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Abstract

Many methods are available for comput-
ing semantic similarity between individ-
ual words, but certain NLP tasks require
the comparison of word pairs. This pa-
per presents a kernel-based framework for
application to relational reasoning tasks of
this kind. The model presented here com-
bines information about two distinct types
of word pair similarity: lexical similarity
and relational similarity. We present an
efficient and flexible technique for imple-
menting relational similarity and show the
effectiveness of combining lexical and re-
lational models by demonstrating state-of-
the-art results on a compound noun inter-
pretation task.

1 Introduction

The problem of modelling semantic similarity be-
tween words has long attracted the interest of re-
searchers in Natural Language Processing and has
been shown to be important for numerous applica-
tions. For some tasks, however, it is more appro-
priate to consider the problem of modelling sim-
ilarity between pairs of words. This is the case
when dealing with tasks involving relational or
analogical reasoning. In such tasks, the chal-
lenge is to compare pairs of words on the basis of
the semantic relation(s) holding between the mem-
bers of each pair. For example, the noun pairs
(steel,knife) and (paper,cup) are similar because
in both cases the relation N2 is made of N1 fre-
quently holds between their members. Analogi-
cal tasks are distinct from (but not unrelated to)
other kinds of “relation extraction” tasks where
each data item is tied to a specific sentence con-
text (e.g., Girju et al. (2007)).

One such relational reasoning task is the prob-
lem of compound noun interpretation, which

has received a great deal of attention in recent
years (Girju et al., 2005; Turney, 2006; But-
nariu and Veale, 2008). In English (and other
languages), the process of producing new lexical
items through compounding is very frequent and
very productive. Furthermore, the noun-noun re-
lation expressed by a given compound is not ex-
plicit in its surface form: a steel knife may be a
knife made from steel but a kitchen knife is most
likely to be a knife used in a kitchen, not a knife
made from a kitchen. The assumption made by
similarity-based interpretation methods is that the
likely meaning of a novel compound can be pre-
dicted by comparing it to previously seen com-
pounds whose meanings are known. This is a
natural framework for computational techniques;
there is also empirical evidence for similarity-
based interpretation in human compound process-
ing (Ryder, 1994; Devereux and Costello, 2007).

This paper presents an approach to relational
reasoning based on combining information about
two kinds of similarity between word pairs: lex-
ical similarity and relational similarity. The as-
sumptions underlying these two models of similar-
ity are sketched in Section 2. In Section 3 we de-
scribe how these models can be implemented for
statistical machine learning with kernel methods.
We present a new flexible and efficient kernel-
based framework for classification with relational
similarity. In Sections 4 and 5 we apply our
methods to a compound interpretation task and
demonstrate that combining models of lexical and
relational similarity can give state-of-the-art re-
sults on a compound noun interpretation task, sur-
passing the performance attained by either model
taken alone. We then discuss previous research
on relational similarity, and show that some previ-
ously proposed models can be implemented in our
framework as special cases. Given the good per-
formance achieved for compound interpretation, it
seems likely that the methods presented in this pa-
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per can also be applied successfully to other rela-
tional reasoning tasks; we suggest some directions
for future research in Section 7.

2 Two models of word pair similarity

While there is a long tradition of NLP research
on methods for calculating semantic similarity be-
tween words, calculating similarity between pairs
(or n-tuples) of words is a less well-understood
problem. In fact, the problem has rarely been
stated explicitly, though it is implicitly addressed
by most work on compound noun interpretation
and semantic relation extraction. This section de-
scribes two complementary approaches for using
distributional information extracted from corpora
to calculate noun pair similarity.

The first model of pair similarity is based on
standard methods for computing semantic similar-
ity between individual words. According to this
lexical similarity model, word pairs (w1, w2) and
(w3, w4) are judged similar if w1 is similar to w3

and w2 is similar to w4. Given a measure wsim
of word-word similarity, a measure of pair simi-
larity psim can be derived as a linear combination
of pairwise lexical similarities:

psim((w1, w2), (w3, w4)) = (1)

α[wsim(w1, w3)] + β[wsim(w2, w4)]

A great number of methods for lexical semantic
similarity have been proposed in the NLP liter-
ature. The most common paradigm for corpus-
based methods, and the one adopted here, is based
on the distributional hypothesis: that two words
are semantically similar if they have similar pat-
terns of co-occurrence with other words in some
set of contexts. Curran (2004) gives a comprehen-
sive overview of distributional methods.

