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Abstract

We present tight surrogate regret bounds for the
class of proper (i.e., Fisher consistent) losses.
The bounds generalise the margin-based bounds
due to Bartlett et al. (2006). The proof uses Tay-
lor’s theorem and leads to new representations
for loss and regret and a simple proof of the in-
tegral representation of proper losses. We also
present a different formulation of a duality result
of Bregman divergences which leads to a sim-
ple demonstration of the convexity of composite
losses using canonical link functions.

1. Introduction
A surrogate loss function is a loss function which is not
exactly what one wishes to minimise but is easier to work
with. Convex surrogate losses are used in place of the 0-1
loss. Bartlett et al. (2006) have derived tight bounds on the
regret with respect to the 0-1 loss `0−1 when one knows the
regret with respect to a convex margin loss. Surrogate re-
gret bounds can be viewed as a type of reduction (Beygelz-
imer et al., 2008) between learning problems where one
directly uses the hypothesis obtained by empirically min-
imising the surrogate loss for the original prediction prob-
lem.

Margin losses are a subset of all possible loss functions. We
consider the general class of proper losses (defined below)
which subsumes almost all margin losses. Proper losses
– also known as proper scoring rules (Buja et al., 2005;
Gneiting & Raftery, 2007) – are the “right” sort of loss to
use when one studies class probability estimation. One ad-
vantage is that they have integral representations in terms
of cost-weighted losses. This representation is central to
the derivation of the main result of the paper (Theorem 3).
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Our main contribution is to bring together and generalise
several existing results from a diversity of sources and state
them in a language more familiar to machine learning re-
searchers. Importantly, we also show how they are all based
upon the integral Taylor expansion of the conditional Bayes
risk for (proper) surrogate losses.1 Given a proper loss, the
function expressing its conditional Bayes risk is trivially
computed and our results suggest that much can be gained
from making it and its integral representation central ob-
jects of study in learning theory.

The main theorems regarding proper losses are stated in
§1.2 below. Their proofs are provided in the remainder of
the paper. The surrogate regret bound and convex link re-
sults are discussed in §4 and §5, respectively. These rely
on the integral representation discussed in §3 which in turn
relies on Taylor’s theorem and results from convex analysis
presented in §2.

1.1. Probability Estimation and Proper Losses

We write x ∧ y := min(x, y), x ∨ y := max(x, y) and
JpK = 1 if p is true and JpK = 0 otherwise. The generalised
function δ(·) is defined by

∫ b
a
δ(x)f(x)dx = f(0) when f

is continuous at 0 and a < 0 < b. The unit step U(x) =∫ x
−∞ δ(t)dt. The real numbers are denoted R and the non-

negative reals R+. Random variables are written in sans-
serif font: X, Y. Sets are in calligraphic font: X (the “input”
space). Vectors are written in bold font: α ∈ Rm. We
will often take expectations (E) over the random variable
X. The resulting quantities will be written in blackboard
bold: L and B. Proper losses (defined below) are denoted
by `; their associated conditional and full risks by L and
L. The lower bound on quantities with an intrinsic lower
bound (e.g. the Bayes optimal loss) are written with an
underbar: L, L. Estimated quantities are hatted: η̂.

We will call a (M -measurable) function η̂ : X → [0, 1] a

1This is similar to an insight by Liese and Vajda (2006) who
use a Taylor expansion to study integral representations of f -
divergences.
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class probability estimator. Overloading the notation, we
also use η̂ = η̂(x) ∈ [0, 1] to denote an estimate for a
specific observation x ∈ X. Much of the subsequent argu-
ments rely on this conditional perspective.

Estimate quality is assessed using a loss function ` :
{0, 1} × [0, 1] → R and the loss of the estimate η̂ with
respect to the label y ∈ {0, 1} is denoted `(y, η̂). Through-
out, we adopt the convention that there is no cost for perfect
prediction, that is, `(0, 0) = `(1, 1) = 0. We require the
following technical assumption2:

lim
η↘0

η`(1, η) = lim
η↗1

(1− η)`(0, η) = 0. (1)

If η ∈ [0, 1] is the probability of observing the label y = 1
the point-wise risk of the estimate η̂ ∈ [0, 1] is defined as
the η-average of the point-wise loss for η̂:

L(η, η̂) := EY∼η[`(Y, η̂)] = `(0, η̂)(1−η)+`(1, η̂)η. (2)

Here, Y ∼ η is a shorthand for labels being drawn from a
Bernoulli distribution with parameter η. When η : X →
[0, 1] is an observation-conditional density, taking the M -
average of the point-wise risk gives the (full) risk of the
estimator η̂:

L(η, η̂,M) := EX∼M [L(η(X), η̂(X))].

