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Abstract

We present a general Bayesian framework for
hyperparameter tuning in L2-regularized super-
vised learning models. Paradoxically, our al-
gorithm works by first analytically integrating
out the hyperparameters from the model. We
find a local optimum of the resulting non-
convex optimization problem efficiently using a
majorization-minimization (MM) algorithm, in
which the non-convex problem is reduced to a
series of convex L2-regularized parameter es-
timation tasks. The principal appeal of our
method is its simplicity: the updates for choos-
ing the L2-regularized subproblems in each step
are trivial to implement (or even perform by
hand), and each subproblem can be efficiently
solved by adapting existing solvers. Empirical
results on a variety of supervised learning mod-
els show that our algorithm is competitive with
both grid-search and gradient-based algorithms,
but is more efficient and far easier to implement.

1. Introduction
Regularization helps to prevent overfitting in supervised
learning models by restricting model capacity. Penalty-
based regularization methods encode a preference for sim-
pler hypotheses directly into the optimization problem used
for estimating model parameters. Support vector machines,
for example, use an L2 penalty of the form 1

2C ||w||
2,

where w ∈ Rn is the vector of model parameters, ||·|| is
the standard Euclidean norm, andC is a user-specified con-
stant, commonly termed a regularization hyperparameter.
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However, this gives rise to the problem of selecting the ap-
propriate value for the hyperparameter C.

The most common methods for hyperparameter selection
use cross-validation to tune the hyperparameters. For ex-
ample, in the widely used grid-search algorithm, one trains
a model using a range of values for C and selects the value
that gives the best performance on a holdout set. However,
the computational cost of grid-search scales exponentially
with the number of hyperparameters in the model, thus lim-
iting its use to models with few hyperparameters.

For models with multiple hyperparameters, more so-
phisticated gradient-based algorithms exist for optimizing
cross-validation loss with respect to the hyperparameters.
Gradient-based hyperparameter learning algorithms have
been proposed for a variety of supervised learning mod-
els, including neural networks (Larsen et al., 1996a; An-
dersen et al., 1997; Goutte & Larsen, 1998; Larsen et al.,
1996b), support vector machines (Glasmachers & Igel,
2005; Keerthi et al., 2007; Chapelle et al., 2002), and
more recently, conditional log-linear models (Do et al.,
2008). However, these algorithms typically require com-
plicated computations, making them cumbersome to im-
plement. For example, the hyperparameter learning algo-
rithm of Do et al. (2008) for log-linear models requires the
computation of products of the Hessian of the training log-
likelihood with arbitrary vectors, and performing conjugate
gradient optimization for solving linear systems based on
these Hessian-vector products. As such, the programmer
effort required in getting a gradient-based hyperparameter
learning algorithm to work in practice is non-trivial.

For probabilistic supervised learning models, Bayesian
methods provide an alternative to cross-validation–based
methods for hyperparameter learning; Bayesian methods
treat hyperparameters as parameters in the model with pre-
specified prior distributions. We focus on the “integrate-
out” approach proposed by Buntine and Weigend (1991),
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and later extended by Williams (1995), Cawley and Talbot
(2006), and Cawley, Talbot and Girolami (2007). In this
approach, an uninformative prior is placed over the regular-
ization hyperparameter, which is then integrated out, result-
ing in a modified regularization penalty (and optimization
objective) in which the hyperparameters have been elimi-
nated.

In this paper, we propose a simple and general frame-
work for hyperparameter learning in L2-regularized mod-
els based on Buntine and Weigend’s strategy. Using their
Bayesian formulation, our framework expresses the prob-
lem of parameter learning in a model where regularization
hyperparameters have been eliminated as a non-convex op-
timization problem. In general, although non-convex op-
timization problems can be extremely difficult to solve,
we propose an effective strategy based on majorization-
minimization. In this approach, we iteratively replace the
non-convex portion of our objective function with a con-
vex upper-bound. Each convex optimization subproblem,
in turn, has the form of an L2-regularized parameter esti-
mation task, which we solve efficiently by adapting exist-
ing solvers. Finally, we interpret the regularization coef-
ficients from the sequence of convex subproblems as the
hyperparameter choices in our hyperparameter learning al-
gorithm.