The second model of pair similarity rests on the
assumption that when the members of a word pair
are mentioned in the same context, that context
is likely to yield information about the relations
holding between the words’ referents. For exam-
ple, the members of the pair (bear, forest) may
tend to co-occur in contexts containing patterns
such as w1 lives in the w2 and in the w2,. . . a w1,
suggesting that a LOCATED IN or LIVES IN re-
lation frequently holds between bears and forests.
If the contexts in which fish and reef co-occur are
similar to those found for bear and forest, this is
evidence that the same semantic relation tends to

hold between the members of each pair. A re-
lational distributional hypothesis therefore states
that two word pairs are semantically similar if their
members appear together in similar contexts.

The distinction between lexical and relational
similarity for word pair comparison is recognised
by Turney (2006) (he calls the former attributional
similarity), though the methods he presents focus
on relational similarity. Ó Séaghdha and Copes-
take’s (2007) classification of information sources
for noun compound interpretation also includes a
description of lexical and relational similarity. Ap-
proaches to compound noun interpretation have
tended to use either lexical or relational similarity,
though rarely both (see Section 6 below).

3 Kernel methods for pair similarity

3.1 Kernel methods
The kernel framework for machine learning is a
natural choice for similarity-based classification
(Shawe-Taylor and Cristianini, 2004). The cen-
tral concept in this framework is the kernel func-
tion, which can be viewed as a measure of simi-
larity between data items. Valid kernels must sat-
isfy the mathematical condition of positive semi-
definiteness; this is equivalent to requiring that the
kernel function equate to an inner product in some
vector space. The kernel can be expressed in terms
of a mapping function φ from the input space X to
a feature space F :

k(xi,xj) = 〈φ(xi), φ(xj)〉F (2)

where 〈·, ·〉F is the inner product associated with
F . X and F need not have the same dimension-
ality or be of the same type. F is by definition an
inner product space, but the elements of X need
not even be vectorial, so long as a suitable map-
ping function φ can be found. Furthermore, it is
often possible to calculate kernel values without
explicitly representing the elements of F ; this al-
lows the use of implicit feature spaces with a very
high or even infinite dimensionality.

Kernel functions have received significant at-
tention in recent years, most notably due to the
successful application of Support Vector Machines
(Cortes and Vapnik, 1995) to many problems. The
SVM algorithm learns a decision boundary be-
tween two data classes that maximises the mini-
mum distance or margin from the training points
in each class to the boundary. The geometry of the
space in which this boundary is set depends on the
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kernel function used to compare data items. By
tailoring the choice of kernel to the task at hand,
the user can use prior knowledge and intuition to
improve classification performance.

One useful property of kernels is that any sum
or linear combination of kernel functions is itself
a valid kernel. Theoretical analyses (Cristianini
et al., 2001; Joachims et al., 2001) and empiri-
cal investigations (e.g., Gliozzo et al. (2005)) have
shown that combining kernels in this way can have
a beneficial effect when the component kernels
capture different “views” of the data while indi-
vidually attaining similar levels of discriminative
performance. In the experiments described below,
we make use of this insight to integrate lexical and
relational information for semantic classification
of compound nouns.

3.2 Lexical kernels

Ó Séaghdha and Copestake (2008) demonstrate
how standard techniques for distributional similar-
ity can be implemented in a kernel framework. In
particular, kernels for comparing probability dis-
tributions can be derived from standard probabilis-
tic distance measures through simple transforma-
tions. These distributional kernels are suited to a
data representation where each word w is identi-
fied with the a vector of conditional probabilities
(P (c1|w), . . . , P (c|C||w)) that defines a distribu-
tion over other terms c co-occurring with w. For
example, the following positive semi-definite ker-
nel between words can be derived from the well-
known Jensen-Shannon divergence:

kjsd(w1, w2) =

−
∑

c

[P (c|w1) log2(
P (c|w1)

P (c|w1) + P (c|w2)
)

+ P (c|w2) log2(
P (c|w2)

P (c|w1) + P (c|w2)
)] (3)

A straightforward method of extending this model
to word pairs is to represent each pair (w1, w2) as
the concatenation of the co-occurrence probability
vectors for w1 and w2. Taking kjsd as a measure of
word similarity and introducing parameters α and
β to scale the contributions of w1 and w2 respec-
tively, we retrieve the lexical model of pair similar-
ity defined above in (1). Without prior knowledge
of the relative importance of each pair constituent,
it is natural to set both scaling parameters to 0.5,
and this is done in the experiments below.