The convention of using `, L and L for the loss, point-wise
and full risk is used throughout this paper.

A natural measure of the difficulty of a task is its minimal
achievable risk, or Bayes risk:

L(η,M) := inf
η̂∈[0,1]X

L(η, η̂,M) = EX∼M [L(η(X))] ,

where
[0, 1] 3 η 7→ L(η) := inf

η̂∈[0,1]
L(η, η̂)

is the point-wise Bayes risk. Note the use of the under-
line on L and L to indicate that the corresponding func-
tions L and L are minimised. If η̂ is to be interpreted as
an estimate of the true positive class probability η then
it is desirable to require that L(η, η̂) be minimised by
η̂ = η for all η ∈ [0, 1]. Losses that satisfy this constraint
are said to be Fisher consistent and are known as proper
losses (Buja et al., 2005). That is, a proper loss ` satisfies
L(η) = L(η, η) for all η ∈ [0, 1]. The cost-weighted losses
are a family of losses parametrised by a false positive cost
c ∈ [0, 1] that defines a loss for y ∈ {0, 1} and η̂ ∈ [0, 1]
by

`c(y, η̂) = cJy=0KJη̂ ≥ cK + (1− c)Jy=1KJη̂ < cK. (3)

2This is equivalent to the conditions in (Savage, 1971) and
(Schervish, 1989).

1.2. Main Results

The following important property of proper losses is orig-
inally attributed to Savage (1971) and is re-derived in Sec-
tion 2. It shows that the point-wise Bayes risk of a loss is
necessarily concave and how a proper loss can be derived
from any concave function.

Theorem 1 The point-wise Bayes risk L : [0, 1] → R for
a proper loss ` is concave function. Conversely, given a
concave function Λ : [0, 1] → R there exists a proper loss
` satisfying L(η) = Λ(η), η ∈ [0, 1]. Furthermore, the
point-wise risk satisfies

L(η, η̂) = L(η̂)− (η̂ − η)L′(η̂). (4)

In Section 3 we re-derive an old result (see Schervish
(1989) and Gneiting and Raftery (2007) for its history) that
characterises proper losses in terms of their “weight func-
tions” – a dual relationship analogous to that between a
function and its Fourier transform.

Theorem 2 The function ` : {0, 1}×[0, 1]→ R is a proper
loss iff for each η̂ ∈ [0, 1] and y ∈ {0, 1}

`(y, η̂) =
∫ 1

0

`c(y, η̂)w(c) dc, (5)

where the “weight function” w(c) = −L′′(c) ≥ 0.

Our regret bound is stated next. Its proof in Section 4 shows
it is directly implied by the previous results.

Theorem 3 Let c0 ∈ (0, 1) and let Bc0(η, η̂) denote the
point-wise regret for the cost-weighted loss `c0 . Suppose
it is known that Bc0(η, η̂) = α. Then the point-wise regret
B(η, η̂) for any proper surrogate loss ` with point-wise risk
L and Bayes risk L satisfies

B(η, η̂) ≥ ψ(c0, α) ∨ ψ(c0,−α), (6)

where

ψ(c0, α) := L(c0)− L(c0 + α) + αL′(c0).

Furthermore (6) is tight.

By restricting attention to the case when c0 = 1
2 and sym-

metric losses we obtain, as a corollary, a result similar to
that presented by Barlett et al. (2006) for surrogate margin
losses since B 1

2
is easily shown to be half the 0-1 regret.

Corollary 4 If L is symmetric – that is, L( 1
2 − c) = L(c−

1
2 ) for c ∈ [0, 1] – and B 1

2
(η, η̂) = α, then

B(η, η̂) ≥ L( 1
2 )− L( 1

2 + α).
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In practice, the probability η̂ is often not estimated di-
rectly. Instead, some (linearly) parameterised hypothesis
ĥ : X → R is used and converted to a probability estimate
η̂ = ψ−1(ĥ) using a link function ψ. Computationally, it
is useful if the composite risk L(η, ψ−1(ĥ)) is convex in ĥ.
The following theorem shows one can always “convexify”
a proper loss.

Theorem 5 Let ψ = −L′. Then for ĥ : X → R the com-
posite risk L(η, ψ−1(ĥ)) is convex in ĥ.