The salient characteristic of the majorization-minimization
algorithm when applied to our problem is its striking ease
of implementation. Like cross-validation–based strategies,
our algorithm requires iterated solution of regularized pa-
rameter estimation problems for varying choices of hy-
perparameters. Unlike gradient-based methods, however,
the choice of hyperparameter setting in each iteration is a
simple closed-form expression which is trivial to evaluate.
However, the assumptions made by the Bayesian model are
not without consequences, and we do not claim that the hy-
perparameters chosen by our algorithm will always be op-
timal for generalization performance. In practice, however,
our approach often performs surprisingly well in spite of
its simplicity. Moreover, our framework is applicable to a
wide variety of problems, including structured classifica-
tion models (e.g., log-linear models) and standard classi-
fication/regression models (e.g., least-squares and logistic
regression).

2. The “integrate out” strategy
Consider a general supervised learning problem, in which
D = {(x(i), y(i))}mi=1 is a training set of m independently
and identically distributed (IID) examples. The labels y(i)

may be real valued, discrete, or structured, depending on
the type of problem we are trying to solve. We wish to
estimate the parameters w ∈ Rn for a probabilistic model
of y given x, p(y|x; w). The usual approach is to formulate

the learning problem as regularized maximum likelihood
(ML) or maximum a posteriori (MAP) estimation,

wMAP = arg min
w

[− log p(D|w)− log p(w;C)], (1)

where p(w;C) is a prior distribution over model param-
eters with the hyperparameter C.1 For example, when
p(w;C) ∝ exp(− 1

2C ||w||
2) is an isotropic zero-mean

Gaussian prior with inverse variance C, then the second
term above simplifies to 1

2C ||w||
2, up to additive constants

independent of C.

In an ideal Bayesian framework, one regards C as another
random variable in the model with some fixed prior dis-
tribution p(C), and avoids committing to point estimates
of model parameters altogether by making predictions
via the integral, p(y|x,D) =

∫
w
p(y|x,w)p(w|D) dw,

where p(w|D) ∝
∫
C
p(D|w)p(w|C)p(C) dC follows

from Bayes’ rule. In general, the combination of
integrals required for ideal Bayesian inference is analyt-
ically intractable, so one must resort to either sampling
strategies or approximations. One possibility is to ap-
proximate p(w|D) using a point mass centered at its
mode, w∗ = arg maxw

[∫
C
p(D|w)p(w|C)p(C) dC

]
, or

equivalently, w∗ is given by

arg min
w

[
− log p(D|w)−log

∫
C

p(w|C)p(C)dC
]
. (2)

In this form, we see that (2) is a close variant of (1); while
p(w;C) depends on C, the hyperparameter C has been
marginalized out in p(w) =

∫
C
p(w|C)p(C)dC. For this

reason, (2) is often referred to as the “integrate out” ap-
proach for dealing with hyperparameters. The integrate
out approach was first introduced by Buntine and Weigend
(1991) and subsequently applied by Williams (1995), Caw-
ley and Talbot (2006), and Cawley, Talbot and Girolami
(2007). This approach extends in a straightforward manner
to the case where multiple hyperparameters or hyperparam-
eter groupings are used. For clarity of exposition we first
present the derivations for the single hyperparameter case.
We treat the multiple and grouped hyperparameter cases in
a later subsection.

Integrating out a single hyperparameter Consider
an isotropic Gaussian prior of the form p(w|C) ∝
exp(− 1

2C ||w||
2), which corresponds to the product of n

independent zero-mean Gaussian priors with common vari-
ance 1/C for each parameter wi. If we place a Gamma
prior on C, it is possible to compute the integral for p(w)
analytically in closed form. Similar derivations for Laplace
priors over the parameterswi and Jeffrey’s prior forC were
presented in (Williams, 1995; Cawley et al., 2007).

