Φ̃I − γΦ̃′

I)∆w

(here d indicates how much a step in the direction ∆w
will affect the correlations c). At this point ci is at the
bound, so we add i to the active set I.

Lastly, the optimality conditions requires that for all
i, the signs of the coefficients agree with the signs of
the correlations. To prevent this condition from being
violated we also look for any points along the update
direction where the sign of any coefficient changes; the
smallest step-size for which this occurs is given by

α2 = min
i∈I

+

{

−
wi

∆wi

}

(if no such positive elements exist, then we take α2 =
∞). If α1 < α2, then no coefficients would change sign
during our normal update, so we proceed as before.
However, if α2 < α1, then we update w with a step size
of α2, and remove the corresponding zero coefficient
from the active set. This completes the description of
the LARS-TD algorithm.

Computational complexity and extensions to
LSTD(λ) and LSTDQ. One iteration of the LARS-
TD algorithm presented above has time complexity
O(mkp3) — or O(mkp2) if we use an LU factoriza-
tion update/downdate to invert the ÃI,I matrix —
and space complexity O(k + p2) where p is the num-
ber of non-zero coefficients of w, m is the number of
samples, and k is the number of basis functions. In
practice, the algorithm typically requires a number of
iterations that is about equal to some constant factor
times the final number of active basis functions, so the
total time complexity of an efficient implementation
will be approximately O(mkp3). The crucial property
here is that the algorithm is linear in the number of
basis function and samples, which is especially impor-
tant in the typical case where p≪ m, k.

For the sake of clarity, the algorithm we have presented
so far is a regularized generalization of the LSTD(0)

algorithm. However, our algorithm can be extended
to LSTD(λ) (Boyan, 2002) by the use of eligibility
traces, or to LSTDQ (Lagoudakis & Parr, 2003), which
learns state-action value functions Q(s, a). Space con-
straints preclude a full discussion, but the extensions
are straightforward.

3.3. Correctness of LARS-TD, P -matrices, and
the continuity of l1 fixed points

The following theorem shows that LARS-TD finds an
l1 regularized fixed point under suitable conditions.
Due to space constraints, the full proof is presented in
an appendix, available in the full version of the paper
(Kolter & Ng, 2009). However, the algorithm is not
guaranteed to find a fixed point for the specified value
of β in every case, though we have never found this
to be a problem in practice. A sufficient condition for
LARS-TD to find a solution for any value of β is for
Ã = Φ̃T (Φ̃− γΦ̃′) to be a P -matrix 3 as formalized by
the following theorem.

Theorem 3.1 If Ã = Φ̃T (Φ̃ − γΦ̃′) is a P -matrix,
then for any β ≥ 0, the LARS-TD algorithm finds
a solution to the l1 regularized fixed-point optimality
conditions (9).

Proof (Outline) The proof follows by a similar induc-
tive argument as we used to describe the algorithm,
but requires two conditions that we show to hold when
Ã is a P -matrix. First, we must guarantee that when
an index i is added to the active set, the sign of its
coefficient is equal to the sign of its correlation. Sec-
ond, if an index i is removed from the active set, its
correlation will still be at bound initially and so its
correlation must be decreased at a faster rate than the
correlations in the active set. �

A simple two-state Markov chain, shown in Figure
2(a), demonstrates why LARS-TD may not find the
solution when Ã is not a P -matrix. Suppose that we
run the LARS-TD algorithm using a single basis func-
tion Φ = [10.0 2.0]T , γ = 0.95, and uniform sampling
D = diag(0.5, 0.5). We can then compute A and b

A = ΦT D(Φ− γPπΦ) = −5.0, b = ΦT DR = 5.0,

3A matrix A ∈ R
n×n is a P -matrix if all its principle

minors (the determinants of sub-matrices formed by taking
some subset of the rows and columns) are positive (Horn &
Johnson, 1991). The class of P -matrices is a strict superset
of the class of positive definite (including non-symmetric
positive definite) matrices, and we use the former in order
to include various cases not covered by the positive definite
matrices alone. For example, in the case that the bases are
simply the identity function or a grid, ΦT (Φ − γP πΦ) =
(I−γP ), and while this matrix is often not positive definite,
it is always a P -matrix.
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(a)