3.3 String embedding functions
The necessary starting point for our implementa-
tion of relational similarity is a means of compar-
ing contexts. Contexts can be represented in a va-
riety of ways, from unordered bags of words to
rich syntactic structures. The context representa-
tion adopted here is based on strings, which pre-
serve useful information about the order of words
in the context yet can be processed and compared
quite efficiently. String kernels are a family of ker-
nels that compare strings s, t by mapping them
into feature vectors φString(s), φString(t) whose
non-zero elements index the subsequences con-
tained in each string.

A string is defined as a finite sequence s =
(s1, . . . , sl) of symbols belonging to an alphabet
Σ. Σl is the set of all strings of length l, and Σ∗ is
set of all strings or the language. A subsequence
u of s is defined by a sequence of indices i =
(i1, . . . , i|u|) such that 1 ≤ i1 < · · · < i|u| ≤ |s|,
where |s| is the length of s. len(i) = i|u| − i1 + 1
is the length of the subsequence in s. An embed-
ding φString : Σ∗ → R|Σ|l is a function that maps
a string s onto a vector of positive “counts” that
correspond to subsequences contained in s.

One example of an embedding function is a
gap-weighted embedding, defined as

φgapl
(s) = [

∑
i:s[i]=u

λlen(i)]u∈Σl (4)

λ is a decay parameter between 0 and 1; the
smaller its value, the more the influence of a dis-
continuous subsequence is reduced. When l = 1
this corresponds to a “bag-of-words” embedding.
Gap-weighted string kernels implicitly compute
the similarity between two strings s, t as an inner
product 〈φ(s), φ(t)〉. Lodhi et al. (2002) present
an efficient dynamic programming algorithm that
evaluates this kernel in O(l|s||t|) time without ex-
plicitly representing the feature vectors φ(s), φ(t).

An alternative embedding is that used by Turney
(2008) in his PairClass system (see Section 6). For
the PairClass embedding φPC , an n-word context

[0−1 words] N1|2 [0−3 words] N1|2 [0−1 words]

containing target words N1, N2 is mapped onto
the 2n−2 patterns produced by substituting zero
or more of the context words with a wildcard ∗.
Unlike the patterns used by the gap-weighted em-
bedding these are not truly discontinuous, as each
wildcard must match exactly one word.
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3.4 Kernels on sets
String kernels afford a way of comparing individ-
ual contexts. In order to compute the relational
similarity of two pairs, however, we do not want to
associate each pair with a single context but rather
with the set of contexts in which they appear to-
gether. In this section, we use string embeddings
to define kernels on sets of strings.

One natural way of defining a kernel over sets
is to take the average of the pairwise basic kernel
values between members of the two sets A and B.
Let k0 be a kernel on a set X , and let A,B ⊆ X
be sets of cardinality |A| and |B| respectively. The
averaged kernel is defined as

kave(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

k0(a, b) (5)

This kernel was introduced by Gärtner et
al. (2002) in the context of multiple instance learn-
ing. It was first used for computing relational sim-
ilarity by Ó Séaghdha and Copestake (2007). The
efficiency of the kernel computation is dominated
by the |A| × |B| basic kernel calculations. When
each basic kernel calculation k0(a, b) has signifi-
cant complexity, as is the case with string kernels,
calculating kave can be slow.

A second perspective views each set as corre-
sponding to a probability distribution, and takes
the members of that set as observed samples from
that distribution. In this way a kernel on distribu-
tions can be cast as a kernel on sets. In the case of
sets whose members are strings, a string embed-
ding φString can be used to estimate a probability
distribution over subsequences for each set by tak-
ing the normalised sum of the feature mappings of
its members:

φSet(A) =
1
Z

∑
s∈A

φString(s) (6)

where Z is a normalisation factor. Different
choices of φString yield different relational simi-
larity models. In this paper we primarily use the
gap-weighted embedding φgapl

; we also discuss
the PairClass embedding φPC for comparison.