1Here, we view C as a pre-determined parameter of the dis-
tribution p(w;C), and not a random variable. This is why we do
not condition over C.
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More precisely, suppose C ∼ Gamma(α, β), such that
p(C;α, β) = Cα−1βα exp(−βC)

Γ(α) . In this case, the desired
integral for p(w) is∫ ∞

0

(
C

2π

)n
2

e−
1
2C||w||

2
· C

α−1βαe−βC

Γ(α)
dC

=
∫ ∞

0

βα

(2π)
n
2 Γ(α)

C
n
2 +α−1 e−( 1

2 ||w||
2+β)C dC

=
βαΓ(n2 + α)

(2π)
n
2 Γ(α)

(
1
2
||w||2 + β

)−(n2 +α) ∫ ∞
0

I(C) dC

where the integrand I(C) is given by

I(C) =
C
n
2 +α−1

(
1
2 ||w||

2 + β
)n

2 +α

e−( 1
2 ||w||

2+β)C

Γ(n2 + α)
;

we have factored out terms independent of C and the ad-

ditional term Γ(n2 + α)
(

1
2 ||w||

2 + β
)−(n2 +α)

to form the
new integrand I(C). Since I(C) is actually the probability
density function for a Gamma distribution (with parame-
ters n

2 + α and 1
2 ||w||

2 + β),
∫∞

0
I(C) dC = 1. Thus, the

integral for p(w) simplifies to

βαΓ(n2 + α)

(2π)
n
2 Γ(α)

(
1
2
||w||2 + β

)−(n2 +α)
. (3)

Hence, up to additive constants independent of w,
log p(w) = −

(
n
2 + α

)
log
(

1
2 ||w||

2 + β
)

and we have
successfully eliminated the regularization constant C.

Integrating out multiple hyperparameters In some
cases, different features in a probabilistic model may be
known to have considerably different prior variances. Here,
we show how the “integrate out” framework may be ex-
tended for multiple hyperparameters by describing a more
flexible parameterization of the prior p(w|C) in terms of
a vector of parameters C := (C1, . . . , Ck). This param-
eterization is adapted from (Do et al., 2008) and is also
described briefly in (Williams, 1995).

Consider a setting in which parameters w = (w1, . . . , wn)
have been partitioned into k fixed groups, known as regu-
larization groups, such that the parameters in each group
are known in advance to have roughly similar variances.
Such a setting occurs regularly in structured estimation
tasks, where different types of features have varying fre-
quencies of occurrence. For example, in natural language
processing tasks, unigram and bigram features might be
regularized separately; in RNA secondary structure predic-
tion, features for different types of structural motifs should
be treated separately.

Let π : {1, . . . , n} → {1, . . . , k} be a fixed mapping from
parameters to their corresponding regularization groups.
This mapping should be available to the learning algorithm
prior to training. The inverse image of this mapping is de-
fined by π−1(j) := {i ∈ {1, . . . , n} |π(i) = j}. Finally,
let nj :=

∣∣π−1(j)
∣∣ be the size of the jth regularization

group, for j = 1, . . . , k. An automatic relevance deter-
mination (ARD) (MacKay, 1992) prior is a special case of
this framework, where we let each hyperparameter be in its
own group.

Suppose p(w|C) ∝ exp(− 1
2

∑
i Cπ(i)w

2
i ). Furthermore,

suppose that each Cj is now independently sampled from
a Gamma distribution with common parameters α and β.
Following the derivation in the previous section, we obtain

p(w)∝
k∏
j=1

Γ
(nj

2
+α
)β+

1
2

∑
i∈π−1(j)

w2
i

−(
nj
2 +α)

(4)

and therefore up to additive constants,

log p(w)=−
k∑
j=1

(nj
2

+α
)

log

β+
1
2

∑
i∈π−1(j)

w2
i

. (5)

3. A majorization-minimization algorithm for
hyperparameter learning

In this section we describe how to perform the minimiza-
tion in equation (2) using the new prior p(w) computed
in the previous section, which results in the optimization
problem (for the single hyperparameter case)

min
w

[
−log p(D|w)+

(n
2

+α
)

log
(

1
2
||w||2+β

)]
. (6)

In the models we consider in this paper, the negative
log-likelihood − log p(D|w) is convex in the parameters
w. However, the second term corresponding to the log
marginalized prior is in fact neither convex nor concave
in w. Because the log prior is differentiable, one could
consider applying a generic gradient-based algorithm in or-
der to identify a local minimum of the objective function.
However, we found that in our experiments, such a strategy
is highly prone to identifying poor local minima, which do
not give as good performance in practice as compared to
our algorithm.