Buja et al. (2005) call this ψ the “canonical link”. As
shown in Section 5, our derivation of this result is a di-
rect consequence of the integral representation of L and its
Legendre-Fenchel dual.

2. Convexity and Taylor Expansions
In this paper we are primarily concerned with convex and
concave functions defined on subsets of the real line. A
central tool in their analysis is the integral form of their
Taylor expansion. Here, φ′ and φ′′ denote the first and sec-
ond derivatives of φ respectively.

Theorem 6 (Taylor’s Theorem) Let [s0, s] be a closed in-
terval of R and let φ be a real-valued function over [s0, s].
Then

φ(s) = φ(s0) +φ′(s0)(s− s0) +
∫ s

s0

(s− t)φ′′(t) dt. (7)

The classical statement of Taylor’s theorem requires φ to
be twice differentiable, however we will use an extension
that allows for generalised functions in a manner similar to
Liese and Vajda (2006). For example, if φ(s) = max(s, 0)
Taylor’s theorem holds when φ′ is taken to be to be the unit
step function φ′(s) = U(s), and φ′′(s) to be δ(s).

The argument s in the above theorem can be awkward to
work with as it appears in the limits of the integral. The
following corollary removes this problem by replacing the
integrand in (7) with a piece-wise linear function

φt(s, s0) :=


(s− t) s0 < t ≤ s
(t− s) s < t ≤ s0
0 otherwise.

(8)

This is a piece-wise linear and convex in s for each s0, t ∈
[a, b].

Corollary 7 (Integral Representation) Let φ : [a, b] →
R be a general function. Then, for all s, s0 ∈ [a, b] we
have

φ(s)=φ(s0)+φ′(s0)(s−s0)+
∫ b

a

φt(s, s0)φ′′(t) dt. (9)

This result is can be immediately obtained upon substi-
tution of φt into (7) since the conditions in (8) restrict
the limits of integration to the interval (s0, s) ⊆ [a, b] or
(s, s0) ⊆ [a, b] and reverse of the sign of (s − t) when
s < s0.

Central to our analysis is the observation that the (gener-
alised) second derivative of a convex φ is everywhere non-
negative. This means the Taylor expansion in (9) can be
seen as the sum of the linear component φ(s0)+φ′(s0)(s−
s0) and a weighted combination of piece-wise linear terms
φt. As we shall see, the weight function w(t) = φ′′(t) that
determines the contribution of each “primitive” φt charac-
terises many of the important properties of the function φ.

We now show how Theorem 1 can be derived from the in-
tegral Taylor expansion of L. We believe the proof here to
be more transparent than earlier proofs.

Proof (Theorem 1) For the forward implication, assume `
is a proper loss. By definition, the point-wise Bayes risk
L(η) = inf η̂ L(η, η̂) which, for each η ∈ [0, 1] is just the
lower envelope of the lines L(η, η̂) = (1 − η)`(0, η̂) +
η`(1, η̂) and thus L is concave.

The properness of ` means L(η) = L(η, η) and the η̂-
derivative of L is 0 when η̂ = η. Hence

∂

∂η̂
L(η, η̂)

∣∣∣∣
η̂=η

= (1− η)`′(0, η) + η`′(1, η) = 0 (10)

for all η ∈ [0, 1]. Expanding L′(η) using the chain rule
gives

L′(η) = (1− η)`′(0, η)− `(0, η) + η`′(1, η) + `(1, η)
= `(1, η)− `(0, η) + η`′(1, η) + (1− η)`′(0, η)
= `(1, η)− `(0, η)

where the last terms are 0 by (10). Thus

L(η̂) + (η − η̂)L′(η̂)
= (1−η̂)`(0, η̂) + η̂`(1, η̂) + (η−η̂)[`(1, η̂)− `(0, η̂)]
= (1− η̂ − η + η̂)`(0, η̂) + (η̂ + η̂ − η̂)`(1, η̂)
= (1− η)`(0, η̂) + η`(1, η̂),

which is the definition of L(η, η̂). The result holds at the
endpoints by the assumptions in (1).

Conversely, now suppose Λ is a concave function and let
`(y, η̂) = Λ(η̂) + (y − η̂)Λ′(η̂). The Taylor expansion of
Λ is

Λ(η) = Λ(η̂) + (η − η̂)Λ′(η̂) +
∫ η

η̂

(η − c) Λ′′(c) dc

and so

L(η, η̂) = Λ(η̂)−
∫ η

η̂

(η − c) Λ′′(c) dc ≥ Λ(η) = L(η)
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because the concavity of Λ means Λ′′ ≤ 0 and so the
integral term is positive and is minimised to 0 when η̂ = η.
This shows ` is proper, completing the proof.