Once the embedding φSet has been calculated,
any suitable inner product can be applied to the
resulting vectors, e.g. the linear kernel (dot prod-
uct) or the Jensen-Shannon kernel defined in (3).
In the latter case, which we term kjsd below, the
natural choice for normalisation is the sum of the
entries in

∑
s∈A φString(s), ensuring that φSet(A)

has unit L1 norm and defines a probability dis-
tribution. Furthermore, scaling φSet(A) by 1

|A| ,
applying L2 vector normalisation and applying
the linear kernel retrieves the averaged set kernel
kave(A,B) as a special case of the distributional
framework for sets of strings.

Instead of requiring |A||B| basic kernel evalua-
tions for each pair of sets, distributional set kernels
only require the embedding φSet(A) to be com-
puted once for each set and then a single vector
inner product for each pair of sets. This is gen-
erally far more efficient than the kernel averaging
method. The significant drawback is that repre-
senting the feature vector for each set demands
a large amount of memory; for the gap-weighted
embedding with subsequence length l, each vec-
tor potentially contains up to |A|

(|smax|
l

)
entries,

where smax is the longest string in A. In practice,
however, the vector length will be lower due to
subsequences occurring more than once and many
strings being shorter than smax.

One way to reduce the memory load is to re-
duce the lengths of the strings used, either by re-
taining just the part of each string expected to be
informative or by discarding all strings longer than
an acceptable maximum. The PairClass embed-
ding function implicitly restricts the contexts con-
sidered by only applying to strings where no more
than three words occur between the targets, and by
ignoring all non-intervening words except single
ones adjacent to the targets. A further technique
is to trade off time efficiency for space efficiency
by computing the set kernel matrix in a blockwise
fashion. To do this, the input data is divided into
blocks of roughly equal size – the size that is rele-
vant here is the sum of the cardinalities of the sets
in a given block. Larger block sizes b therefore
allow faster computation, but they require more
memory. In the experiments described below, b
was set to 5,000 for embeddings of length l = 1
and l = 2, and to 3,000 for l = 3.

4 Experimental setup for compound
noun interpretation

4.1 Dataset
The dataset used in our experiments is Ó Séaghdha
and Copestake’s (2007) set of 1,443 compound
nouns extracted from the British National Corpus
(BNC).1 Each compound is annotated with one of

1The data are available from http://www.cl.cam.
ac.uk/˜do242/resources.html.
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six semantic relations: BE, HAVE, IN, AGENT, IN-
STRUMENT and ABOUT. For example, air disas-
ter is labelled IN (a disaster in the air) and freight
train is labelled INSTRUMENT (a train that car-
ries freight). The best previous classification result
on this dataset was reported by Ó Séaghdha and
Copestake (2008), who achieved 61.0% accuracy
and 58.8% F-score with a purely lexical model of
compound similarity.

4.2 General Methodology
All experiments were run using the LIBSVM Sup-
port Vector Machine library.2 The one-versus-all
method was used to decompose the multiclass task
into six binary classification tasks. Performance
was evaluated using five-fold cross-validation. For
each fold the SVM cost parameter was optimised
in the range (2−6, 2−4, . . . , 212) through cross-
validation on the training set.

All kernel matrices were precomputed on near-
identical machines with 2.4 Ghz 64-bit processors
and 8Gb of memory. The kernel matrix compu-
tation is trivial to parallelise, as each cell is inde-
pendent. Spreading the computational load across
multiple processors is a simple way to reduce the
real time cost of the procedure.

4.3 Lexical features
Our implementation of the lexical similarity
model uses the same feature set as Ó Séaghdha
and Copestake (2008). Two corpora were used
to extract co-occurrence information: the writ-
ten component of the BNC (Burnard, 1995) and
the Google Web 1T 5-Gram Corpus (Brants and
Franz, 2006). For each noun appearing as a com-
pound constituent in the dataset, we estimate a co-
occurrence distribution based on the nouns in co-
ordinative constructions. Conjunctions are identi-
fied in the BNC by first parsing the corpus with
RASP (Briscoe et al., 2006) and extracting in-
stances of the conj grammatical relation. As the
5-Gram corpus does not contain full sentences it
cannot be parsed, so regular expressions were used
to extract coordinations. In each corpus, the set of
co-occurring terms is restricted to the 10,000 most
frequent conjuncts in that corpus so that each con-
stituent distribution is represented with a 10,000-
dimensional vector. The probability vector for the
compound is created by appending the two con-
stituent vectors, each scaled by 0.5 to weight both

2http://www.csie.ntu.edu.tw/˜cjlin/
libsvm

constituents equally and ensure that the new vec-
tor sums to 1. To perform classification with these
features we use the Jensen-Shannon kernel (3).3