Single hyperparameter learning Because the optimiza-
tion objective contains a term which is neither convex nor
concave, we cannot simply apply standard algorithms for
minimizing a difference of two convex functions, such as
the Convex-Concave Procedure (CCCP) (Yuille & Ran-
garajan, 2003). Instead, we employ a bound optimiza-
tion strategy which is a special instance of the class of
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Algorithm 1 Majorization-minimization algorithm for sin-
gle hyperparameter learning

Initialize t := 0.
repeat

Compute C(t) :=

1 if t = 0
n/2+α

1
2 ||w(t)||2+β

otherwise.

w(t+1) := arg min
w

[
− log p(D|w) +

1
2
C(t) ||w||2

]
.

until convergence

majorization-minimization (MM) algorithms (Lange et al.,
2000). Our strategy proceeds in an EM-like fashion, alter-
nating between construction of a convex upper bound of
the objective function and minimization of that bound.

To see how this is done, recall that the function log x is con-
cave over the domain R++ = (0,∞), and hence is upper-
bounded by its first-order Taylor expansion. That is, for any
x, y ∈ R++, log x ≤ log y+ (x− y)/y = log y+x/y−1;
furthermore, the inequality is tight if and only if x = y. Let
h(w) = 1

2 ||w||
2 + β. Then, given a parameter vector w(t)

on iteration t, it follows that for any w ∈ Rn, if β > 0,

log (h(w)) ≤ log
(
h(w(t))

)
+

h(w)
h(w(t))

− 1. (7)

Letting f(w) denote the objective function of (6), and
defining the function

g(w; w(t)) :=− log p(D|w)

+
(n

2
+α
)[

log
(
h(w(t))

)
+

h(w)
h(w(t))

−1
]
,

it follows from (7) that f(w) ≤ g(w; w(t)) for any param-
eter vectors w and w(t), provided β > 0.

The MM algorithm proceeds by repeatedly constructing a
convex upper bound for the non-convex prior terms us-
ing (7), and then minimizing this upper bound until con-
vergence. In particular, it computes a sequence of suc-
cessive iterates for the parameter vector w as follows:
given a parameter vector w(t) on iteration t, compute
the next iterate in the sequence, w(t+1), via w(t+1) :=
arg minw g(w; w(t)). More explicitly, w(t+1) is given by

arg min
w

[
− log p(D|w)+

(
n/2+α

1
2

∣∣∣∣w(t)
∣∣∣∣2+β

)(
1
2
||w||2

)]
,

where we have omitted constant terms from the upper-
bounding function that do not affect the optimization.2 We

2In practice, we can set the initial parameter vector w(0) to
be the solution of a regularized ML estimation problem with the
regularization constant set to an arbitrary value, e.g., 1.

may then show that our algorithm monotonically decreases
the objective, since

f(w(t+1)) ≤ g(w(t+1); w(t)) ≤ g(w(t); w(t)) = f(w(t)).

The first inequality follows from the argument that
g(w; w(t)) upper bounds f(w) for any w, and the second
inequality holds because our algorithm computes w(t+1) =
arg minw g(w; w(t)).3 Observe that as a consequence of
our upper-bounding procedure, the objective function on
each iteration t is that of an L2-regularized ML estimation
problem with regularization constant C(t) = n/2+α

1
2 ||w(t)||2+β

(see Algorithm 1). This allows us to use existing solvers
for such problems to compute the iterates, making the al-
gorithm easy to implement as a wrapper around any such
solver. In addition, improvements in such solvers trans-
late directly into improvements for this algorithm: one may
make use of faster solvers for solving these problems when
available to speed up the algorithm.

Moreover, the objective functions in each iteration give us
a way to interpret what the algorithm is doing. Upon ter-
mination, the algorithm will have solved a regularized ML
estimation problem with a specific regularization constant
C(t), which we can interpret to be the optimal value for
the constant. Thus, even though we originally eliminated
the regularization hyperparameters from the objective func-
tion, the majorization-minimization algorithm provides us
a way to learn the optimal hyperparameter C for training a
model using standard MAP estimation.