2.1. Regret and Bregman Divergence

Bregman divergences are a generalisation of the notion of
distances between points. In this section we recount an ob-
servation by Buja et al. (2005) that point-wise regret for
a proper surrogate loss is a Bregman divergence. We be-
gin with some definitions.3 Given a differentiable4 convex
function φ : S → R defined on the convex set S ⊂ Rd and
two points s0, s ∈ S the Bregman divergence of s from s0
is defined

Bφ(s, s0) := φ(s)− φ(s0)− 〈s− s0,∇φ(s0)〉 . (11)

where ∇φ(s0) is the gradient of φ at s0. A concise sum-
mary of many of the properties of Bregman divergences
is given by Banerjee et al. (2005, Appendix A). In particu-
lar, Bregman divergences always satisfyBφ(s, s0) ≥ 0 and
Bφ(s0, s0) = 0 for all s, s0 ∈ S, regardless of the choice
of φ. They are not always metrics, however, as they do not
always satisfy the triangle inequality and their symmetry
depends on the choice of φ.

When S = [0, 1], the concavity ofL (see Theorem 1) means
φ(s) = −L(s) is convex and so induces the Bregman di-
vergence5

Bφ(s, s0)=−L(s)+L(s0)−(s0−s)L′(s0)=L(s, s0)−L(s).

The converse also holds. Given a Bregman divergence Bφ
over S = [0, 1] the convexity of φ guarantees that L = −φ
is concave. Thus, we know that there is a proper loss ` with
Bayes risk equal to −φ. As noted by Buja et al. (2005,
§19), the difference

Bφ(η, η̂) = L(η, η̂)− L(η)

is also known as the point-wise regret of the estimate η̂
w.r.t. η. The corresponding (full) regret is the M -average
point-wise regret

B(η, η̂,M) := EX∼M [Bφ(η(X), η̂(X))] = L(η, η̂)−L(η).

When S = R and φ is twice differentiable, comparing the
definition of a Bregman divergence in (11) to the integral

3Any terms related to convex analysis not explicitly defined
can be found in (Hiriart-Urruty & Lemaréchal, 2001).

4Technically, φ need only be differentiable on the relative in-
terior ri(S) of S. We omit this requirement for simplicity and
because it is not relevant to this discussion.

5Technically, S is the 2-simplex {(s1, s2) ∈ [0, 1]2 : s1+s2 =
1} but we identify s ∈ [0, 1] with (s, 1− s).

representation in (7) reveals that Bregman divergences be-
tween real numbers can be defined as the non-linear part –
or “Tayl” – of the Taylor expansion of φ. That is, for all
s, s0 ∈ R

Bφ(s, s0) =
∫ s

s0

(s− t)φ′′(t)dt, (12)

since ∇φ = φ′ and the inner product is simply multiplica-
tion over the reals.

From Theorem 1 we know that−L is convex for any proper
surrogate loss `. Thus, setting φ = −L in the definition of
Bregman divergence gives us

Bφ(η, η̂) = −L(η) + L(η̂) + (η − η̂)L′(η̂) (13)
= L(η, η̂)− L(η)

by (4) in Theorem 1, which is the point-wise regret for the
loss `.

3. Weighted Integral Representations
We now consider a representation of proper losses in terms
of primitive losses that originates with Shuford et al. (1966)
and has been studied in some depth by Buja et al. (2005).
It is also a special case of the recent integral representation
obtained by Lambert et al. (2008) that generalises the ear-
lier results to scoring rules for general properties of discrete
distributions.

Our contribution is to show how this representation is a di-
rect consequence of the Taylor expansion of a proper loss’s
Bayes risk. This shows the elementary nature of this rep-
resentation and highlights the importance of the class of
cost-weighted misclassification losses (3). Intuitively, a
cost-weighted loss turns an estimate η̂ ∈ [0, 1] into the
classification Jη̂ ≥ cK and assigns a cost if this disagrees
with the true classification y. Remaining consistent with
our nomenclature for general losses, we will use Lc and
Lc to denote the cost-weighted point-wise risk and full risk
associated with each cost-weighted loss `c. The following
lemma is needed for the proof of the main result.