4.4 Relational features

To extract data for computing relational similarity,
we searched a large corpus for sentences in which
both constituents of a compound co-occur. The
corpora used here are the written BNC, contain-
ing 90 million words of British English balanced
across genre and text type, and the English Giga-
word Corpus, 2nd Edition (Graff et al., 2005), con-
taining 2.3 billion words of newswire text. Extrac-
tion from the Gigaword Corpus was performed at
the paragraph level as the corpus is not annotated
for sentence boundaries, and a dictionary of plural
forms and American English variants was used to
expand the coverage of the corpus trawl.

The extracted contexts were split into sentences,
tagged and lemmatised with RASP. Duplicate sen-
tences were discarded, as were sentences in which
the compound head and modifier were more than
10 words apart. Punctuation and tokens containing
non-alphanumeric characters were removed. The
compound modifier and head were replaced with
placeholder tokens M:n and H:n in each sentence
to ensure that the classifier would learn from re-
lational information only and not from lexical in-
formation about the constituents. Finally, all to-
kens more than five words to the left of the left-
most constituent or more than five words to the
right of the rightmost constituent were discarded;
this has the effect of speeding up the kernel com-
putations and should also focus the classifier on
the most informative parts of the context sen-
tences. Examples of the context strings extracted
for the modifier-head pair (history,book) are the:a
1957:m pulitizer:n prize-winning:j H:n describe:v
event:n in:i american:j M:n when:c elect:v of-
ficial:n take:v principle:v and he:p read:v con-
stantly:r usually:r H:n about:i american:j M:n
or:c biography:n.

This extraction procedure resulted in a corpus
of 1,472,798 strings. There was significant varia-
tion in the number of context strings extracted for
each compound: 288 compounds were associated
with 1,000 or more sentences, while 191 were as-

3Ó Séaghdha and Copestake (2008) achieve their single
best result with a different kernel (the Jensen-Shannon RBF
kernel), but the kernel used here (the Jensen-Shannon lin-
ear kernel) generally achieves equivalent performance and
presents one fewer parameter to optimise.
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kjsd kave

Length Acc F Acc F
1 47.9 45.8 43.6 40.4
2 51.7 49.5 49.7 48.3
3 50.7 48.4 50.1 48.6
Σ12 51.5 49.6 48.3 46.8
Σ23 52.1 49.9 50.9 49.5
Σ123 51.3 49.0 50.5 49.1
φPC 44.9 43.3 40.9 40.0

Table 1: Results for combinations of embedding
functions and set kernels

sociated with 10 or fewer and no sentences were
found for 45 constituent pairs. The largest context
sets were predominantly associated with political
or economic topics (e.g., government official, oil
price), reflecting the journalistic sources of the Gi-
gaword sentences.

Our implementation of relational similarity ap-
plies the two set kernels kave and kjsd defined in
Section 3.4 to these context sets. For each kernel
we tested gap-weighted embedding functions with
subsequence length values l in the range 1, 2, 3,
as well as summed kernels for all combinations
of values in this range. The decay parameter λ
for the subsequence feature embedding was set to
0.5 throughout, in line with previous recommen-
dations (e.g., Cancedda et al. (2003)). To inves-
tigate the effects of varying set sizes, we ran ex-
periments with context sets of maximal cardinality
q ∈ {50, 250, 1000}. These sets were randomly
sampled for each compound; for compounds asso-
ciated with fewer strings than the maximal cardi-
nality, all associated strings were used. For q = 50
we average results over five runs in order to re-
duce sampling variation. We also report some
results with the PairClass embedding φPC . The
restricted representative power of this embedding
brings greater efficiency and we were able to use
q = 5, 000; for all but 22 compounds, this allowed
the use of all contexts for which the φPC embed-
ding was defined.

5 Results

Table 1 presents results for classification with re-
lational set kernels, using q = 1, 000 for the gap-
weighted embedding. In general, there is little dif-
ference between the performance of kjsd and kave

with φgapl
; the only statistically significant differ-

ences (at p < 0.05, using paired t-tests) are be-
tween the kernels kl=1 with subsequence length

l = 1 and the summed kernels kΣ12 = kl=1+kl=2.
The best performance of 52.1% accuracy, 49.9%
F-score is obtained with the Jensen-Shannon ker-
nel kjsd computed on the summed feature embed-
dings of length 2 and 3. This is significantly lower
than the performance achieved by Ó Séaghdha
and Copestake (2008) with their lexical similar-
ity model, but it is well above the majority class
baseline (21.3%). Results for the PairClass em-
bedding are much lower than for the gap-weighted
embedding; the superiority of φgapl

is statistically
significant in all cases except l = 1.