Multiple hyperparameter learning To generalize the
majorization-minimization algorithm to the multiple hyper-
parameter case, observe that the new prior in this case is the
sum of multiple functions of the same essential form as the
regularizer in (6). Hence, we can apply the upper bound-
ing argument to each logarithm in the same way as before
(see Algorithm 2). Here at each step the algorithm solves a
weighted L2 regularized ML estimation problem, with the
weights for each regularization group given analogously to
how they are given in the single hyperparameter case. As
before, we may interpret the weights in the final step of the
algorithm, when it converges, to be the optimal hyperpa-
rameter settings for a regularized ML estimation problem.

3In fact, when α = 0 and β = 1, our algorithm for single hy-
perparameter learning is an instance of the algorithm proposed by
(Delaney & Bresler, 1998) for edge-preserving regularized image
reconstruction, who proved convergence of the method to a local
minimizer of (6) under certain conditions. For convenience, we
used α = 0, and β = 1 in our experiments. We performed a
sensitivity analysis in our experiments using multinomial logistic
regression and found that this is a reasonable choice. For other
values of α and β > 0, it is also possible to prove convergence of
our algorithm using a similar proof to that in (Delaney & Bresler,
1998). We omit the proof due to a lack of space.
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Algorithm 2 Majorization-minimization algorithm for
multiple hyperparameter learning

Initialize t := 0.
repeat

For j = 1, . . . , k, compute

C
(t)
j :=

1 if t = 0
nj/2+α

1
2

∑
i∈π−1(j)

(
w

(t)
i

)2
+β

otherwise.

w(t+1) :=arg min
w

[
− log p(D|w)+

1
2

n∑
i=1

C
(t)
π(i)w

2
i

]
.

until convergence

4. Experiments
In order to illustrate the generality of our proposed frame-
work, we show that it is competitive with grid-search on
linear regression; that it is competitive with grid-search and
the gradient-based method in (Do et al., 2008) on logis-
tic and multinomial logistic regression models when eval-
uated on an array of tasks;4 and that it is competitive with
a gradient-based algorithm in the case of a conditional log-
linear model for RNA secondary structure prediction. We
also evaluated the approach of directly optimizing the mod-
ified objective using L-BFGS. The sensitivity of the al-
gorithm to parameters α and β was also evaluated on the
multinomial logistic regression model.

Linear regression Suppose that the target labels y(i) ∈
R are related to the input variables x(i) via y(i) = wTx(i)+
ε(i) where w ∼ N (0, C−1I) and ε(i) ∼ N (0, σ2) for some
unknown variance parameter σ2. In this case, we may treat
σ2 as a random variable in a similar way to the regulariza-
tion hyperparameter C. Integrating out σ using Jeffrey’s
prior, we obtain the optimization problem,

w∗=arg min
w

[
m

2
log

m∑
i=1

(
y(i) −wTx(i)

)2

+
1
2
C ||w||2

]
In this setting, the regularized ML estimation problems in
each iteration of the majorization-minimization algorithm
are standard ridge regression problems which can be solved
using standard numerical methods. We compared the per-
formance of our algorithm against grid-search, in terms of
mean squared-error (MSE). For reference, we also include
the MSE of ordinary linear regression (LR).

4The datasets used were obtained from http:
//www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/. We used the supplied test sets, or otherwise held
out 30% of the data as the test set and used the remaining 70%
for training. All algorithms were given the same amount of
training data, from which a validation set was constructed if
necessary. 5-fold cross-validation was used in the experiments
for grid-search and we considered values C = 2k for integral k
such that −10 ≤ k ≤ 10.

Table 1. Methods comparison for L2-regularized linear regres-
sion, on test set MSE. -n/a- indicates that the problem was ill-
conditioned and no unique solution exists.