(b) (c)

Figure 2. (a) The MDP used to illustrate the possibility
that LARS-TD does not find a fixed point. (b) Plot indi-
cating all the fixed points of the regularized TD algorithm
given a certain basis and sampling distribution. (c) The
fixed points for the same algorithm when the sampling is
on-policy.

so A matrix is not a P -matrix. Figure 2(b) shows all
the fixed points for the l1 regularized TD equation (7).
Note that there are multiple fixed point for a given
value of β, and that there does not exist a continuous
path from the null solution w = 0 to the LSTD solution
w = 1; this renders LARS-TD unable to find the fixed
points for all β.

There are several ways to ensure that Ã is a P -matrix
and, as mentioned, we have never found this to be
a problem in practice. First, as shown in (Tsitsiklis
& Roy, 1997), when the sampling distribution is on-
policy in that D equals the stationary distribution of
the Markov chain, A (and therefore Ã, given enough
samples) is positive definite and therefore a P -matrix;
in our chain example, this situation is demonstrated in
Figure 2(c). However, even when sampling off-policy
we can also ensure that Ã is a P -matrix by additionally
adding some amount of l2 regularization; this is known
as elastic net regularization (Zou & Hastie, 2005). Fi-
nally, we can check if the optimality conditions are vi-
olated at each step along the regularization path and
simply terminate if continuous path exists from the
current point to the LSTD solution. This general tech-
nique of stopping a continuation method if it reaches
a discontinuity has been proposed in other settings as
well (Corduneanu & Jaakkola, 2003).

4. Experiments

4.1. Chain domain with irrelevant features

We first consider a simple discrete 20-state “chain”
MDP, proposed in (Lagoudakis & Parr, 2003), to
demonstrate that l1 regularized LSTD can cope with
many irrelevant features. The MDP we use consists
of 20 states, two actions, left and right, and a reward
of one at each of the ends of the chain. To represent
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Figure 3. (a) Average reward versus number of samples for
1000 irrelevant features on the chain domain. (b) Average
reward versus number of irrelevant features for 800 sam-
ples. (c) Run time versus number of irrelevant features for
800 samples.

the value function, we used six “relevant” features —
five RBF basis functions spaced evenly across the do-
main and a constant term — as well as some number
of irrelevant noise features, just containing Gaussian
random noise for each state. To find the optimal pol-
icy, we used the LSPI algorithm with the LARS-TD
algorithm, modified to learn the Q function. Regular-
ization parameters for both the l1 and l2 cases were
found by testing a small number of regularization pa-
rameters on randomly generated examples, though the
algorithms performed similarly for a wide range of pa-
rameters. Using no regularization at all — i.e., stan-
dard LSPI — performed worse in all cases. All results
above were averaged over 20 runs, and we report 95%
confidence intervals.
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Table 1. Success probabilities and run times for LARS-TD
and l2 LSTD on the mountain car.

Algorithm LARS-TD l2 LSTD
Success % 100% (20/20) 0% (0/20)

Iteration Time (sec) 1.20 ± 0.27 3.42 ± 0.04

As shown in Figures 3(a) and 3(b) both l2 and l1 reg-
ularized LSTD perform well when there are no irrele-
vant features, but l1 performs significantly better using
significantly less data in the presence of many irrele-
vant features. Finally, Figure 3(c) shows the run-time
of one iteration of LSTD and LARS-TD. For 2000 ir-
relevant features, the runtime of LARS-TD is more
than an order of magnitude less than that of l2 regu-
larized LSTD, in addition to achieving better perfor-
mance; furthermore, the time complexity of LARS-TD
is growing roughly linearly in the total number of fea-
tures, confirming the computational complexity bound
presented earlier.