Lemma 8 For each c ∈ (0, 1), `c is a proper loss and its
Bayes risk Lc and regret Bc satisfy

Lc(η) = ((1− c)η) ∧ ((1− η)c) (14)
Bc(η, η̂) = |η − c|Jη ∧ η̂ ≤ c < η ∨ η̂K (15)

for η, η̂ ∈ [0, 1].

Proof By definition, for each η ∈ [0, 1]

Lc(η) = inf
η̂∈[0,1]

(1− η)cJη̂ ≥ cK + η(1− c)Jη̂ < cK

= inf
η̂∈[0,1]

η(1− c) + (c− η)Jη̂ ≥ cK,
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since Jη̂ < cK = 1−Jη̂ ≥ cK. Since (c−η) is negative if and
only if η > c the infimum is obtained by having Jη̂ ≥ cK =
1 if and only if η ≥ c, that is, by letting η̂ = η. In this case,
when η = η̂ ≥ c we have Lc(η) = c(1 − η) = Lc(η, η)
and when η = η̂ < cwe have Lc(η) = (1−c)η = Lc(η, η)
and so ` is proper.

When η ≤ c < η̂ we see that (1 − c)η = η − cη ≤
c − cη = (1 − η)c and so Lc(η) = (1 − c)η. Also,
by definition, Lc(η, η̂) = (1 − η)c in this case so
Bc(η, η̂) = (1 − η)c − (1 − c)η = c − η = |η − c|.
Similarly, when η̂ ≤ c < η, Lc(η) = (1 − η)c and
Lc(η, η̂) = (1− c)η so Bc(η, η̂) = η− c = |η− c| proving
the result.

We are now able to give the proof of Theorem 2.

Proof (Theorem 2) We first assume ` is a proper loss so
that L(η, η̂) = EY∼η[`(Y, η̂)] and L(η) = L(η, η). Ex-
panding L(η) about η̂ ∈ [0, 1] using Corollary 7 yields

L(η) = L(η̂) + (η − η̂)L′(η̂) +
∫ 1

0

φc(η, η̂)L′′(c) dc

= L(η, η̂) +
∫ 1

0

φc(η, η̂)L′′(c) dc (16)

by Theorem 1.

The generalised function w(c) = −L′′(c) ≥ 0 by the con-
cavity of L. Rearranging (16) gives

L(η, η̂) = L(η) +
∫ 1

0

φc(η, η̂)w(c) dc.

The definition of L in (2) implies L(y, η̂) = `(y, η̂) for
y ∈ {0, 1} and so

`(y, η̂) = L(y) +
∫ 1

0

φc(y, η̂)w(c) dc, (17)

where

φc(y, η̂) = Jη̂ ≤ c < yK(y − c) + Jy ≤ c < η̂K(c− y),

which is equal to the definition of `c in (3) since the left
(resp. right) term is only non-zero when y = 1 (resp. y =
0). Observe that L(0) = L(1) = 0 since L(0) = L(0, 0) =
`(0, 0) = 0 by assumption, and similarly for L(1). This
shows that (17) is equivalent to (5), completing the forward
direction of the theorem.

If we now assume the functionw ≥ 0 is given and ` defined
as in (5) then it suffices to show L(η) = L(η, η). First note
that

L(η, η̂) = EY∼η

[∫ 1

0

`c(Y, η̂)w(c) dc
]

=
∫ 1

0

Lc(η, η̂)w(c) dc.

Each of the Lc are proper by Lemma 8 and so are min-
imised when η̂ = η. Since w(c) ≥ 0 this must also be
sufficient to minimise L.

The linearity of expectation and regret provide some
weighted integral representations for other quantities.

Corollary 9 Let ` be a proper surrogate loss and let
L(η, η̂) be its point-wise risk, B(η, η̂) = L(η, η̂) − L(η)
its point-wise regret and w = −L′′. Then for η, η̂ ∈ [0, 1]

L(η, η̂) =
∫ 1

0

Lc(η, η̂)w(c) dc (18)

B(η, η̂) =
∫ η∨η̂

η∧η̂
|η − c|w(c) dc. (19)

When η(x) is the probability that x ∈ X is positive and
η̂ : X→ [0, 1] a predictor, its risk and regret satisfy

L(η, η̂,M) =
∫ 1

0

Lc(η, η̂,M)w(c) dc

B(η, η̂,M) =
∫ 1

0

Bc(η, η̂,M)w(c) dc.

Proof Equation 18 is the result of taking expectations on
both sides of (5). Equation 19 is obtained by integrating
the expression for Bc in Lemma 8. The remaining two ex-
pressions are the result of applying EM [·] to the weighted
integral representations for L and B.