Dataset Test MSE Best C
LR Grid MM Grid MM

abalone 4.815 4.970 4.821 1 0.109
bodyfat 0.000 0.000 0.000 0.0625 0.0600
cpusmall 93.325 93.506 93.381 0.5 0.160
housing 24.111 24.833 24.491 2 1.04
mg 0.0213 0.0213 0.0213 2 1.630
mpg 10.759 11.223 11.204 1 0.951
pyrim -n/a- 0.00355 0.00367 8 1.137
space 0.0190 0.0190 0.0190 0.00391 0.00503
triazines -n/a- 0.0272 0.0247 2 26.579

Table 2. Methods comparison for L2-regularized logistic regres-
sion.

Dataset Accuracy (%)
Grid Grad Direct MM

australian 86.96 86.47 85.51 85.51
breast-cancer 96.08 96.08 96.57 96.57
diabetes 76.52 76.96 76.52 76.09
german-numer 75.33 75.33 75.00 75.00
heart 83.95 87.65 83.95 86.42
ionosphere 83.81 82.86 80.00 82.86
liver-disorders 68.93 67.96 67.96 65.05
mushrooms 100.00 100.00 100.00 100.00
sonar 70.97 75.81 66.13 70.97
splice 73.24 85.47 73.29 85.33
w1a 97.32 97.83 97.20 97.03

As shown in the Table 1, the MSE of all the methods are al-
most identical. This may be because the datasets we tested
the methods on are too easy, since even ordinary linear re-
gression performs well. In fact, it often performs best, ex-
cept on two ill-conditioned datasets, pyrim and triazines,
for which no unique solution exists, causing it to fail. Also,
we observe that the optimal regularization hyperparameters
found by our approach are qualitatively similar to those
found by grid-search. Moreover, these hyperparameters
were found after only 4-7 iterations of the MM algorithm.

Logistic regression We applied the framework to L2-
regularized logistic regression, and compared it to grid-
search and the gradient-based method. In this model,
we have labels y ∈ {−1,+1} distributed according to
p(y|x; w) = 1

1+exp(−ywTx)
.

As seen from the results in Table 2, our algorithm performs
competitively with both grid-search and the gradient-based
method. The results also show that directly optimizing
the modified objective yields worse results on a number of
datasets, most notably on the sonar (5% lower) and splice
(12% lower) datasets. We observed that our algorithm is
11 to 34 times as fast as grid-search, and 1.2 to 25 times as
fast as the gradient-based method, as measured by running
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time. On 7 of the datasets, our algorithm was at least 20
times as fast as grid-search.

Multinomial Logistic Regression Generalizing logistic
regression to the case where we have multiple classes yields
the multinomial logistic regression model. Here we have
labels y ∈ {1, . . . , k}, distributed as p(y = k|x; w) =

exp(wT
k x)∑k

i=1
exp(wT

i
x)

, where wi is the parameter vector corre-

sponding to class i. We compared our framework against
grid search and the gradient-based algorithm.

As can be seen from the results in Table 3(a), our algo-
rithm performs similarly to grid-search and the gradient-
based algorithm, even outperforming these competing al-
gorithms on some datasets (dna, glass, iris). However, our
algorithm performs worse on the svmguide2 dataset. The
results also show that our MM algorithm performs as well
or better than direct optimization of the modified objec-
tive; direct optimization yielded significantly worse per-
formance on the iris (11% lower) and vowel (7% lower)
datasets. Our algorithm was 3.3 to 25 times as fast as grid-
search as measured by execution time. As compared to the
gradient-based method, our algorithm was 2 to 20 times
as fast. Substantial speedups were observed on the larger
datasets (connect-4, dna, mnist1, and usps), being 11 to 25
times as fast as grid-search and 2 to 11 times as fast as the
gradient-based algorithm.

We also tested for the stability of the learned hyper-
parameters and model accuracy with respect to α and
β using the multinomial logistic regression model. We
ran our algorithm for all pairs of α, β where α, β ∈{

2−7, 2−5, . . . , 211
}

, on each of the datasets listed in Table
3(a). In general, the accuracy of the model did not vary dra-
matically, except when α > 25, where the accuracy drops
drastically in some cases. On some datasets the learned hy-
perparameter did not vary much, but on others there was
a general increasing trend as α was increased and β was
decreased.