4.2. Mountain car

We next consider the classic “mountain car” domain
(Sutton & Barto, 1998), consisting of a continuous
two-dimensional state space. In continuous domains,
practitioners frequently handcraft basis functions to
represent the value function; a common choice is to use
radial basis functions (RBFs), which are evenly spaced
grids of Gaussian functions over the state space. How-
ever, picking the right grid, spacing, etc, of the RBFs
is crucial to obtain good performance, and often takes
a significant amount of hand-tuning. Here we use the
mountain car domain to show that our proposed l1 reg-
ularization algorithm can alleviate this problem signif-
icantly: we simply use many different sets of RBFs in
the problem, and let the LARS-TD algorithm pick the
most relevant. In particular, we used two-dimensional
grids of 2, 4, 8, 16, and 32 RBFs, plus a constant
offset, for a total of 1365 basis functions. We then
collected up to 500 samples by executing 50 episodes
starting from a random state and executing a random
policy for up to 10 time steps. Using only this data, we
used policy iteration and off-policy LSTD/LARS-TD
to find a policy.

Table 1 summarizes the results: despite the fact that
we have a relatively small amount of training data and
many basis functions, LARS-TD is able to find a policy
that successfully brings the car up the hill 100% of the
time (out of 20 trials). As these policies are learned
from very little data, they are not necessarily optimal:
they reach the goal in an average of 142.25 ± 9.74
steps, when starting from the initial state. However,
in contrast, LSTD with l2 or no regularization at all
is never able to find a successful policy.

5. Related Work

In addition to the work on least-squares temporal dif-
ference methods as well as l1 regularization methods
that we have mentioned already in this paper, there
has been some recent work on regularization and fea-
ture selection in Reinforcement Learning. For in-
stance, (Farahmand et al., 2009) consider a regular-
ized version of TD-based policy iteration algorithms,
but only specifically consider l2 regularization — their
specific scheme for l2 regularization varies slightly from
ours, but the general idea is quite similar to the l2 reg-
ularization we present. However, the paper focuses
mainly on showing how such regularization can guar-
antee theoretical convergence properties for policy it-
eration, which is a mainly orthogonal issue to the l1
regularization we consider here.

Another class of methods that bear some similarity
to our own are recent methods for feature generation
based on the Bellman error (Menache et al., 2005;
Keller et al., 2006; Parr et al., 2007). In particu-
lar (Parr et al., 2007) analyze approaches that con-
tinually add new basis functions to the current set,
based upon their correlation with the Bellman resid-
ual. The comparison between this work and our own is
roughly analogous to the comparison between the clas-
sical “forward-selection” feature-selection method and
l1 based feature selection methods; these two general
methods are compared in the supervised least-squares
setting by Efron et al. (2004), and the l1 regularized
approach is typically understood to have better statis-
tical estimation properties.

The algorithm presented in (Loth et al., 2007) bears
a great deal similarity to our own, as they also work
with a form of l1 regularization. However, the details
of the algorithm are quite different: the authors do
not consider fixed points of a Bellman backup, but in-
stead just optimize the distance to the standard LSTD
solution plus an additional regularization term. The
solution then loses all interpretation as a fixed point,
which has proved very important for the TD solution,
and also loses much of the computational benefit of
LARS-TD, since, using the notation from Section 3,
they need to compute entire columns of the ÃT Ã ma-
trix. Therefore, it is unclear whether this approach
can be implemented efficiently (i.e., in time and mem-
ory linear in the number of features). Furthermore,
this previous work focuses mainly on kernel features,
so that the approach is more along the lines of those
discussed in the next paragraph, where the primary
goal is selecting a sparse subset of the samples.

There has also been work on feature selection and
sparsification in kernelized RL, but this work is only
tangentially related to our own. For instance, in (Xu
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et al., 2007), the authors present a kernelized version
of the LSPI algorithm, and also include a technique
to sparsify the algorithm — a similar approach is also
presented in (Jung & Polani, 2006). However, the mo-
tivation and nature of their algorithm is quite different
from ours and not fully comparable: as they are work-
ing in the kernel domain, the primary concern is ob-
taining sparsity in the samples used in the kernelized
solution (similar to support vector machines), and they
use a simple greedy heuristic, whereas our algorithm
obtains sparsity in the features via regularization.

6. Conclusion

In this paper we proposed a regularization framework
for least-squares temporal difference learning. In par-
ticular, we proposed a method for finding the temporal
difference fixed point augmented with an l1 regulariza-
tion term. This type of regularization is an effective
method for feature selection in reinforcement learning,
and we demonstrated this experimentally.
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