4. Surrogate Regret Bounds
Proper losses for probability estimation and surrogate mar-
gin losses (Bartlett et al., 2006) for classification are closely
related. Buja et al. (2005) note that “the surrogate crite-
ria of classification are exactly the primary criteria of class
probability estimation” and that most commonly used sur-
rogate margin losses are just proper scores mapped from
[0, 1] to R via a link function. The main exceptions are
hinge losses6 which means SVMs are “the only case that
truly bypasses estimation of class probabilities and directly
aims at classification” (Buja et al., 2005, pg. 4). However,
commonly used margin losses of the form φ(yĥ(x)) are a
more restrictive class than proper losses since, as Buja et
al. (2005, §23) note, “[t]his dependence on the margin lim-
its all theory and practice to a symmetric treatment of class
0 and class 1”.

Suppose for some fixed c0 ∈ (0, 1) that Bc0(η, η̂) = α.
What can be said concerning the value of the regretB(η, η̂)
for an arbitrary but proper surrogate loss `? Theorem 3 pro-
vides an answer to this question in the form of a surrogate

6And powers of absolute divergence |y − r|α for α 6= 2.
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loss bound. Such bounds are of practical importance as the
losses Lc0 are hard to optimise and rearranging the bounds
provide a guarantee that minimising the surrogate loss (and
hence the surrogate regret) will minimise the Lc0 loss.

We now provide an elementary proof of these bounds.

Proof (Theorem 3) Let B be the conditional regret asso-
ciated with some arbitrary proper loss ` and suppose that
we know the cost-weighted regret Bc0(η, η̂) = α. By
Lemma 8, this implies that α = η − c0 when η̂ ≤ c0 < η
and α = c0 + η when η ≤ c0 < η̂. In the first case we have
η̂ ≤ c0 and η = c0 + α and so

B(η, η̂) = B(c0 − α, η̂)

=
∫ c0+α

η̂

(c0 + α− c)w(c) dc

≥
∫ c0+α

c0

(c0 + α− c)w(c) dc

by (19) and the assumption that η̂ ≤ c0. Note that this
bound is achieved for η̂ = c0 and so is tight. Thus, using
w(c) = −L′′(c) and integrating by parts gives

B(η, η̂) ≥ −
[
(c0 + α− c)L′(c)

]c0+α
c0
−
∫ c0+α

c0

L′(c)dc

= αL′(c0)− L(c0 + α) + L(c0)

as required.

The proof of the second case, when η ≤ c0 < η̂ proceeds
identically.

Corollary 4 is obtained directly by substituting α = 1
2 and

noting the symmetry of L implies L′( 1
2 ) = 0.

The bounds in Theorem 3 can be inverted so as to guarantee
the minimisation of a cost-weighted loss via the minimisa-
tion of a surrogate loss.

Corollary 10 Minimising B(η, η̂) with respect to η̂ min-
imises Bc(η, η̂) for each c ∈ (0, 1).

Proof To see this, let ψ′(c0, α) := ∂
∂αψ(c0, α) =

−L′(c0 + α) + L′(c0). Since L is concave, L′ is
non-increasing and hence L′(c0 + α) ≤ L′(c0) and
so ψ′(c0, α) ≥ 0 and therefore α 7→ ψ(c0, α) is non-
decreasing and thus invertible (although there may be
non-uniqueness at points where ψ(c0, α) is constant in
α). This invertibility means minimising B(η, η̂) w.r.t. η̂,
minimises the bound on Bc(η, η̂).

This shows that proper surrogate losses are surrogates for
the entire family of cost-sensitive losses `c, not just 0-1 loss
(i.e., the case where c = 1

2 ).

4.1. Related Work

Surrogate loss bounds have garnered increasing interest in
the machine learning community (Zhang, 2004b; Bartlett
et al., 2006; Steinwart, 2007).

All of the recent work has been in terms of margin losses
of the form

Lφ(η, ĥ) = ηφ(ĥ) + (1− η)φ(−ĥ).

As Buja et al. (2005) discuss, such margin losses can not
capture the richness of all possible proper losses. Bartlett
et al. (2006) prove that for any ĥ

ψ
(
L0−1(η, ĥ)− L0−1(η)

)
≤ Lφ(η, ĥ)− Lφ(η),

where ψ = ψ̃?? is the LF biconjugate of ψ̃,

ψ̃(θ) = H−
(

1 + θ

2

)
−H

(
1 + θ

2

)
,

H(η) = Lφ(η) and

H−(η) = inf
α : α(2η−1)≤0

(ηφ(α) + (1− η)φ(−α))

is the optimal conditional risk under the constraint that the
sign of the argument α disagrees with 2η − 1.