Conditional log-linear models Ribonucleic acids
(RNAs) are a class of biological macromolecules which
play important roles in all living cells. In the problem
of RNA secondary structure prediction, we are given an
RNA sequence x and asked to predict the pattern of nested
base-pairings y that arise when the RNA folds in vivo.
For this real world task, we applied our hyperparameter
learning framework to a probabilistic modeling framework
known as conditional log-linear models (CLLMs). In
a CLLM, the conditional probability of y given x is
modelled as p(y|x; w) ∝ exp(wTF(x, y)) where F is a
mapping of input-output pairs to features.

Here, the features were constructed to mirror the energetic
terms found in standard RNA physics-based models, such

Table 4. ROC area for the RNA secondary structure prediction
task.

Hyperparameter(s) Gradient Direct MM
Single 0.619 0.603 0.603

Grouped 0.638 0.612 0.633

as hairpin loops, bulge loops and interior loops (Do et al.,
2006). Unlike in the previous tasks, the features for the
RNA secondary structure problem have very natural group-
ings based on the types of structural motifs they detect;
we took advantage of these groupings in order to test the
performance our hyperparameter learning algorithm in the
multiple hyperparameter setting.

We evaluated our algorithm on a collection of 151
known RNA sequence-structure pairs culled from the Rfam
database (Griffiths-Jones et al., 2003) using two-fold cross-
validation, and compared it to the gradient-based hyperpa-
rameter learning algorithm described in (Do et al., 2008).
As shown in Table 3(b), the hyperparameters learned on
each fold are practically identical, which reflects the ro-
bustness of our approach. Moreover, even after just a sin-
gle iteration of the iterative linearization algorithm, the
learnt hyperparameters were qualitatively close to their fi-
nal values, further showing the robustness of our approach.
In fact, features with small regularization hyperparame-
ters correspond to properties of RNA molecules that are
known to contribute strongly to the energetics of RNA sec-
ondary structure formation, while most of the features with
large regularization hyperparameters correspond to struc-
tural properties that are not as well correlated to RNA sec-
ondary structure, or may be simply too noisy to be useful.

For cross-validation performance, we used ROC area as a
measure of accuracy, as described in (Do et al., 2006). The
results are summarized in Table 4. Our algorithm gives
slightly worse but nonetheless competitive results as com-
pared to the gradient-based method in terms of the ROC
area. Considering the complexity involved in the imple-
mentation of the gradient-based method, the slight reduc-
tion in performance may be a small price to pay for ease of
implementation. We also tried directly optimizing the non-
convex objective function using standard gradient methods;
while this gave comparable performance in the single hy-
perparameter case, in the multiple hyperparameter setting,
it performed significantly worse, indicating convergence to
a poor local optimum.

5. Related work and discussion
We have presented a Bayesian approach for hyperparame-
ter learning based on placing a Gamma prior over the hy-
perparameters and integrating them out of the model. A
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Table 3. (a) Methods comparison for L2-regularized multinomial logistic regression.. (b) Grouped hyperparameters learned for RNA
secondary structure prediction task.

(a)
(b)

Dataset k
Accuracy (%)

Grid Grad Direct MM
connect-4 3 75.62 75.62 75.59 75.60
dna 3 94.94 95.03 95.11 95.11
glass 6 64.06 65.62 67.19 67.19
iris 3 84.44 88.89 82.22 93.33
letter 26 75.62 77.34 75.60 77.30
mnist1 10 91.44 91.64 89.68 89.86
satimage 6 83.25 83.65 83.80 83.50
segment 7 95.24 95.09 93.51 93.51
svmguide2 3 84.62 84.62 60.68 60.68
usps 10 92.08 91.98 90.33 90.33
vehicle 4 82.21 83.00 82.21 83.00
vowel 11 40.48 48.70 40.91 48.27
wine 3 98.11 98.11 98.11 98.11