Results for combinations of lexical co-
occurrence kernels and (gap-weighted) relational
set kernels are given in Table 2. With the excep-
tion of some combinations of the length-1 set
kernel, these results are clearly better than the
best results obtained with either the lexical or
the relational model taken alone. The best result
is obtained by the combining the lexical kernel
computed on BNC conjunction features with the
summed Jensen-Shannon set kernel kΣ23 ; this
combination achieves 63.1% accuracy and 61.6%
F-score, a statistically significant improvement (at
the p < 0.01 level) over the lexical kernel alone
and the best result yet reported for this dataset.
Also, the benefit of combining set kernels of
different subsequence lengths l is evident; of the
12 combinations presented Table 2 that include
summed set kernels, nine lead to statistically
significant improvements over the corresponding
lexical kernels taken alone (the remaining three
are also close to significance).

Our experiments also show that the distribu-
tional implementation of set kernels (6) is much
more efficient than the averaging implementation
(5). The time behaviour of the two methods
with increasing set cardinality q and subsequence
length l is illustrated in Figure 1. At the largest
tested values of q and l (1,000 and 3, respectively),
the averaging method takes over 33 days of CPU
time, while the distributional method takes just
over one day. In theory, kave scales quadratically
as q increases; this was not observed because for
many constituent pairs there are not enough con-
text strings available to keep adding as q grows
large, but the dependence is certainly superlinear.
The time taken by kjsd is theoretically linear in q,
but again scales less dramatically in practice. On
the other hand kave is linear in l, while kjsd scales
exponentially. This exponential dependence may
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kjsd kave

BNC 5-Gram BNC 5-Gram
Length Acc F Acc F Acc F Acc F
1 60.6 58.6 60.3 58.1 59.5 57.6 59.1 56.5
2 61.9* 60.4* 62.6 60.8 62.0 60.5* 61.3 59.1
3 62.5* 60.8* 61.7 59.9 62.8* 61.2** 62.3** 60.8**
Σ12 62.6* 61.0** 62.3* 60.6* 62.0* 60.3* 61.5 59.2
Σ23 63.1** 61.6** 62.3* 60.5* 62.2* 60.7* 62.0 60.3
Σ123 62.9** 61.3** 62.6 60.8* 61.9* 60.4* 62.4* 60.6*
No Set 59.9 57.8 60.2 58.1 59.9 57.8 60.2 58.1

Table 2: Results for set kernel and lexical kernel combination. */** indicate significant improvement at
the 0.05/0.01 level over the corresponding lexical kernel alone, estimated by paired t-tests.
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Figure 1: Timing results (in seconds, log-scaled) for averaged and Jensen-Shannon set kernels

seem worrying, but in practice only short subse-
quence lengths are used with string kernels. In
situations where set sizes are small but long sub-
sequence features are desired, the averaging ap-
proach may be more appropriate. However, it
seems likely that many applications will be sim-
ilar to the task considered here, where short sub-
sequences are sufficient and it is desirable to use
as much data as possible to represent each set.
We note that calculating the PairClass embedding,
which counts far fewer patterns, took just 1h21m.
For optimal efficiency, it seems best to use a gap-
weighted embedding with small set cardinality;
averaged across five runs kjsd with q = 50 and
l = Σ123 took 26m to calculate and still achieved
47.6% Accuracy, 45.1% F-score.

6 Related work

Turney et al. (2003) suggest combining various in-
formation sources for solving SAT analogy prob-
lems. However, previous work on compound in-
terpretation has generally used either lexical simi-
larity or relational similarity but not both in com-
bination. Previously proposed lexical models in-
clude the WordNet-based methods of Kim and
Baldwin (2005) and Girju et al. (2005), and the

distributional model of Ó Séaghdha and Copes-
take (2008). The idea of using relational similar-
ity to understand compounds goes back at least as
far as Lebowitz’ (1988) RESEARCHER system,
which processed patent abstracts in an incremental
fashion and associated an unseen compound with
the relation expressed in a context where the con-
stituents previously occurred.