We will consider two examples and show that the bounds
we obtain with the above result match those obtained with
Theorem 3.

Exponential Loss Consider the link ĥ = ψ(η̂) =
1
2 log η̂

1−η̂ with corresponding inverse link η̂ = 1

1+e−2ĥ
.

Buja et al. (2005) showed that this link function combined
with exponential margin loss φ(γ) = e−γ results in a
proper loss

L(η, η̂) = η

(
1− η̂
η̂

) 1
2

+ (1− η)
(

η̂

1− η̂

) 1
2

.

Hence
L(η) = L(η, η) = 2

√
η(1− η)

and from Corollary 4 we obtain that if B 1
2
(η, η̂) = α then

B(η, η̂) ≥ 1−
√

1− 4α2.

This matches the result presented by Bartlett et al. (2006)
upon noting that B 1

2
(η, η̂) measures the loss in terms of ` 1

2

and they used `0−1 = 2` 1
2

.

Truncated Quadratic Loss Consider the margin loss
φ(ĥ) = (1 + ĥ ∨ 0)2 = (2η̂ ∨ 0)2 with link function
ĥ(η̂) = 2η̂ − 1. One can show that L(η) = 4η(1− η) and
from Corollary 4 the regret bound B(η, η̂) ≥ 4α2. This
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matches the result of Bartlett et al. (2006) when again it is
noted we used ` 1

2
and they used `0−1.

The Probing Reduction The Probing reduction (Langford
& Zadrozny, 2005) shows how the square loss for class
probability estimation can be bounded by an average cost-
weighted regret. The weighted integral representation al-
lows us to obtain a similar result for the regret for the
square loss `sq(y, η̂) := (y − η̂)2. Specifically,

Bsq(η, η̂) = EX∼M [EY∼η(X)[(Y − η̂(X))2]]

= 2
∫ 1

0

EX∼M [Bc(η(X), η̂(X))] dc. (20)

To see this, note that for square loss

Lsq(η, η̂) = η(1− η̂)2 + (1− η)η̂2,

and so
Lsq(η) = Lsq(η, η) = η − η2

which means that w(c) = −L′′sq(c) = 2.

Now, the integral representation result means that the regret
for square loss can be written

Bsq(η, η̂) = 2
∫ 1

0

Bc(η, η̂) dc.

Taking expectations with respect to M on both sides gives
the result in (20).

5. Convexity and Canonical Links
Often in estimating η one uses a parametric representa-
tion of η̂ : X →[0,1] which has a natural scale not match-
ing [0, 1]. In such cases it is common to use a link func-
tion (McCullagh & Nelder, 1989). Traditionally one writes
η̂ = ψ−1(ĥ) where ψ−1 is the “inverse link” (and ψ is of
course the forward link). The function ĥ : X → R is the
hypothesis. Often ĥ = ĥα is parametrised linearly in a pa-
rameter vector α. In such a situation it is computationally
convenient if L(η, ψ−1(ĥ)) is convex in ĥ (which implies
it is convex in α when ĥ is linear in α). Theorem 5 shows
that choosing ψ = −L′ guarantees convexity. Its proof is
aided by a slight change of notation.

Consider the general representation of B(η, η̂) presented
in (13). Set W := φ = −L, W := W

′
and w := W ′.

We consider w as a weight-function7 since the convexity of
W implies W is monotone non-decreasing and thus w is
non-negative. Rewriting (13) we have

BW (η, η̂) = W (η)−W (η̂)− (η − η̂)W (η̂),

7This weight function exactly corresponds to the weight func-
tions used by Buja et al. (2005).

where we stress we have parametrised the Bregman diver-
gence by the monotone functionW , rather than by the con-
vex function W as is traditional. Similarly, denote by LW
the w-weighted conditional loss parametrised by W . We
shall see below that our choice of parametrisation is felici-
tous.

When a function f is suitably smooth, the Legendre-
Fenchel (LF) dual of f can be expressed in terms of its
derivative and inverse. Furthermore in this case (writing
Df := f ′) f ′ = (Df?)−1. Thus with w, W , and W de-
fined as above,

W =(D(W
?
))−1, W−1 =D(W

?
), W

?
=
∫
W−1. (21)

The following theorem is known (Zhang, 2004a) but as will
be seen, stating it in terms of BW provides some advan-
tages.