Hyperparameter group After 1 iteration Final values
Fold A Fold B Fold A Fold B

base pairings 1.647 1.884 1.047 1.129
terminal mismatch interactions 13.473 10.442 126.280 124.953
hairpin loop lengths 0.771 0.875 0.886 0.953
explicit internal loop sizes 4.436 3.505 3.891 3.478
bulge loop lengths 2.961 3.310 5.903 6.200
internal loop lengths 4.663 3.072 9.626 8.792
symmetric internal loop lengths 5.528 5.469 6.617 6.511
internal loop asymmetry 5.710 6.869 9.798 10.967
single base bulge nucleotides 1.882 1.943 1.261 1.241
1× 1 internal loop nucleotides 2.140 3.209 6.236 6.571
helix stacking interactions 20.738 21.066 67.288 65.758
helix closing interactions 0.683 0.788 0.302 0.380
multi-branch loop lengths 0.454 0.443 0.329 0.312
single base pair stacking interactions 12.377 13.262 61.294 62.128
external loop lengths 0.691 0.787 0.833 0.779

similar approach has also been adopted for L2-regularized
models by Figueiredo (2003) for the purpose of learning
sparse models. However, in his approach, an uninforma-
tive Jeffrey’s prior is placed over the variance, as opposed
to the inverse variance, as in our formulation.5 Nonethe-
less, the resultant distributions over model parameters are
equivalent in the case where each parameter is separately
regularized. In the other settings where we have single or
grouped hyperparameters, the integrals involved when we
proceed using Figueiredo’s approach become analytically
intractable, and it is unclear how to proceed further. In con-
trast, the integrals remain tractable in our framework, and
we can efficiently find a local minimum for the resultant
optimization problem using the majorization-minimization
algorithm that we propose in this paper. Williams (1995)
and Cawley et al. (2007) have also adopted the approach
of integrating out the hyperparameters in the case whenL1-
regularization is used. Williams applied this approach to
neural networks while Cawley et al. applied it to multino-
mial logistic regression. A similar optimization algorithm
is described in (Fazel et al., 2003) for the purpose of matrix
rank minimization.

Another possible approach would be to integrate out the
parameters to obtain the marginal likelihood (or evidence),
and optimize the latter over the hyperparameters. This is
known as the empirical Bayes (i.e., ML-II) strategy, and it
is used in Automatic Relevance Determination (MacKay,
1992) and the Relevance Vector Machine (RVM) (Tipping,
2001). In these two methods, the posterior distribution over
model parameters is approximated using a Gaussian distri-
bution about their most probable values. However, in order
to compute the required “Occam factor,” one has to com-
pute the determinant of the Hessian matrix, which may be
computationally expensive, for example, in large log-linear
models. More recently, a fast marginal likelihood optimiza-

5The uninformative Jeffrey’s prior may be viewed as the limit
of Gamma distributions whose parameters tend to zero.

tion algorithm has been proposed for the RVM (Tipping &
Faul, 2003). A third approach is the fully Bayesian strat-
egy, in which both parameters and hyperparameters are in-
tegrated out to obtain a posterior distribution over all possi-
ble outputs given the input data. However, the integrals are
typically analytically intractable, and Monte Carlo integra-
tion techniques (Neal, 1996) may be used to approximate
them. Such techniques are computationally expensive and
may be slow to converge.

As mentioned, numerous other approaches to hyperparam-
eter learning exist. While our approach may not always
give the best performance as compared to all these other
methods, its performance is quite competitive; we do note
that in a number of situations, possibly due to model mis-
specification, our method performs worse than grid-search
and the gradient-based algorithm. Nonetheless, there are
typically efficiency gains as compared to grid-search and
the gradient-based algorithm, especially on larger datasets.
Our algorithm thus appears to be trading off a little accu-
racy for modest efficiency gains. One issue that needs to
be further explored is the stability of the model with re-
gards to the α and β parameters. While our simple choice
of α = 0, β = 1 has worked well on the array of tasks that
we described in this paper, further investigation is needed
to see if this choice works well in general.

The most important characteristic of our method, how-
ever, is its simplicity in implementation. Generally, the
majorization-minimization algorithm reduces to writing a
wrapper around existing solvers. Often, the updates can
even be easily computed by hand, making this method ideal
for quick-and-dirty machine learning “proof-of-concept”
applications. If additional performance is desired, one may
then turn to model-specific methods which may require
greater effort in implementation and more computation.
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