Turney (2006) describes a method (Latent Rela-
tional Analysis) that extracts subsequence patterns
for noun pairs from a large corpus, using query
expansion to increase the recall of the search and
feature selection and dimensionality reduction to
reduce the complexity of the feature space. LRA
performs well on analogical tasks including com-
pound interpretation, but has very substantial re-
source requirements. Turney (2008) has recently
proposed a simpler SVM-based algorithm for ana-
logical classification called PairClass. While it
does not adopt a set-based or distributional model
of relational similarity, we have noted above that
PairClass implicitly uses a feature representation
similar to the one presented above as (6) by ex-
tracting subsequence patterns from observed co-
occurrences of word pair members. Indeed, Pair-
Class can be viewed as a special case of our frame-
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work; the differences from the model we have
used consist in the use of a different embedding
function φPC and a more restricted notion of con-
text, a frequency cutoff to eliminate less common
subsequences and the Gaussian kernel to compare
vectors. While we cannot compare methods di-
rectly as we do not possess the large corpus of
5 × 1010 words used by Turney, we have tested
the impact of each of these modifications on our
model.4 None improve performance with our set
kernels, but the only statistically significant effect
is that of changing the embedding model as re-
ported in section Section 5. Implementing the full
PairClass algorithm on our corpus yields 46.2%
accuracy, 44.9% F-score, which is again signifi-
cantly worse than all results for the gap-weighted
model with l > 1.

In NLP, there has not been widespread use of
set representations for data items, and hence set
classification techniques have received little at-
tention. Notable exceptions include Rosario and
Hearst (2005) and Bunescu and Mooney (2007),
who tackle relation classification and extraction
tasks by considering the set of contexts in which
the members of a candidate relation argument pair
co-occur. While this gives a set representation for
each pair, both sets of authors apply classifica-
tion methods at the level of individual set mem-
bers rather than directly comparing sets. There
is also a close connection between the multino-
mial probability model we have proposed and the
pervasive bag of words (or bag of n-grams) repre-
sentation. Distributional kernels based on a gap-
weighted feature embedding extend these models
by using bags of discontinuous n-grams and down-
weighting gappy subsequences.

A number of set kernels other than those dis-
cussed here have been proposed in the machine
learning literature, though none of these propos-
als have explicitly addressed the problem of com-
paring sets of strings or other structured objects,
and many are suitable only for comparing sets of
small cardinality. Kondor and Jebara (2003) take a
distributional approach similar to ours, fitting mul-
tivariate normal distributions to the feature space
mappings of sets A and B and comparing the map-
pings with the Bhattacharrya vector inner product.
The model described above in (6) implicitly fits
multinomial distributions in the feature space F ;

4Turney (p.c.) reports that the full PairClass model
achieves 50.0% accuracy, 49.3% F-score.

this seems more intuitive for string kernel embed-
dings that map strings onto vectors of positive-
valued “counts”. Experiments with Kondor and
Jebara’s Bhattacharrya kernel indicate that it can
in fact come close to the performances reported
in Section 5 but has significantly greater compu-
tational requirements due to the need to perform
costly matrix manipulations.

7 Conclusion and future directions

In this paper we have presented a combined model
of lexical and relational similarity for relational
reasoning tasks. We have developed an efficient
and flexible kernel-based framework for compar-
ing sets of contexts using the feature embedding
associated with a string kernel.5 By choosing a
particular embedding function and a particular in-
ner product on subsequence vectors, the previ-
ously proposed set-averaging and PairClass algo-
rithms for relational similarity can be retrieved as
special cases. Applying our methods to the task
of compound noun interpretation, we have shown
that combining lexical and relational similarity is a
very effective approach that surpasses either simi-
larity model taken individually.

Turney (2008) argues that many NLP tasks can
be formulated in terms of analogical reasoning,
and he applies his PairClass algorithm to a number
of problems including SAT verbal analogy tests,
synonym/antonym classification and distinction
between semantically similar and semantically as-
sociated words. Our future research plans include
investigating the application of our combined sim-
ilarity model to analogical tasks other than com-
pound noun interpretation. A second promising
direction is to investigate relational models for un-
supervised semantic analysis of noun compounds.
The range of semantic relations that can be ex-
pressed by compounds is the subject of some con-
troversy (Ryder, 1994), and unsupervised learning
methods offer a data-driven means of discovering
relational classes.
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