Theorem 11 Let w, W , W and BW be as above. Then for
all x, y ∈ [0, 1],

BW (x, y) = BW−1(W (y),W (x)). (22)

Proof Using the Legendre transform we have

W
?
(u) = u ·W−1(u)−W (W−1(u))

⇒ W (W−1(u)) = u ·W−1(u)−W ?
(u). (23)

Equivalently (using (21))

W
?
(W (u)) = u ·W (u)−W (u). (24)

Thus substituting and then using (23) we have

BW (x,W−1(v))
= W (x)−W (W−1(v))− (x−W−1(v))·W (W−1(v))

= W (x) +W
?
(v)− vW−1(v)− (x−W−1(v)) · v

= W (x) +W
?
(v)− x · v. (25)

Similarly (this time using (24)) we have

BW−1(v,W (x))

= W
?
(v)−W ?

(W (x))− (v−W (x))·W−1(W (x))

= W
?
(v)− xW (x) +W (x)− v · x+ xW (x)

= W
?
(v) +W (x)− v · x. (26)

Comparing (25) and (26) we see that

BW (x,W−1(v)) = BW−1(v,W (x)).

Let y = W−1(v). Thus substituting v = W (y) leads to
(22).
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We now give the proof of Theorem 5 which provides a sim-
ple sufficient condition for the composite loss to be convex
in ĥ. It was previously shown (with a more intricate proof)
by Buja et al. (2005). The result also corresponds to the
notion of “matching loss” (Helmbold et al., 1999).

Proof (Theorem 5) If the link ψ = W = −L′ (and thus
η̂ = W−1(ĥ)) then BW (η, η̂) = W (η) + W

?
(ĥ) − η · ĥ.

by (25) and so we have that

LW (η, η̂) = BW (η, η̂) + L(η)

= W (η) +W
?
(ĥ)− η · ĥ−W (η)

which is just W
?
(ĥ)− η · ĥ. Its convexity follows from the

fact that W
?

is convex (since it is the LF dual of a convex
function W ) and the overall expression is the sum of this
and a linear term.

6. Conclusions
We have: 1) developed new explicit tight regret bounds
for general proper losses (not just margin losses); 2) de-
veloped explicit formulae for losses and regrets in terms
of weighted representations; and 3) simplified the proofs
of some classical but little known results (Savage’s expan-
sion, the Shuford integral representation and Buja’s con-
vexity of composite losses with canonical links). Impor-
tantly, all these results were derived using only elementary
techniques – the most fundamental being Taylor’s theorem.

The elementary nature of our presentation highlights the
conditional Bayes risk of a proper loss as a key object in
learning theory and demonstrates the value of its integral
representation. Further uses of this representation are given
by Reid and Williamson (2009).
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tals of convex analysis. Berlin: Springer.

Lambert, N., Pennock, D., & Shoham, Y. (2008). Eliciting
properties of probability distributions. Proceedings of
the ACM Conference on Electronic Commerce (pp. 129–
138).

Langford, J., & Zadrozny, B. (2005). Estimating class
membership probabilities using classifier learners. Pro-
ceedings of the Tenth International Workshop on Artifi-
cial Intelligence and Statistics (AISTAT’05).

Liese, F., & Vajda, I. (2006). On divergences and informa-
tions in statistics and information theory. IEEE Transac-
tions on Information Theory, 52, 4394–4412.

McCullagh, P., & Nelder, J. (1989). Generalized linear
models. Chapman & Hall/CRC.

Reid, M. D., & Williamson, R. C. (2009). Information, di-
vergence and risk for binary experiments. arXiv preprint
arXiv:0901.0356v1, 89 pages.

Savage, L. J. (1971). Elicitation of personal probabilities
and expectations. Journal of the American Statistical
Association, 66, 783–801.

Schervish, M. (1989). A general method for comparing
probability assessors. The Annals of Statistics, 17, 1856–
1879.

Shuford, E., Albert, A., & Massengill, H. (1966). Admis-
sible probability measurement procedures. Psychome-
trika, 31, 125–145.

Steinwart, I. (2007). How to compare different loss func-
tions and their risks. Constructive Approximation, 26,
225–287.

Zhang, J. (2004a). Divergence function, duality, and con-
vex analysis. Neural Computation, 16, 159–195.

Zhang, T. (2004b). Statistical behaviour and consistency of
classification methods based on convex risk minimiza-
tion. Annals of Mathematical Statistics, 32, 56–134.


